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Preface by the Workshop Organizers

We are excited to welcome you to EvoNLP 2022, the 1st Workshop on Ever Evolving NLP. This wor-
kshop follows a hybrid format, and is being held on December 7, 2022, co-located with EMNLP 2022,
which will also follow a hybrid format (Abu Dhabi and remote).
EvoNLP is a forum to discuss the challenges posed by the dynamic nature of language in the specific
context of the current NLP paradigm, dominated by language models. This year, the program includes
a regular session, a session dedicated to the time-aware Word-in-Context classification shared task, as
well as non-archival presentations and Findings of EMNLP papers. Finally, are delighted to have the
following renowned invited speakers: Eunsol Choi, Jacob Eisenstein, Adam Jatowt, Ozan Sener and
Nazneen Rajani.
15 papers will be presented at EvoNLP. In particular, 3 research papers, 5 TempoWiC system description
papers, 4 Findings of EMNLP papers, and 3 non-archival submissions. These papers cover a variety of
topics, for example few shot learning using incremental approaches, clustering techniques for dynamic
topic discovery, construction of temporal benchmarks, or leveraging time-dependent features for offen-
sive language detection. Regarding the TempoWiC shared task, our participants leveraged techniques
such as multitask learning, mixture-of-experts or generative approaches.
We would like to thank the Program Committee members for their support of this event in form of
reviewing and feedback, without whom we would not be able to ensure the overall quality of the
workshop.
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Keynote Talk: Knowledge-rich NLP models in a dynamic real
world

Eunsol Choi
UT-Austin

Abstract: To address knowledge-rich tasks such as question answering, NLP models should combine
knowledge from multiple sources – memorized knowledge in the language model (LM), and passages
retrieved from an evidence corpus. Prior work assumed information stored in various sources is consi-
stent with each other. Yet, a mismatch in knowledge sources is common in the real world: some sources
are updated while others remain stale, and different sources can interpret the same question differently
or propose differing opinions. How should we resolve such complex knowledge conflicts? In this talk,
I will describe our recent work on (1) an evaluation framework for updating knowledge in LMs and
(2) how state-of-the-art models behave under knowledge conflicts. I will conclude my talk with paths
for handling real-world scenarios, continual learning of models and calibrating them to avoid answering
when provided with incomplete or conflicting information.

Bio: Eunsol Choi is an assistant professor in the Computer Science department at the University of Texas
at Austin and a visiting researcher at Google AI. Her research area spans natural language processing and
machine learning. She is particularly interested in interpreting and reasoning about text in a rich real-
world context. She received a Ph.D. from University of Washington and B.A from Cornell University.
She is a recipient of Facebook research fellowship, Google faculty research award, and outstanding paper
award at EMNLP 2021.
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Keynote Talk: What can we learn from language change?
Jacob Eisenstein

Google

Abstract: Language changes are shaped by world events and social structures. With an increasingly rich
set of resources for studying text over time, this raises the possibility of reverse-engineering language
change to uncover new insights about the world. This talk will survey work on diachronic corpora of
social media, historical newspapers, and scientific research papers. We use these corpora to build models
of cultural transmission between US cities, the effects of social media platforms’ policies and norms, the
leaders of the movement to abolish slavery in the United States, and which ACL papers are likely to get
the most citations in the future. Collaborators include Sandeep Soni, Umashanthi Pavalanathan, Lauren
F. Klein, Kristina Lerman, and David Bamman.

Bio: Jacob Eisenstein is a research scientist at Google, where he is focused on making language technolo-
gy more robust and trustworthy. He was previously on the faculty of the Georgia Institute of Technology,
where he supervised six successful doctoral dissertations, received the NSF CAREER Award for research
on computational sociolinguistics, and wrote a textbook on natural language processing. He completed
his Ph.D. at MIT, winning the George M. Sprowls award for a dissertation on computational models of
speech and gesture. Thanks to his brief appearance in the documentary film If These Knishes Could
Talk, Jacob has a Bacon number of 2.
https://jacobeisenstein.github.io/
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Keynote Talk: Automatic Question Answering over Temporal
News Collections

Adam Jatowt
University of Innsbruck

Abstract: The field of automatic question answering has been rapidly advancing recently. The existing
QA approaches are however generally working on synchronic document collections such as Wikipedia,
Web data or short-term news corpora. This talk is about our latest efforts in automatic question answe-
ring over diachronic news collections composed of articles published over several decades. We will first
discuss an unsupervised re-ranking approach that works by utilizing temporal information embedded in
the temporal document collection. Next, we will introduce a solution for finding the occurrence dates
of events described in input questions based on the underlying news dataset. Finally, we will introduce
ArchivalQA - a large-scale question answering dataset which has been automatically created from a two
decades’ long news article collection, and which contains over 500k question-answer pairs. The dataset
has been processed to remove temporally ambiguous questions for which more than one correct answer
exist.

Bio: Adam Jatowt is a Professor at the Department of Computer Science and Digital Science Center
at the University of Innsbruck. He received his Ph.D. in Information Science and Technology from the
University of Tokyo, Japan in 2005. Before moving to Austria, Adam worked at Kyoto University as
an Assistant and later as an Associate Professor. His research interests include information retrieval,
natural language processing, digital libraries, and digital humanities. Adam has published over 180
research papers in international conferences and journals. He is an editorial board member of IP&M,
JASIST, IJDL, JIIS, and IEEE JoSC journals. Adam has received the Vannevar Bush Best Paper Award
at JCDL2021, the best short paper award at ECIR2018, and the best demo award at ECIR2019.
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Keynote Talk: Going from Continual Learning Algorithms to
Continual Learning Systems

Ozan Sener
Apple

Abstract: We envision continual learning systems to interact with humans, with each other, and the
physical world through time – and continue to learn and adapt as they do. On the other hand, we develop
and benchmark continual learning algorithms, hoping they will be the future founding blocks of such sy-
stems. I will argue that going from algorithmic to system thinking requires carefully questioning various
assumptions. Consider the common assumption of storage being fixed and limited through the agent’s
lifetime. The economics of data storage suggests that the cost of storing data decreases over time and is
negligible compared to the cost of computing. Following this economics, computing systems around us
are not constrained by storage but rather by computation. This motivates us to explore online continual
learning with computation constraints instead of storage constraints. Using this new setting, we set a
new state of the art on the largest large-scale continual learning datasets.

Bio: Ozan Sener is interested in machine learning and its applications in computer vision and ro-
botics. Specifically, Ozan is interested in designing machine learning algorithms which can process
large-amount of multimodal information with no/weak supervision.
Ozan is a research scientist at Apple. Ozan received his PhD from Cornell University, advised by Ashu-
tosh Saxena. Following the advisor’s move, Ozan spent three beautiful years at Stanford AI Lab as a
visiting PhD student (2015-2016) and a postdoc (2017) working with Silvio Savarese. Ozan obtained his
BSc and MSc degrees from METU.
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Keynote Talk: Takeaways from a systematic study of 75K
models on Hugging Face

Nazneen Fatema Rajani
Hugging Face

Abstract: Language models trained using transformers dominate the NLP model landscape, making
Hugging Face (HF) the de facto hub for sharing, benchmarking, and evaluating NLP models. The HF
hub provides a rich resource for understanding how language models evolved, opening up research que-
stions on how factors such as model age and documentation affect their usage. We conducted a systematic
study of the hub to glean insights into the ever-evolving model landscape and what factors affect model
usage. We also studied model documentation for semantic drifts, and observed an evolution in the use of
specific keywords (such as “train,” “evaluate,” “impact”), indicating a paradigm shift from model-centric
to more data-centric ML development. In this talk, I will give a macro-level view of this evolving model
landscape and discuss the results from our systematic study of 75K HF models.

Bio: Nazneen is a Research Lead at HuggingFace, a startup with a mission to democratize ML, leading
data-centric ML research which involves systematically analyzing, curating, and automatically annota-
ting data. Before HF, she worked at Salesforce Research with Richard Socher and led a team of resear-
chers focused on building robust natural language generation systems based on LLMs. She completed
her Ph.D. in CS at UT-Austin with Prof. Ray Mooney.
Nazneen has over 30 papers published at ACL, EMNLP, NAACL, NeurIPs, and ICLR and has her resear-
ch covered by Quanta magazine, VentureBeat, SiliconAngle, ZDNet, and Datanami. She is also teaching
a course on interpreting ML models with Corise – http://corise.com/go/nazneen. More details about her
work can be found here https://www.nazneenrajani.com/.
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MLLabs-LIG at TempoWiC 2022: A Generative Approach for Examining
Temporal Meaning Shift

Chenyang Lyu†∗ Yongxin Zhou‡∗ Tianbo Ji†
† School of Computing, Dublin City University, Dublin, Ireland

‡ LIG, Univ. Grenoble Alpes, Grenoble, France
{chenyang.lyu2, tianbo.ji2}@mail.dcu.ie, yongxin.zhou@univ-grenoble-alpes.fr

Abstract

In this paper, we present our system for the
EvoNLP 2022 shared task Temporal Meaning
Shift (TempoWiC). Different from the typically
used discriminative model, we propose a gener-
ative approach based on pre-trained generation
models. The basic architecture of our system
is a seq2seq model where the input sequence
consists of two documents followed by a ques-
tion asking whether the meaning of target word
changed or not, the target output sequence is
a declarative sentence describing the meaning
of target word changed or not. The experimen-
tal results on TempoWiC test set show that our
best system (with time information) obtained
an accuracy and Macro-F1 score of 68.09% and
62.59% respectively, which ranked 12th among
all submitted systems. The results have shown
the plausibility of using generation model for
WiC tasks, meanwhile also indicate there’s still
room for further improvement.

1 Introduction

The EvoNLP Shared Task Temporal Meaning
Shift (TempoWiC) (Loureiro et al., 2022) aims
to judge whether the meaning of a target word
in a pair of sentences (two tweets in this case)
change or not. Different from original WiC (Word-
in-Context) task, TempoWiC takes into account
the temporal information in the text, as tweets in
each pair are with the date when they are posted.
Therefore, that brings new challenges into this task
- how to make use of the temporal information in
the tweets?

Unlike Conventional approaches for WiC tasks
that typically adopt discriminative models (such as
BERT or RoBERTa) with an input consisting of
a pair of sentences (Devlin et al., 2019; Liu et al.,
2019; Loureiro et al., 2021), here we propose a
generative approach. In our approach we treat the
temporal information in tweets as normal words

*These authors contributed equally to this work.

without complicated designation for task schema,
aiming at exploiting the natural language under-
standing (NLU) capability of the pre-trained gen-
eration model (Radford et al., 2019; Lewis et al.,
2020). Moreover, that could potentially inspire fur-
ther developments for such tasks based on large
language models (LLMs) such as GPT-3 (Brown
et al., 2020) with Prompt Learning which has been
the focus of the community recently due to its su-
perior zero-shot performance (Liu et al., 2021).

Specifically, for the input sequence we concate-
nate two tweets which are followed by a question
asking whether the meaning of the target word
change or not. The output sequence is a declar-
ative sentence stating whether the meaning of the
target word changed or not in the two tweets. In
our approach, TempoWiC is framed as a generative
QA task and the construction of the data follows
the manner of template-based Question Genera-
tion (Lewis and Fan, 2019; Heilman and Smith,
2009; Fabbri et al., 2020; Lyu et al., 2021). With the
training data constructed in such format, we fine-
tune the pre-trained generation models as a seq2seq
model using a vanilla autoregressive generation ob-
jective (Sutskever et al., 2014; Johnson et al., 2017;
Yang et al., 2019).

We submitted two systems (one with time in-
formation and the other one without time informa-
tion) to TempoWiC for evaluation. Results show
that our best best system (with time information)
on the TempoWiC test set obtained an accuracy
and Macro-F1 score of 68.09% and 62.59% re-
spectively, which slightly outperforms the other
system without time information with an accuracy
and Macro-F1 score of 68.02% and 61.14%. Based
on the evaluation results on TempoWiC test set,
we found that pre-trained generation models are
capable of capturing the meaning shift of target
word in context. Besides, results also show that
time information (date of each tweet) can provide
further improvement for performance, showing the

1



importance of temporal information. In the rest
of this paper, we will introduce the architecture of
our system and give more detailed experimental
results.

2 Methodology

In this section, we briefly introduce how Tem-
poWiC task is formulated in this paper and how
to train our system.

2.1 Task formulation

We frame the TempoWiC task as a seq2seq gen-
eration task where the source sequence consists
of two tweets followed by a question, the target
sequence is a declarative sentence. Moreover, in or-
der to avoid the generation of naive output (e.g., all
same output), we have some specific designation
for the input and output sequence: the question
in the source sequence must be an interrogative
sentence specific to the target word, also the target
sequence has to include the target word. As a gen-
erative approach, the format of input and output
sequence of our system are as follows:

• Input: Tweet1 - Tweet2 - Question: Does the
meaning of word X change?

• Output: Is the meaning of X different in the
last two tweets?

Note X is the target word that we wish to exam-
ine whether its meaning changed or not in the two
tweets. For instance, a concrete example in such
format is shown as follows:

Input: Tweet-1: The book in 19th century is fan-
tastic...... Date: 2018-03. Tweet-2: Need help to
book the next-day flight...... Date: 2019-03. Ques-
tion: Is the meaning of book different in the last
two tweets?

Output: Answer: No, the meaning of book is not
the same.

where we highlight the target word book, of
which the presence in the input and output sequence
is essential for PLMs to learn how to measure the
meaning shift of the target word.

2.2 Training objective

Our training objective is to minimize the Negative
Log Likelihood Loss with respect to the parameters
θ of our autoregressive generation systems:

J(θ) = −logP (q|c, a) =
∑

i

logP (ai|a<i, c, q)

(1)
where a is our target sequence answer, c is the
context (two tweets) and q is the question.

3 Experiment

Model Accuracy Macro F-1

BART-base 65.91 63.33
BART-large 69.19 65.72

Table 1: Performance of BART-base and BART-large
on TempoWiC validation set.

3.1 Data
The training, validation and test set of TempoWiC
data contain 1428, 396 and 10000 examples re-
spectively. We show the average length of the two
tweets in TempoWiC dataset in Table 2, where we
found that the average length of the first tweet is
typically longer than the second tweet in all splits
especially in validation set.

3.2 Training Setup
We employ BART (Lewis et al., 2020) as our
seq2seq model, which is Pre-trained Language
Models (PLMs) that have been shown to be ef-
fective in various natural language generation
tasks (Lai et al., 2021; Lewis et al., 2021; Zhou
et al., 2022). Our implementation is based on
BART-base and BART-large (Lewis et al., 2020)
from Huggingface (Wolf et al., 2020). We train
our system with a learning rate of 3 × 10−5 for
10 epochs, the batch size is set to 4. We use a
maximum source sequence length of 512 and a
maximum target sequence length of 64.

3.3 Results
We report the results on validation set of BART-
base and BART-large in Table 1, the results show
that BART-large outperforms BART-base by 3.28
accuracy and 4.39 Macro F-1 score. Therefore,
our two submitted systems are based on BART-
large. Table 3 shows the results of the official
TempoWiC Competition Leaderboard (29 Septem-
ber 2022), our best system (with time information)
ranked 12th with an accuracy and Macro F-1 score
of 68.09% and 62.59% respectively, meanwhile our
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Split Number of Examples Avg. Len. of Tweet-1 Avg. Len. of Tweet-2 Number of Target Words

Train 1428 31.79 30.68 15
Validation 396 28.20 24.29 4
Test 10000 26.74 25.70 15

Table 2: Average length for the tweets in the train, validation and test set as well as the number of target words of
TempoWiC dataset.

Rank User/Baseline Accuracy Macro-F1
1 dma 78.34% 77.05%
2 macd 77.53% 76.60%
3 zackchen 75.49% 74.87%
4 dmi 74.13% 73.37%
5 wangkangxu 73.46% 73.08%
6 vol 73.66% 72.54%
- TimeLMs - SIM 74.07% 70.33%
7 lisatukhtina 70.94% 70.09%
8 subhamkumar 70.47% 69.79%
9 mahhars 70.47% 69.79%
10 eternalfeather 69.18% 68.49%
- RoBERTa-L - SIM 72.98% 67.09%
11 nst 72.51% 63.75%
12 MLLabs-LIG 68.09% 62.59%
13 yashamz 63.00% 61.97%
14 pgatti 66.67% 59.38%
- RoBERTa-L - FT 66.49% 59.10%
15 adityakane 67.41% 57.94%
- TimeLMs - FT 66.46% 57.70%
16 PaulTrust 62.66% 55.38%
17 virk 55.13% 54.25%
18 daminglu123 50.78% 50.13%
- Random 50.00% 50.00%
- All True 36.59% 26.79%

Table 3: Official TempoWiC Codalab Competition Leaderboard (29 September 2022). Baselines on the TempoWiC
are marked in lightgray with their results: TimeLMs - SIM is Logistic Regression based on Similarity of Contextual
Embeddings from TimeLMs-2019-90M (pooled following LMMS-SP); RoBERTa-L - SIM is Logistic Regression
based on Similarity of Contextual Embeddings from RoBERTa-Large (pooled following LMMS-SP); RoBERTa-L -
FT is Fine-tuned RoBERTa-Large (following configuration used in SuperGLUE) and TimeLMs - FT is TimeLMs
- FT Fine-tuned TimeLMs-2019-90M (following configuration used in SuperGLUE). Besides, Random means
predictions are randomly assigned T/F and All True refers that All instances assigned T (Loureiro et al., 2022).

system without time information obtained an accu-
racy and Macro F-1 score of 68.02% and 61.14%.
Our generative approach outperforms the baselines
including RoBERTa-L-FT, TimeLMs-FT, Random
and All True, whereas underperforms compared to
the baselines TimeLMs-SIM and RoBERTa-L-SIM.

From the results shown in Table 1 and Table 3,
we have three main findings:

• The use of a generative approach for the WiC
task is plausible as the results show that our

system outperforms several competitive base-
line models based on BERT

• Temporal information has positive effect in
predicting whether the meaning of the target
word changed or not

• Larger PLMs is more likely to produce higher
performance, indicating further improvement
can be achieved with increasing the size of
PLMs

3



Tweet-1 Tweet-2 Target Word Label Prediction

I can’t believe impostor syn-
drome just tried to equate the tat-
too I’m about to get that symbol-
izes something I studied for 3.5
years + graduated with a 1.7 in
to trying a sport once and getting
a tattoo about it, just because I’m
sort of mediocre at the actual sub-
ject (2019-09)

’damn I was in a game of among
us and I was SURE red did it like
I saw red kill pink but hen red
wasn’t the impostor??? wtf my
mother did suspect I am mildly
colorblind’ (2020-09)

impostor 0 0

Today run bts was epic as the
Christmas one or the one in lotte
world, the boys competitiveness
is (2019-09)

so we’ve got namjoon’s live on
youtube, cns 1 year anniver-
sary, the lotte online concert, tik-
tok ot7, and the new album an-
nouncement today (2020-09)

lotte 1 0

i watched that lotte world run
episode again and now i want to
go back and ride french revolu-
tion it was so much fun :( (2019-
09)

Dude I still haven’t recovered
from lotte family I’m half asleep
how do I even react to be? (2020-
09)

lotte 1 0

COLTS/TEXANS TRIVIA for 4
primo seats to the showdown this
Thursday night + $5k to help
toward travel: Name the Colts
player who recovered his own on-
side kick vs. Houston AND the
final score!! (Note, the $ will be
received at the game). Alyssa’s
hat pick! (2019-11)

’Somali guys used to be very
good tukicheza futa either primo
ama zile matches za estate. I
wonder why à good number of
them never end up in professional
football clubs or the national
team.’ (2020-1)

primo 0 0

In 2016 Sheila Dixon wanted
a recount, Pugh had no in-
tegrity. She talked greasy about
Sheila. Karma is a real bitch huh
Pugh? (2019-11)

Delaying the transition only af-
fects the suffering of Americans
during Covid. All thank to
Trump’s false claims. Can’t
wait to see #Georgia recount
show Trump losing. #TrumpCon-
cede’ (2020-11)

recount 1 1

Table 4: Examples from TempoWiC validation set with corresponding predictions from our system, where 1
represents the meaning of the target word has not changed whereas 0 represents meaning of the target word has
changed.

3.4 Error analysis

We show some examples with corresponding pre-
dictions in Table 4. From Table 4, we found that
our proposed generative approach is capable of de-
tecting most meaning shift for the target word (for
example impostor, recount and primo). However,
it still has difficulties in some cases, such as lotte,
as shown in the two examples in Table 4 where
our system predicts that the meaning of lotte has
not changed - which is not true. Experimental re-
sults as well as error analysis show that pre-trained
generative models still have difficulties recogniz-
ing some language variation, which needs to be
addressed in future developments. We think the
fast evolving and changing meanings of words on
the web, especially on social media, make this task
even more challenging.

4 Conclusion

In this paper, we present a generative approach
based on Pre-trained Language Models for the Tem-
poWiC task. Experimental results show the plausi-
bility of using pre-trained generative model for the
TempoWiC task, which could potentially inspire
further developments based on more pre-trained
models.

Limitations

While pre-trained generative models exhibit strong
capabilities for natural language understanding
with prompts (Liu et al., 2021), there are still issues
to be addressed such as explainability, controllabil-
ity of outputs as these systems fully reply on the
generative ability of pre-trained models. Moreover,

4



how to correctly understand instructions in con-
text/prompt (such as questions) is still challenging
for pre-trained models (Min et al., 2022; Jang et al.,
2022).

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexander Fabbri, Patrick Ng, Zhiguo Wang, Ramesh
Nallapati, and Bing Xiang. 2020. Template-based
question generation from retrieved sentences for im-
proved unsupervised question answering. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4508–4513, On-
line. Association for Computational Linguistics.

Michael Heilman and Noah A Smith. 2009. Question
generation via overgenerating transformations and
ranking. Technical report, Carnegie-Mellon Univer-
sity.

Joel Jang, Seonghyeon Ye, and Minjoon Seo. 2022. Can
large language models truly understand prompts? a
case study with negated prompts.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Huiyuan Lai, Antonio Toral, and Malvina Nissim. 2021.
Thank you BART! rewarding pre-trained models im-
proves formality style transfer. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 484–494, Online. Asso-
ciation for Computational Linguistics.

Mike Lewis and Angela Fan. 2019. Generative question
answering: Learning to answer the whole question.
In International Conference on Learning Representa-
tions.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Min-
ervini, Heinrich Küttler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021. PAQ: 65 mil-
lion probably-asked questions and what you can do
with them. Transactions of the Association for Com-
putational Linguistics, 9:1098–1115.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
CoRR, abs/2107.13586.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Daniel Loureiro, Aminette D’Souza, Areej Nasser
Muhajab, Isabella A. White, Gabriel Wong, Luis Es-
pinosa Anke, Leonardo Neves, Francesco Barbieri,
and Jose Camacho-Collados. 2022. Tempowic: An
evaluation benchmark for detecting meaning shift in
social media.

Daniel Loureiro, Kiamehr Rezaee, Mohammad Taher
Pilehvar, and Jose Camacho-Collados. 2021. Anal-
ysis and Evaluation of Language Models for Word
Sense Disambiguation. Computational Linguistics,
47(2):387–443.

Chenyang Lyu, Lifeng Shang, Yvette Graham, Jennifer
Foster, Xin Jiang, and Qun Liu. 2021. Improving
unsupervised question answering via summarization-
informed question generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4134–4148, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

5

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.18653/v1/2020.acl-main.413
https://doi.org/10.48550/ARXIV.2209.12711
https://doi.org/10.48550/ARXIV.2209.12711
https://doi.org/10.48550/ARXIV.2209.12711
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.18653/v1/2021.acl-short.62
https://doi.org/10.18653/v1/2021.acl-short.62
https://openreview.net/forum?id=Bkx0RjA9tX
https://openreview.net/forum?id=Bkx0RjA9tX
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.48550/ARXIV.2209.07216
https://doi.org/10.48550/ARXIV.2209.07216
https://doi.org/10.48550/ARXIV.2209.07216
https://doi.org/10.1162/coli_a_00405
https://doi.org/10.1162/coli_a_00405
https://doi.org/10.1162/coli_a_00405
https://doi.org/10.18653/v1/2021.emnlp-main.340
https://doi.org/10.18653/v1/2021.emnlp-main.340
https://doi.org/10.18653/v1/2021.emnlp-main.340


Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Yongxin Zhou, François Portet, and Fabien Ringeval.
2022. Effectiveness of French language models on
abstractive dialogue summarization task. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 3571–3581, Marseille,
France. European Language Resources Association.

6

https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2022.lrec-1.382
https://aclanthology.org/2022.lrec-1.382


Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP), pages 7 - 11
December 7, 2022 ©2022 Association for Computational Linguistics

Using Deep Mixture-of-Experts to Detect Word Meaning Shift for
TempoWiC

Ze Chen, Kangxu Wang, Zijian Cai, Jiewen Zheng Jiarong He, Max Gao
Jason Zhang

Interactive Entertainment Group of Netease Inc., Guangzhou, China
{jackchen,wangkangxu,caizijian01,zhengjiewen,gzhejiarong,jgao,

fyzhang}@corp.netease.com

Abstract
This paper mainly describes the dma submis-
sion to the TempoWiC task, which achieves a
macro-F1 score of 77.05% and attains the first
place in this task. We first explore the impact
of different pre-trained language models. Then
we adopt data cleaning, data augmentation, and
adversarial training strategies to enhance the
model generalization and robustness. For fur-
ther improvement, we integrate POS informa-
tion and word semantic representation using
a Mixture-of-Experts (MoE) approach. The
experimental results show that MoE can over-
come the feature overuse issue and combine
the context, POS, and word semantic features
well. Additionally, we use a model ensemble
method for the final prediction, which has been
proven effective by many research works.

1 Introduction

Lexical Semantic Change (LSC) Detection has
drawn increasing attention in the past years(Liu
et al., 2021; Laicher et al., 2021). Existed research
works (Liu et al., 2021) have shown that contex-
tual word embeddings such as those produced by
BERT (Devlin et al., 2018) have great advantages
over non-contextual embeddings for inferring se-
mantic shift when there is limited data. Mean-
while, many datasets are released to accelerate re-
search in this direction. Pilehvar and Camacho-
Collados (2018) proposed Word-in-Context (WiC)
dataset as an benchmark for generic evaluation of
context-sensitive representations. Raganato et al.
(2020) extended WiC to XL-WiC dataset with mul-
tilingual extensions. In contrast to these, Tem-
poWiC (Loureiro et al., 2022b) is crucially de-
signed around the time-sensitive meaning shift and
instances of word usage tied to Twitter trending
topics. Our main work is to build a system that can
detect semantic changes of target words in tweet
pairs during different time periods for TempoWiC.
It is framed as a binary classification task that ad-
dresses whether two instances of a target word have

the same meaning. And pre-trained language mod-
els are adopted to produce contextual embeddings.

2 Background

2.1 Task Description

TempoWiC (Loureiro et al., 2022b) is a new bench-
mark especially aimed at detecting a meaning shift
in social media. Given a pair of sentences and
a target word, the task is framed as a simple bi-
nary classification problem in deciding whether the
meaning corresponding to the first target word in
context is the same as the second one or not.

The dataset of TempoWiC consists of 3297
annotated instances, which are divided into
train/dev/test sets of size 1,428/396/1,473 instances,
respectively. The target words involved in this
task do not overlap between sets. For each sam-
ple, tweet pairs containing the target word were
collected from the Twitter API at different time
periods. The prior date is exactly one year before
the peak date to avoid seasonal confound factors.
The label True indicates that the word has the same
meaning in the two tweets, while the label False
indicates that the meaning is different.

2.2 Pre-trained Language Models

Recently, pre-trained language models (LM) have
achieved remarkable achievement on natural lan-
guage processing tasks, becoming one of the
most effective methods for engineers and scholars.
Transformers-based Pre-trained language models
such as BERT(Devlin et al., 2018), RoBERTa(Liu
et al., 2019), DeBERTa(He et al., 2020), DeBER-
TaV3(He et al., 2021) is designed to pre-trained
deep representation from unlabeled text, which can
be fine-tuned with just one additional output layer
to create state-of-the-art models for a wide range
of tasks, such as question answering and language
inference, without substantial task-specific archi-
tecture modifications.
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By training language models using Twitter cor-
pora from different time periods, (Loureiro et al.,
2022a) showed that language undergoes semantic
transformations over time, proving that training a
language model with outdated corpora leads to a
decline in performance.

2.3 Mixture-of-Experts

MoE (Arnaud et al., 2019) is an approach for condi-
tionally computing a representation. Given several
expert inputs, the output of MoE is a weighted com-
bination of the experts. Recently, MoE achieves
significant improvements on several natural lan-
guage processing tasks, such as named entity recog-
nition (Meng et al., 2021), recommendation(Zhu
et al., 2020) and machine translation(Shazeer et al.,
2017).

3 System Overview

In this section, we first present the framework de-
tails for the models adopted in our work. Then we
introduce several strategies for improving the mod-
els’ robustness. Finally, we talk about the design
of the model ensemble method.

3.1 Models

Our model framework can be divided into three
layers:encoding, matching and prediction. The en-
coding layer is meant for sequence modeling to
capture contextual semantic representation. The
matching layer focuses on finding out the interre-
lation and differences between the target words in
two different tweets. And the prediction layer is
implemented as a classifier that decides whether
the meaning of the target word is the same or not.
A. Base Model Figure 1 shows the details of our
base model. Two tweets are concatenated together
and fed into a pre-trained LM, and the contextual
embeddings(e.g. E1, E2

1) corresponding to the tar-
get word on each tweet of the pair can be achieved.
Then E1 and E2 are processed by the matching
layer to find the difference in these two tweets. The
procedure can be summarized as follows:

Ematch = [E1;E2;E1 − E2;E1 ∗ E2;ECLS ]

1We experimented with different target word representa-
tions: the first token in the word span, the mean value of all
tokens in the span, the concatenation of the first token and
last token in the span. And we found that adopting the con-
catenation of the first token and last token in the span can
perform better than others. Please refer to Appendix A for
more details.

yo = softmax(MLP (Ematch))

loss = CrossEntropy(yo, ytrue)

where ECLS is the embedding of the first token,
Ematch is the output of the matching layer, MLP
is a multi-layer perceptron, ytrue is the gold label
and yo is the output by the base model. E1 ∗ E2

means the Hadamard product of these two vectors,
and E1−E2 represents the elementwise subtraction.

Pre-trained Language Models

[CLS] [SEP] [SEP]

Tweet1 Tweet2

MLP Classifier

Prediction

Matching

Encoding

0/1

Target word 
embedding

concat

T1 T2  Tn T1 T2  Tm

Figure 1: Base Model Architecture

B. MoE Models Figure 2 gives a glimpse of
our MoE-based model architecture. We extend
the base model with two separate BiLSTM to in-
tegrate the POS information and the word seman-
tic representation. For a pair of tweets, we first
extract the contextual embeddings for the target
word from pre-trained LM, and then we use two
separate BiLSTM to get POS encoding and word
semantic encoding. At last, an MoE module is
adopted to merge these three encodings for the tar-
get word. The generated embeddings(e.g. E

′
1, E

′
2)

for the target word are then processed by the match-
ing layer and prediction layer as described above.
Here we denote the POS encoding for the target
word in the pair of tweets as EP

1 , E
P
2 , and denote

the GloVe-initialized word semantic encoding as
EG

1 , E
G
2 respectively.

The details of an MoE module for this task are
given in Figure 3, which consists of a gating net-
work and three experts. The procedure can be sum-
marized as follows:

wC , wP , wG = Gate(E1, E
P
1 , E

G
1 )

E
′
1 = wC ∗ E1 + wP ∗ EP

1 + wG ∗ EG
1

where wC , wP , wG are the weights for contextual
expert, POS expert, and word semantic expert re-
spectively, Gate stands for the gating network, and
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Figure 2: MoE-based Model Architecture

E
′
1 is the output of MoE module for the target word

in the first tweet. We can get E
′
2 for the target word

in the second tweet by the same approach. And
two gating networks are implemented here.

Gating
Network

Contextual

Expert

Input

POS
Expert

Word 
Semantic

Expert

output

Figure 3: Illustration of an MoE module

• Separate Gating Network(S-Gate): The weight
for each expert is calculated separately. We de-
fine a task-specific vector Vt, the weight for ex-
pert i can be calculated as: wi = σ(θ[Vt, E

i]),
where θ are trainable parameters, [, ] is the con-
catenation and σ is the Sigmoid activation, Ei is
the encoding of i-th expert.

• Joint Gating Network(J-Gate): The weights
for all experts are calculated together. We define
the weight vector for all experts as W , which is
a three-dimension vector and can be calculated
as: W = softmax(θ[E1, E2, E3]), where θ are
trainable parameters.

3.2 Data Cleaning and Augmentation
Given that the dataset is somewhat small, and there
are some flaws in the labeled data, we adopt simple
cleaning and augmentation strategies. We simply

remove HTML tags and emojis in tweets, and re-
place the symbol @username with a generic place-
holder. Moreover, we directly remove the wrongly
labeled samples of the target word position. There
are many different data augmentation strategies:
token shuffling, cutoff, back-translation, and so on.
We just introduce the WiC dataset(Pilehvar and
Camacho-Collados, 2018) for data augmentation
in this paper.

3.3 Adversarial Training

Adversarial attack has been well applied in both
computer vision and natural language process-
ing to improve the model’s robustness. We
implement this strategy with Fast Gradient
Method(Goodfellow et al., 2014), which directly
uses the gradient to compute the perturbation and
augments the input with this perturbation to maxi-
mizes the adversarial loss. The training procedure
can be summarized as follows:

min
θ

E(x,y)∼D[max
∆x∈Ω

L(x+∆x, y; θ)]

where x is input, y is the gold label, D is the dataset,
θ is the model parameters, L(x+∆x, y; θ) is the
loss function and ∆x is the perturbation.

3.4 Model Ensemble

For the final prediction, we implement a model
ensemble method. In detail, we use one base model
and the other two MoE models mentioned above
to get the prediction scores and then average these
output scores as the final result.

4 Experiments

4.1 Experimental Setup

Our implementation is based on the Transformers
library by HuggingFace(Wolf et al., 2019) for the
pre-trained models and corresponding tokenizers.
During training, the data is processed by batches
of size 8, the maximum length of each sample is
set to 256, and the learning rate is set to 1e-6 with
a warmup ratio over 10%. By default, we set ϵ to
1.0 in FGM and set the MLP to two layers with a
hidden size of 256.

When MoE models are employed, the hidden
size of BiLSTM is set to 1024, and the pre-trained
Twitter GloVe word vectors 2 are used for word
embedding initialization. Moreover, we use nltk

2https://nlp.stanford.edu/projects/glove/
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toolkit 3 to extract POS tags, and the POS embed-
dings are randomly initialized. Our system jointly
optimizes over different experts, but their model
architectures differ. We adopt differential learning
rates to tackle this problem. The learning rate for
the transformer-based model is set to 1e-6, and the
learning rate for BiLSTM is set to 1e-4.

4.2 Results and Analysis

In this section, we first present experimental results
on the base model. Then we experiment with MoE
models using the effective strategies validated on
the base model. At last, the results of the model
ensemble are reported.

We explore the impact of different pre-trained
LMs adopted as the contextual encoder. Results
given in Table 1 show that DeBERTa-large can per-
form well on this task. And TimeLMs(Loureiro
et al., 2022a) can perform better than generic
RoBERTa since they are implemented and adapted
to the Twitter domain. Moreover, TimeLMs-2020-
09 can achieve almost the best results among
TimeLMs, largely because the dev dataset is dis-
tributed over this time period. From the last two
rows in Table 1, we can find that data cleaning and
augmentation can increase the macro-F1 score by
2.83 percentage points, and FGM training can in-
crease this indicator by 2.57%. Additionally, the
ablation study results on matching layer are pre-
sented in Appendix A, we can find that the first to-
ken [CLS] embedding can help improve the perfor-
mance of this task. The subtraction and Hadamard
product operations can also help find the difference
between target words in two tweets.

When we experiment with MoE models, the data
cleaning and augmentation, and FGM training are
adopted by default. And the pre-trained DeBERTa-
large is used for the contextual encoder. Table 2
shows the performance of different MoE models.
We can find that when integrating POS informa-
tion and word semantic representation by using an
MoE architecture, the performance can improve a
lot. More specifically, the MoE model with S-Gate
and J-Gate can achieve macro-F1 scores of 79.25%
and 79.19% respectively, both of which increase
the base by more than 2%. For further analysis,
ablation studies are done here. We experiment with
POS information and GloVe separately and find
that using an MoE model to integrate POS infor-
mation can improve the performance by 1%, while

3https://www.nltk.org/

Model Accuracy macro-F1
TimeLMs-2019-12 67.17% 63.34%
TimeLMs-2020-03 68.18% 65.20%
TimeLMs-2020-09 68.43% 65.42%
TimeLMs-2020-12 68.18% 65.20%
TimeLMs-2021-03 66.67% 63.88%
TimeLMs-2022-03 68.18% 65.12%

RoBERTa-base 61.62% 60.30%
DeBERTa-base 69.90% 65.60%
DeBERTa-large 71.72% 71.68%

+ Data Aug 74.63% 74.51%
+ Data Aug + FGM(Base) 77.53% 77.08%

Table 1: Results of base model on dev dataset

Model Accuracy macro-F1
Base 77.53% 77.08%
S-Gate + POS + GloVe 79.29% 79.25%
S-Gate + POS 78.26% 77.20%
S-Gate + GloVe 78.19% 77.18%
J-Gate + POS + GloVe 79.29% 79.19%
J-Gate + POS 78.62% 78.31%
J-Gate + GloVe 77.55% 77.12%

Table 2: Results of MoE-based models on dev dataset

using an MoE model to combine word semantic
representation can increase the macro-F1 score by
about 2%.

Table 3 gives the results of our model ensemble
method. By averaging the prediction scores of one
base model and the other two MoE models(S-Gate
+ POS + GloVe, J-Gate + POS + GloVe), the macro-
F1 score can increase by more than 1% on the dev
dataset. And our model ensemble method achieves
a macro-F1 score of 77.05% on the test dataset,
which attains the first place in this task.

Dataset Accuracy macro-F1
Dev 80.81% 80.5%
Test 78.34% 77.05%

Table 3: Ensemble results on both Dev and Test dataset

5 Conclusion

In this work, we provide an overview of the com-
bined approach to detect the meaning shift in so-
cial media. We investigate the impact of adopting
different pre-trained LMs, finding that DeBERTa
performs best for this task. Experimental results
show that strategies such as data augmentation and
adversarial training can enhance the model’s robust-
ness. In particular, incorporating POS information
and word-level semantic representation with MoE
models can significantly improve performance. For
future work, we will investigate how to incorporate
different TimeLMs with MoE models for this task.
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A Additional Experiments on the base
model

In this part, we present several additional experi-
mental results on the base model.

We tried different target word representation
methods for contextual embedding. The results
on dev dataset are listed in Table 4.

Target word Accuracy macro-F1
First 75.6% 74.49%
Mean 74.94% 74.46%
First + Last 77.53% 77.08%

Table 4: Results of different target word representation
methods

To make further analysis, we conducted ablation
studies to investigate the contribution of different
components of matching layer. Results are shown
in Table 5.

Matching layer Accuracy macro-F1
E1 + E2 75.92% 74.74%
+ ECLS 77.15% 76.45%

+ ECLS +[E1-E2] + [E1*E2] 77.53% 77.08%

Table 5: Results of different components of matching
layer
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Abstract
WSD (Word Sense Disambiguation) is the task
of identifying which sense of a word is meant
in a sentence or other segment of text. Re-
searchers have worked on this task (e.g. Puste-
jovsky, 2002) for years but it’s still a chal-
lenging one even for SOTA (state-of-the-art)
LMs (language models). The new dataset, Tem-
poWiC introduced by Loureiro et al. (2022b)
focuses on the fact that words change over time.
Their best baseline achieves 70.33% macro-
F1. In this work, we use two different losses
simultaneously to train RoBERTa-based clas-
sification models. We also improve our model
by using another similar dataset to generalize
better. Our best configuration beats their best
baseline by 4.23% and reaches 74.56% macro-
F1.

1 Introduction

In 2019, Pilehvar and Camacho-Collados (2018)
introduced WiC dataset. It is framed as a binary
classification task between pairs of sentences in-
cluding one identical target word with different
meanings. In 2020, XL-WiC was introduced by
Raganato et al. (2020) and made WiC richer by pro-
viding more examples and adding more languages.
We benefit from the English part of XL-WiC as
a helping dataset to improve the generalization of
our model.

Loureiro et al. (2022b) baselines include:
RoBERTa (Liu et al., 2019) base and large,
TimeLMs (Loureiro et al., 2022a) 2019-90M
and 2021-124M and BERTweet (Nguyen et al.,
2020) base and large. They examine two dif-
ferent methods of using these models: Fine-
tuning and SP-WSD layer pooling weights as ex-
plained in Loureiro et al. (2022c). The best re-
sult is for TimeLMs-2019-90M with SP-WSD with
70.33% macro-F1. We examine RoBERTa-base
and TimeLMs-Jun2022-153M.

For classification, many previous works (e.g. Pe-
ters et al., 2019) use standard practice and con-

catenate both sentences with a [SEP] token and
fine-tune the [CLS] embedding. In this work, we
use two different losses simultaneously, cross en-
tropy loss on RoBERTa classification head output
as standard practice and add cosine embedding loss
on average of target word output embeddings.

2 Methodology

2.1 Model

We use LMs as base model. We add classification
head and also cosine similarity + sigmoid on top
of them. The classification head consists of two
FC (fully connected) layers and a dropout layer be-
tween them (like standard RoBERTa classification
head). RoBERTa uses a byte-level BPE (Byte-Pair
Encoding) encoding scheme so it’s possible that
we have multiple embeddings for a single word.
For second output path, we average embeddings (it
can be more than one as explained) related to tar-
get word in first sentence and second sentence and
compare them using cosine similarity, finally we
apply sigmoid activation to get a binary classifica-
tion. Our experiments shows that the second output
path is more accurate by a large margin. Figure 1
shows an overview of described architecture.

2.2 Loss Function

For the loss function, we have the sum of two
losses, one on standard RoBERTa classification
head and another on similarity (in case of the same
meaning) or dissimilarity (in case of the different
meaning) of the embeddings of the last layer re-
lated to the target word. For the former, we use
cross entropy loss and for latter we use cosine em-
bedding loss. The second loss, help our model
to make similar contextual embeddings for target
word closer and push dissimilar ones away from
each other.
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Figure 1: An overview of architecture. We use two losses simultaneously. First one is cross entropy loss on
standard classifier head (black path) and the second one is cosine embedding loss on average of target word output
embeddings (red path).

2.3 Dataset

The main dataset is TempoWiC, but we also use
the XL-WiC dataset to make our model more ro-
bust. It’s important to know that XL-WiC samples
are not tweets so it is out-of-domain data and the
added data may cause model accuracy to degrade
if the combined dataset is not representative. We
explored using the main dataset without adding
any sample from the XL-WiC dataset, by adding a
random subset of XL-WiC, and also by adding the
whole XL-WiC.

2.4 Framework & Tools

We use PyTorch (Paszke et al., 2019) + Hugging-
Face transformers (Wolf et al., 2020) to implement
our models and for reporting results we use the
Codalab online platform1.

2.5 Hyper-parameters

We use Ray Tune (Liaw et al., 2018) to tune
our hyper-parameters including learning rate, train
epochs, random seed, batch size and weight decay.

1https://codalab.lisn.upsaclay.fr/
competitions/5360

Increasing weight decay helps us avoid over-fitting
which was the main problem in our initial model.

3 Experiments

We have multiple configurations to test:

1. Model

• RoBERTa-base
• TimeLMs-Jun2022-153M

2. Output

• Standard Classifier Head (FC)
• Cosine Similarity + Sigmoid (CS+S)

3. How we use XL-WiC

• Do not use (No)
• A subset as described (Sub)
• Whole XL-WiC (All)

3.1 Results

The biggest problem we were facing was over-
fitting. This is expected since we use transformer-
based LMs.
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Output Model XL-WiC Use Macro-F1

Classifier

RoBERTa-base
No 62.35%
Sub 65.98%
All 63.56%

TimeLMs-Jun2022-153M
No 64.54%
Sub 73.16%
All 72.77%

Similarity

RoBERTa-base
No 67.26%
Sub 68.29%
All 67.29%

TimeLMs-Jun2022-153M
No 66.69%
Sub 74.56%
All 72.32%

Official Baselines

TimeLMs-2019-90M-SIM No 70.33%
RoBERTa-L-SIM No 67.09%
RoBERTa-L-FT No 59.10%

TimeLMs-2019-90M-FT No 57.70%
Random No 50.00%
All True No 26.79%

Table 1: All results are obtained from the Codalab online platform on Tempo-WiC test set.

The most accurate configuration is TimeLMs-
Jun2022-153M with cosine similarity + sigmoid
output trained on TempoWiC and a subset of XL-
WiC. In the following paragraphs, we are going to
analysis the results.

First, the results show that TimeLMs-Jun2022-
153M beats RoBERTa in all possible configura-
tions, the reason is simple: TempoWiC consists of
tweets and TimeLMs-Jun2022-153M is trained on
tweets too, but RoBERTa is not trained on tweets.

Second, using XL-WiC improves results in all
cases. Using all XL-WiC example reduces the
accuracy because the distribution is different (the
samples are not tweets) and it has almost 4× data
in comparison to TempoWiC. If we use all of its
data, we can not expect better accuracy because the
training set distribution will be different from the
test distribution.

Last, the cosine similarity + sigmoid output is
better in most cases in comparison to the standard
classifier head. We think it’s because of more focus
on the target word embedding in comparison to
more focus on the whole context.

4 Future Work

In the future work, more configurations can be
explored:

1. Selecting the subset of XL-WiC more wisely,
instead of randomly selecting. For exam-

ple, considering the maximum possible use
of unique words.

2. Using more layers to calculate similarity, in-
stead of using only the last layer. For example,
the sum of the last 4 layers is another common
choice in word sense disambiguation settings.

3. Exploring more similarity functions, instead
of cosine similarity. For example, euclidean
distance can also be explored.

5 Conclusion

In this work, we beat the best baseline of Loureiro
et al. (2022b) by a large margin. To do this we
use two losses simultaneously (standard classifier
head cross entropy loss and cosine embedding loss
on average of target word output embeddings) to
train SOTA LMs, and also use XL-WiC as a help-
ing dataset to generalize better. The best LM was
TimeLMs-Jun2022-153M which is a pre-trained
model on 153M tweets.
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Abstract

In this paper, we explore class-incremental
learning for intent classification (IC) in a set-
ting with limited old data available. IC is
the task of mapping user utterances to their
corresponding intents. Even though class-
incremental learning without storing the old
data yields high potential of reducing human
and computational resources in industry NLP
model releases, to the best of our knowl-
edge, it hasn’t been studied for NLP clas-
sification tasks in the literature before. In
this work, we compare several contempo-
rary class-incremental learning methods, i.e.,
BERT warm start, L2, Elastic Weight Consoli-
dation, RecAdam and Knowledge Distillation
within two realistic class-incremental learning
scenarios: one where only the previous model
is assumed to be available, but no data cor-
responding to old classes, and one in which
limited unlabeled data for old classes is as-
sumed to be available. Our results indicate
that among the investigated continual learning
methods, Knowledge Distillation worked best
for our class-incremental learning tasks, and
adding limited unlabeled data helps the model
in both adaptability and stability.

1 Introduction

In real-world scenarios, NLP models are regularly
updated to incorporate new functionality that ei-
ther covers new data distributions or includes new
output classes (Diethe et al., 2018). We focus on
the latter scenario in this work, and we consider a
feature expansion use case for a spoken language
understanding (SLU) task in a voice assistant, such
as Siri or Alexa. In particular, we focus on the task
of intent classification (IC), which is a common
sub-task in SLU that aims to map an input user
utterance to an intent supported by the system (for
instance, PLAYMUSIC for play the best songs from
Madonna). With feature expansion, new intents

∗Work done at Amazon Alexa AI

are to be added to the SLU model over time to
support new output classes that corresponds to new
user-facing features in a voice assistant.

A regular feature expansion process in produc-
tion results in a series of consecutive SLU model
releases that are trained for the same intent clas-
sification task, in which new output classes are
being added to the model. Having regular model
releases, it is wasteful of computing and human
resources to start from scratch every time and not
re-use the previous release model in one form or an-
other. Moreover, as our research community moves
towards building NLP systems that are environmen-
tally friendly (e.g., requiring less training time and
computational resources), class incremental learn-
ing (C-IL) becomes an important research direction.
Hence, the problem of class incremental learning
(C-IL) has been studied by the community for a
while now (Kirkpatrick et al., 2017); yet, most of
the previous work has focused on computer vision
tasks (Cheng et al., 2019) with limited attention to
NLP (Cao et al., 2020; Thorne and Vlachos, 2021).

A C-IL setup for regular releases of a model of-
fers both challenges and opportunities. On the one
hand, updating the previous model with new classes
introduces a stability-plasticity problem (Mermil-
lod et al., 2013), where the new model should both
retain the knowledge about the old classes and learn
the new classes on the same level of accuracy. On
the other hand, re-using the old model to build the
next release might help to reduce the reliance on
old training data and speed up the training of the
next release (Ash and Adams, 2020).

In this work, we compare contemporary solu-
tions for incremental learning on a C-IL problem
for the IC task following a production-inspired fea-
ture expansion cycle. We assume a number of
consecutive model releases, where each one adds a
number of new output classes and the correspond-
ing training data. The training data for the old
classes is either limited or not available at all in
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line with the privacy requirements of a real-life
setup, where there might be restrictions on storing
or using older data.

We simulate this setup with the large intent
classification OOS (Out-of-scope) dataset (Larson
et al., 2019). Furthermore, we restrict our experi-
ments to methods that do not increase the capacity
of the final model with time. This is an important
restriction in a real-world scenario where runtime
constraints do not allow to make the model larger.

Our main contributions are:

1. To best of our knowledge, we are the first to
explore different incremental learning meth-
ods for class-incremental learning in SLU in
a data-scarce scenario.

2. We focus on the restriction of a production-
like setup, where previous models might be
available, but not the data and the runtime
restriction prohibit making the model larger
with time.

3. We present in-depth experiments on C-IL in
two data-scenarios: without old data being
available and with limited old, but unlabelled
data being available. In the experiments, we
compare the techniques that were previously
proposed for fine-tuning and task-incremental
learning and apply them repeatedly to extend
the same model with new classes.

2 Related Work

2.1 Spoken language understanding

SLU has been mostly approached with deep learn-
ing methods (Mesnil et al., 2013) and specifically
with large pre-trained models (Zhang and Wang,
2016; Chen et al., 2019; Louvan and Magnini,
2020). To improve the overall SLU performance,
the community has investigated semi-supervised
learning and paraphrasing to bootstrap new features
and to overcome the class imbalance problem (Cho
et al., 2019; Sokolov and Filimonov, 2020). The
most research on SLU assumes that the number of
classes is static, while in a real production SLU
system, new classes are added on a regular basis.
In contrast, in this work, we propose to focus on
a C-IL scenario, where new classes are added to
the system and the models needs to adapted in the
absence of the previous training data.

2.2 Class-incremental learning

In a production environment, C-IL is a challenging
problem since normally the new classes are only a
small fraction of the classes in the new data.

Most approaches for incremental learning have
been developed in the context of task-incremental
learning and computer vision problems. In this pa-
per, we study the importance of such methods on
C-IL in NLP. There are several approaches that use
regularization terms together with the classification
loss in order to mitigate catastrophic forgetting.
Few methods concentrate on the weights and esti-
mate an importance metric for each parameter in
the network (Kirkpatrick et al., 2017; Thorne and
Vlachos, 2021) to decide what to update, while oth-
ers focus on preventing the activation drift (Li and
Hoiem, 2018).

Many previous works on continual learning have
also focused on learning from a continuous stream
of data (Biesialska et al., 2020) or on an incremen-
tal learning of new tasks (Kanwatchara et al., 2021)
and languages (Castellucci et al., 2021). Payan
et al. (2021) discuss a single-task continual learn-
ing setup and simulated a passive data extension
scenario where new examples are coming in for
all output classes on a public dataset. Similarly,
Ash and Adams (2020) evaluate a batch-learning
setup, where each model iteration is warm-started
from the previous step and the whole training data
is always available, while some new data is added
across all output classes in each batch.

Finally, Wu et al. (2022) experiment on 5 differ-
ent tasks to investigate the behaviour of fine-tuned
large pre-trained models when the number of out-
put classes grows with time. This setup is close
to ours, as we also look at an expanding set of
output intents in models. Uniquely, we focus on
data-scarce scenarios, where old data might not be
available anymore, which is motivated by privacy
and production requirements of voice assistants.

3 Challenges

The fundamental obstacles to effective C-IL are
conceptually simple, but in practice very challeng-
ing to overcome. These challenges originate from
the sequential training of tasks and the requirement
that at any moment the learner must be able to clas-
sify all classes from all previously learned tasks. In-
cremental learning methods must balance retaining
knowledge from previous tasks while learning new
knowledge for the current task. This problem is
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called the stability-plasticity dilemma (Mermillod
et al., 2013). A naive approach to class incremen-
tal learning which focuses solely on learning the
new task will suffer from catastrophic forgetting: a
drastic drop in the performance on previous tasks.
Preventing catastrophic forgetting leads to a second
important problem of class incremental learning,
i.e., the problem of intransigence: the resistance to
learn new tasks. Class incremental learning meth-
ods need to balance between keeping knowledge
about old classes and learning new classes at the
same level of accuracy.

4 Method

We consider a C-IL scenario in which an exist-
ing NLP classification model is updated over time.
We assume a number of consecutive model up-
dates, and for each update, a certain number of new
classes and corresponding training data become
available, which need to be supported. Since, to
the best of our knowledge, C-IL has not yet been
explored for NLP classification tasks, this study
includes a diverse set of techniques, which have
shown promising results on other incremental learn-
ing tasks. In the following, we first describe our
C-IL scenario in more detail. Subsequently, we
discuss the considered basic classification model
architecture and the C-IL strategies afterwards.

4.1 Class-incremental learning scenario

We assume that a task-specific classification model
M0 is available, which may already cover a com-
paratively large number of different output classes.
Furthermore, we assume that we have access to
an input stream of datasets D, each comprising
labeled data for new classes: D = [D1, . . . , Dn]

with Di = {(xi,j , yi,j)}|Di|
j=1, where xi,j1 , . . . , xi,jn

is an utterance with n tokens, and yi,j is a sentence-
level intent label. Each Di ∈ D comprises labeled
data belonging to ki new classes, i.e., classes which
have not been observed during training of M0 or
in any of the previous datasets D1, . . . , Di−1. For
each dataset Di, we perform a model update to in-
tegrate the new classes starting from the previous
model Mi−1, yielding model Mi. More specifi-
cally, we assume that for each model update Mi

1. only the previous model Mi−1 is available,

2. the dataset Di comprising data belonging to
ki new classes is available, and

3. the datasets from previous iterations
D1, . . . , Di−1 are not available anymore.

In some of our experiments, we additionally as-
sume that unlabeled data for classes from previous
iterations are available.

In this class-incremental learning scenario, our
goal is to add new classes over time, such that

1. a reasonable performance is attained on the
data belonging to the new classes and

2. there is no catastrophic forgetting (perfor-
mance degradation) on old classes.

4.2 Basic classification model architecture

Following the current state-of-the-art for produc-
tion SLU models (Chen et al., 2019; Gaspers et al.,
2021b,a; Weld et al., 2021), we consider classifi-
cation model architectures that leverage large pre-
trained masked language models (MLM) for the
models Mi. In particular, we assume that a model
Mi consists of an MLM encoder and a task-specific
classification head with softmax on top. We use
cross-entropy loss for the classification task.

4.3 Class-incremental learning methods

We have selected five methods from different cat-
egories, including popular C-IL approaches based
on weight regularization and on data regularization,
which we summarize in the following.

Warm start (BERT) A naive C-IL strategy is
simply to continue fine-tuning the previous model
on new data. Recently, it has been shown that pre-
trained language models can effectively transfer
task-agnostic knowledge to task-specific knowl-
edge, and fine-tuning is a commonly used tech-
nique to mitigate model biases (Du et al., 2021).
Therefore, “warm starting” the optimization rather
than initializing randomly from scratch may be use-
ful for quick adaptation to the new data and incorpo-
rating the new classes. However, on the downside,
a direct pre-train-then-fine-tune approach is prone
to catastrophic forgetting of previous knowledge
(Ash and Adams, 2020).

Weight regularization-based approaches focus
on preventing weight drift to consolidate previous
knowledge when learning a new task. We include
three methods that fall into this category: L2, Elas-
tic Weight Consolidation (EWC) and RecAdam.
As noted in the introduction, we only consider
methods that do not increase model size with time,
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as this would be not restricted in a real-life runtime
environment.

L2 When training on a new task, the importance
of each parameter is used to penalize changes to
them. Therefore, in addition to the classification
loss (cross-entropy), we add an L2 regularised loss:

L(θi) = Lcross(∗) +
N∑

p

(θi−1p − θip)2, (1)

where N = total number of parameters of |θi−1|.
EWC Kirkpatrick et al. (2017) proposed Elastic

Weight Consolidation (EWC) that is a weight regu-
larization method that penalizes parameter updates
according to the model’s sensitivity. The model
sensitivity is calculated as a diagonal approxima-
tion of the Fisher Information Matrix Fi, which
captures the importance of the model at the mini-
mum after each task is learned, while ignoring the
influence of those parameters along the learning
trajectory in weight space. The modified loss with
EWC is defined as:

L(θi) = Lcross(∗) +
N∑

p

λ

2
Fp(θ

i−1
p − θip)2 (2)

where N = total number of parameters of |θi−1|.
RecAdam. Recently, Chen et al. (2020) pro-

posed RecAdam to address the problem of sequen-
tial transferring regime of deep pre-trained LMs.
They assume that the pre-training data is not avail-
able during fine-tuning on a new task. They pro-
pose an optimizer that consists of two modules: Pre-
training Simulation and Objective Shifting, where
the former allows the model to learn source tasks
without pre-training data, and the latter allows the
model to focus on target tasks. Recadam was moti-
vated by EWC and it keeps a copy of the pretrained
parameters and accesses them at each training step.
Recadam introduces a quadratic penalty between
pretrained and fine-tuned weights in the optimiza-
tion objective to prevent deviating from the pre-
trained model weights. In our class incremental
learning setting, we also keep the model’s param-
eters trained on previous classes and access them
for training on new class data.

Knowledge distillation. Knowledge distillation
(KD) was initially proposed by Hinton et al. (2015)
to encourage the outputs of one model to approx-
imate the outputs of another, and hence it can be

applied to prevent activation drift. In this study,
we adopted the Teacher-Student framework for
KD. In our case, at C-IL stage i, the teacher is
the model Mi−1 which was already trained on the
previous datasets. The student model is a clone of
the teacher, which is fine-tuned using a combined
loss function:

L = (1− λ)Lcross + λLKD, (3)

where Lcross is the task-specific cross-entropy loss,
which is computed on the new dataset Di. The
knowledge distillation loss LKD is computed as
the cross-entropy between the output probability
distributions provided by the student and teacher
models. λ is a hyper-parameter balancing the two
losses. We set the hyper-parameter λ to kold

kold+knew

where k is the number of classes.
Note in all of the above setups we initialize

(warm-start) the next model M i with the previous
M i−1 model.

5 Experimental set up

In our experiments, we study two C-IL scenarios:
without any old data available and assuming that
a small amount of unlabeled data for old classes
can be accessed. In the following, we first discuss
both scenarios in more detail. Subsequently, we
describe the dataset and class-incremental learning
simulation, and finally the experimental settings.

5.1 Class-incremental learning scenarios

In our experiments, we study the following two
class-incremental learning scenarios:

1. Core C-IL scenario with no previous data.
This scenario can be referred to as the "true"
class-incremental learning scenario described
in section 4.1 and this is the most extreme
scenario for incremental learning. We assume
that at C-IL stage i we only have access to
the previous model Mi−1 and the new dataset
Di covering new classes. However, no data
corresponding to previous classes is available.
We study this scenario because storing data
for long is often impossible and training a
model from scratch is expensive in real-world
scenarios. Therefore, we assume that we only
have a previously trained model available but
no old exemplars (i.e., no data corresponding
to old classes) in this setting.
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Limited Core C-IL
unlabeled data no previous data

IS Train TC Train TC Dev/Test
0 5000 1-50 5000 1-50 1000/1500
1 1250 1-70 1000 51-70 1400/2100
2 1350 1-90 1000 71-90 1800/2700
3 1450 1-110 1000 91-110 2200/3300
4 1550 1-130 1000 111-130 2600/3900
5 1650 1-150 1000 131-150 3000/4500

Table 1: Data statistics for the IL setup on the OOS
datase. IS: Incremental stage, Train: available training
data at each stage, TC: Included training classes.

2. Limited unlabeled data availability C-IL
scenario. In this scenario, we assume that
a limited amount of unlabeled data for older
classes is available. While we are aiming for
a technique that succeeds in scenario 1, this is
a very challenging problem to solve. On the
other hand, in real-world settings, some unla-
beled data of previous classes sometimes can
be collected again or stored for a short period.
Thus, scenario 2 is also reasonable and in-
cluded for comparison regarding what perfor-
mance can be reached when a small amount of
unlabeled data of previous classes is available
vs. unavailable. In this scenario, we addition-
ally leverage semi-supervised learning and we
use the previous model Mi−1 to label the un-
labeled data at the incremental stage i. Note
that unlabeled data are much less expensive
than labeled data as no annotators are needed,
and it is preferable w.r.t. privacy concerns, as
no human needs to look into the utterances to
annotate them.

In both cases, we assume that an initial model
M0 is trained first, covering 50 intent classes. Sub-
sequently, five incremental learning stages are con-
ducted, and in each stage 20 new classes are added.

5.2 Data
We evaluate our models using the out-of-scope
(OOS) dataset (Larson et al., 2019) for intent classi-
fication. The OOS dataset comprises English user
queries which were annotated with intents. It con-
tains 150 intent classes, and our goal is that model’s
learn these 150 classes incrementally.

For class-incremental learning experiments, we
first randomly selected 50 classes and used all cor-
responding training and development data for train-
ing the initial model M0. Next, we randomly split
the remaining classes into 5 groups, each compris-
ing 20 classes, and we created datasets by collect-

ing the data for the groups of classes. This process
resulted in datasets covering 5 incremental stages
(IS), which we split to create training, development
and test sets for each incremental stage.

To simulate the second C-IL scenario with lim-
ited unlabeled data amounts for old classes, we
set 5% of data aside per class and dropped labels.
Next, we use the previously trained model (Mi−1)
to annotate the unlabeled data for the next incre-
mental stage and add the annotated data to the new
labeled training data.

The data splits and statistics are reported in Ta-
ble 1. The number of exemplars per class in each
incremental phase is uniform.

5.3 Hyperparameter details and metrics

We use the BERT-large-uncased model from the
Huggingface Transformers package. The BERT
architecture type is widely used in practical ap-
plications1 and we limit our experiments to this
common architecture type and instead choose to
evaluate multiple scenarios and C-IL methods (see
Section 5). We train five random initializations of
each model, reporting the mean accuracy for all
of the experiments. This results in over 180 ex-
perimental runs for the two setups, the five tested
methods and the oracle. For fine-tuning, the learn-
ing rate and regularization strength are selected
through 5-fold cross-validation on the BERT warm
start train data, selecting the model with the high-
est training accuracy. We choose the regularization
strength λ from {106, 2∗106, 107, 2∗107} and three
learning rates in {2∗106, 4∗106, 6∗106}. We also
use the following hyperparameters: (a) Embedding
dimension: 768, (b) Optimizer: AdamW, and (c)
Gradient Norm: 10.0. Our main evaluation metric
at each incremental step is the standard multi-class
accuracy. We report overall accuracy results, as
well as the break down for old and new classes.

6 Experimental Results

Recall that the core challenge with class incremen-
tal learning methods is to balance retaining knowl-
edge from old exemplars while learning new knowl-
edge for the new exemplars. In our experiments, we
investigate how the different incremental learning
methods perform on both preventing catastrophic
forgetting and intransigence i.e., resistance to learn

1C.f. the number of downloads in the last months for BERT
models https://huggingface.co/models?sort=
downloads&search=bert
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Figure 1: Average accuracy of the C-IL methods on all
seen classes so far until the previous incremental phase
for the core C-IL scenario.
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Figure 2: Accuracy of the C-IL methods methods on
new class labels at different IL stages for the core C-IL
scenario.

about new exemplars. Where appropriate, we also
include performance of an "oracle"; contrasting
with the C-IL techniques, the oracle has access to
all of the previously available labeled datasets. It
should be seen as an upper bound, indicating what
performance would be possible if older labeled data
could be kept for model training.

6.1 Core C-IL scenario

Forgetting over time We first study the perfor-
mance of the C-IL methods in addressing the catas-
trophic forgetting problem. Figure 1 compares the
different C-IL methods on old class labels at differ-
ent incremental learning stages. Firstly, we observe
that the KD method performs consistently better
than other C-IL methods in the trend of accuracy
at different incremental learning stages. Next, we
find that RecAdam suffers the most significant per-
formance drop. Interestingly, the performance of
EWC until incremental stage (IS) 3 is comparable
to BERT WARM-START and L2. However, as the

number of incremental stages increases, the perfor-
mance of BERT WARM-START and L2 compara-
tively drops more.

We also report the upper bound results denoted
as Oracle where models are trained with all training
data of the classes learned so far. The gap in perfor-
mance of KD and EWC appears unbridgeable after
IS 2. This suggests that (1) only constraining old
parameters does not suffice to prevent forgetting
and (2) there is a positive effect of the distribution
information of previous features in C-IL.

Performance on new exemplars To analyze
the effectiveness of different C-IL models more
concretely, we explore how they affect the new
class label’s accuracy. Figure 2 shows the per-
formance of different methods on newer class la-
bels at different incremental phases. We find that
RecAdam performs better on the new class labels.
The RecAdam optimizer was designed to improve
the model’s performance on the fine-tuning task by
not deviating too much from the pretrained model
parameters. This could be an intuitive reason for
RecAdam’s strong performance on newer class la-
bels. This also aligns with the poor performance of
RecAdam on the older exemplars (see Figure 1).

We observe that BERT WARM-START per-
forms better than KD on new class labels at the
earlier incremental stages. However, when the
number of stages increases, the KD method outper-
forms BERT WARM-START and EWC in learning
about the new class labels and remembering pre-
vious labels (see Figure 1). This indicates that the
performance of the KD method is better in reduc-
ing the forgetting problem and performs better on
newer class labels when we increase the number of
incremental stages.

Analysis Tables 2a-2e present the performance
with respect to average Accuracy and Forgetting
Rates of each method at different incremental
stages. The last column (red cells) of each table
represents the average accuracy:

A =
1

N + 1

N∑

i=0

Ai, (4)

where Ai is accuracy on the test dataset Dtest
i com-

prising data belonging to the ki batch of classes.
For example, the A column at M1, M2,.., M5 rep-
resents the performance on classes 1-70, 1-90, ..,
1-150 respectively. The diagonal cells represent the
performance of each method on new class labels
(this is also the data visualized in Figure 2). In this
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case, IS=1, IS=2,.., IS=5 means the performance on
classes 51−70, 71−90, .., 131−150 respectively.

The lower triangle (blue cells) of each table rep-
resents Forgetting Rates (lower is better) : F =
Ai,i − Ai,j , where j < i. Similar to (Liu et al.,
2020), we define a forgetting rate, denoted as F ,
by calculating the difference between the accuracy
of the old model (Mk) and the new model (Mk+i)
on the same test data. For example, in Table 2a,
the M1 model at IS=0 (i.e., performance on 1-50
classes) forgets 1.81 accuracy points with respect
to the model M0.

The bold numbers represent the best performing
model at different incremental stages. There are
two main observations: (1) For class incremental
learning, we hypothesize that the model is prone to
suffer from more severe forgetting as the incremen-
tal stage increases. We find that although there was
some big drop after training on the 3rd incremen-
tal stage, KD forgetting rate is low. Interestingly,
the forgetting rate for EWC is relatively low. We
find that with the EWC method the results at some
incremental phases have negative forgetting rates
suggesting that a new model (such asM3,M4,M5)
performs better than the corresponding previous
model for some old classes. One intuitive reason
could be that the performance on the new labels for
EWC is comparatively poor compared to BERT
WARM-START and the KD method. KD maintains
stable performance as the number of incremental
stages increases. Especially after training on the
4th and 5th stage, the forgetting increment was rel-
atively small, which demonstrated the robustness
of KD. (2) After each individual phase, the learned
modelMi is evaluated on the test dataDtest

o:i , where
0 : i denotes all seen classes so far. We observe
that initially all methods except RECADAM work
well but as the incremental phase increases to 5th,
the KD method gains +14.2 pp.

6.2 Limited unlabeled data available

Motivated by our findings in the supervised setting,
in this scenario, we assume that we have a small
amount of unlabelled data corresponding to previ-
ous class labels available. We use the previously
trained model to automatically annotate the unla-
belled data and add this data into the training set
for training the model for the next phase.

Figure 3 presents the results of the different C-
IL methods on class labels seen so far until the
previous incremental learning stages. Firstly, we

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.4
M1 1.81 86.66 92.3
M2 9.55 38.36 87.83 80.6
M3 22.15 35.66 24.83 51 59.3
M4 30.03 63.66 45.33 31.5 51.8 49.0
M5 38.03 71.5 71.67 46 43.97 40.0 29.1

(a) BERT Warm Start

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.4
M1 2.74 92.16 93.57
M2 3.81 18.16 50.83 81.2
M3 21.55 65.33 -5.17 70.16 56.08
M4 29.43 64.16 -4.33 29.16 15.66 47.41
M5 39.7 77.5 26.83 56.66 -12.67 23.0 29.6

(b) EWC

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.4
M1 2.6 92 94.6
M2 6.88 8 80.5 82.6
M3 11,75 11.5 1.84 45 72.66
M4 20.55 18 11.65 23.4 71.11 55.17
M5 40.7 44.17 39.39 31.34 16.45 49.5 43.8

(c) KD

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.4
M1 5 94 92.8
M2 10.14 31.84 84.3 81.18
M3 19.87 54 35.8 48.66 60.1
M4 24.4 64 38 34.5 49.83 49.66
M5 48.8 81 67.3 45.86 34.08 49 29.22

(d) L2

Forgetting Rate
IS=0 IS=1 IS=2 IS=3 IS=4 IS=5 A

M0 97.2
M1 93.5 98.5 30.66
M2 93.47 98.5 92.8 22.70
M3 95 98.5 92.8 94.66 18.30
M4 97.4 98.5 92.8 94.66 98.66 15.17
M5 97.4 98.5 92.8 94.66 98.66 98.16 13.08

(e) RecAdam

Table 2: Performance of each method with respect
to average accuracy (last column) and forgetting rates
(lower triangle) at different IS. For average accuracy
higher is better, for forgetting rates lower is better.

observe that the performance of all C-IL methods
benefits from the extra data. Interestingly, the per-
formance of the EWC method is much more stable
than without any previously labelled data. More-
over, the KD method still performs relatively bet-
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Figure 3: Average accuracy in the setting where limited
unlabeled data is available for the C-IL methods on all
seen classes so far until the previous incremental phase.
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Figure 4: Accuracy in the setting where limited unla-
beled data is available for the C-IL methods on new
class labels at different incremental learning stages.

ter than other methods in preventing the forget-
ting problem. Figure 4 depicts the performance on
the newer class labels at each incremental phase.
BERT WARM-START works better than the KD
and EWC methods, indicating that extra noisy data
helps BERT WARM-START more. Similar to Fig-
ure 2 we observe that RECADAM performs better
on newer class labels, indicating that it is over-fitted
to newer exemplars.

The average accuracy results are shown in Table
3. The EWC and KD methods perform best by a
large margin. EWC shows a small gain for the
first couple of incremental phases compared with
KD and L2. However, the gain increases as more
incremental phases are conducted. Regarding the
final incremental classifier on all classes, the KD

method outperforms EWC, L2 and BERT WARM-
START by 0.8%, 2% and 2.44% respectively.

7 Conclusion

In this paper, we explored class-incremental learn-
ing for the intent classification task. In particular,

Test classes 70 90 110 130 150

Method M1 M2 M3 M4 M5

BERT Warm-start 95.52 91.5 86.81 80.2 73.06
EWC 95.4 93.4 88.18 81.7 74.7
KD 95.7 91.7 89.18 82.5 75.5
RecAdam 73.8 53.22 49.18 48.89 14.2
L2 95.38 92.25 86.5 80.8 73.5

Table 3: Average Accuracy of different C-IL methods
in the setting where limited unlabeled data is available.

we compared several methods, i.e., BERT warm
start, L2, Elastic Weight Consolidation, RecAdam
and Knowledge Distillation. We compared per-
formance within two class-incremental learning
scenarios: one where only the previous model was
assumed to be available, but no data corresponding
to old classes, and one in which limited unlabeled
data for old classes was assumed to be available.

We are the first to benchmark these methods in
the challenging incremental learning setup for in-
tent classification motivated by real-life restrictions
where no old data might be available. We presented
extensive experiments on the out-of-scope dataset
for intent classification. Among the investigated
continual learning methods, Knowledge Distilla-
tion worked best for our class-incremental learning
tasks, and adding limited unlabeled data helped the
model in both adaptability and stability. We plan to
add token-level slot prediction task to our setup in
the future and include further MLM models beyond
just the BERT architecture.

8 Ethical considerations

The experiments presented in this paper are per-
formed with publicly available models and meth-
ods on a public dataset and can be verified indepen-
dently. Our experimental setup is motivated by a
real-life problem of regular SLU model releases,
where it is critical to maintain the performance on
old classes and not to introduce new errors into
the existing model so that no user is negatively af-
fected by the changes. The incremental learning
techniques discussed here have a potential to im-
prove user privacy, as they do not rely on storing
the old data. Training only on the data incremen-
tal has also a significant impact on model training
times and resource usage and, as a consequences,
improves the environmental impact of a model re-
lease pipeline.
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Abstract
Research on multi-class text classification of
short texts mainly focuses on supervised (trans-
fer) learning approaches, requiring a finite set
of pre-defined classes which is constant over
time. This work explores deep constrained clus-
tering (CC) as an alternative to supervised learn-
ing approaches in a setting with a dynamically
changing number of classes, a task we intro-
duce as dynamic topic discovery (DTD). We
do so by using pairwise similarity constraints
instead of instance-level class labels which al-
low for a flexible number of classes while ex-
hibiting a competitive performance compared
to supervised approaches. First, we substan-
tiate this through a series of experiments and
show that CC algorithms exhibit a predictive
performance similar to state-of-the-art super-
vised learning algorithms while requiring less
annotation effort. Second, we demonstrate the
overclustering capabilities of deep CC for de-
tecting topics in short text data sets in the ab-
sence of the ground truth class cardinality dur-
ing model training. Third, we showcase how
these capabilities can be leveraged for the DTD
setting as a step towards dynamic learning over
time. Finally, we release our codebase to nur-
ture further research in this area.

1 Introduction

There has been substantial research on methods
for the classification of short user-generated texts
such as customer reviews, search queries, tweets,
or articles (Mohammad et al., 2016; Sun et al.,
2019; Barbieri et al., 2020). Often, despite be-
ing handled differently in supervised frameworks,
one does not know a-priori what these classes are,
how many there are at time point t, or how many
there will be at a future time point t+ 1. In exist-
ing benchmark data sets from the natural language
processing (NLP) research community (e.g. Lang,
1995; Lehmann et al., 2015), this potential issue
is largely ignored, since only one training set is
provided alongside one test set. Performance can

Figure 1: Illustration of CC-Top and the training
paradigms 1) constrained clustering (CC), 2) overclus-
tering (OC) and 3) dynamic topic discovery (DTD).
Crosses and lines represent Cannot- and Must-Link pair-
wise relations, respectively.

thus only be measured in a static fashion, i.e. for
one fixed time point. While this problem of an
unknown number of classes is often tackled us-
ing unsupervised learning techniques (Deerwester
et al., 1990; Blei et al., 2003), these algorithms
come with an array of limitations and are not able
to (automatically) adapt to a changing number of
classes. We formally introduce this novel problem
setting with dynamically changing topics as DTD
and explore the potential of deep constrained clus-
tering (CC; Hsu et al., 2019) algorithms coupled
with pre-trained language models (BERT; Devlin
et al., 2019) for text classification in this setting.

Various approaches have been developed to com-
bine CC (Wagstaff and Cardie, 2000) with neural
networks, mainly for image datasets (Hsu and Kira,
2015; Hsu et al., 2019). In addition to strong pre-
dictive clustering performance, these methods are
able to recover the number of distinct clusters in
the data without access to instance-level class la-
bels during training. Hence, they can be used for
category detection, a capability that we leverage
for the detection of dynamically changing topics.
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Moreover, they address and alleviate the problem
of label annotation: Human annotators only need to
annotate pairs of samples indicating whether they
belong to a similar topic or not instead of annotat-
ing one distinct class label per sample. We argue
that for short texts this is easier and more efficient
than annotating individual samples.

We propose the use of Constrained Clustering
for Topic classification (CC-Top, cf. Fig. 1): We 1)
leverage pairwise constraint annotations for topic
classification of short texts in a weakly supervised
manner, we 2) demonstrate its topic discovery ca-
pabilities and 3) introduce a new problem setting
with dynamically changing topics. In a series of
experiments, we substantiate these findings and
publish our codebase1 to nurture further research
on constrained clustering in the NLP community.

2 Related Work

With the advent of supervised fine-tuning of pre-
trained models, text clustering performance further
increased (Huang et al., 2020; Schopf et al., 2021).
One main limitation of these models is their de-
pendence on a given amount of clusters as input
for model training, which limits their use for the
detection of clusters, i.e., topics/classes. Unsuper-
vised topic modeling algorithms (e.g. Blei et al.,
2003; Grootendorst, 2022) are no real alternative
here, since we focus on topic classification and not
on topic modeling. Note, that we make a clear dis-
tinction between these two approaches here: Topic
modeling aims at uncovering latent structures in
the data and puts a large emphasis on explaining
and interpreting the detected clusters. Further, as
opposed to Topic classification, it does not assume
the cluster assignment to be mutually exclusive,
i.e. a document is regarded as a (potential) mixture
of multiple topics. Since this is in sharp contrast
to the setting we are investigating, we do not con-
sider such approaches as potential unsupervised
baselines.

In turn, CC allows this detection of the number
of clusters using binary pairwise constraint anno-
tations. The introduction of pairwise constraints
for clustering (Wagstaff and Cardie, 2000) led to
the adaptation of existing clustering methods to-
wards the use of constraints (Basu et al., 2004) (see
Gançarski et al. (2020) for an overview). With the
proposal of the KCL loss based on the Kullback-
Leibler divergence, Hsu and Kira (2016) intro-

1https://github.com/rpranav22/cc-top

duced CC to deep learning settings. They further
showed its applicability to transfer learning (Hsu
et al., 2018), introduced the MCL as an alternative
loss (Hsu et al., 2019), and showed its applicability
for cluster detection, i.e., overclustering. We use
these two pairwise loss functions.

3 Materials and Methods

3.1 Method

We consider a dataset D that contains nc constraint
pairs of the form xij = (xi, xj , cij) ∈ Dc, where
xi, xj are two input samples and cij ∈ {0, 1} is
the associated binary constraint describing whether
the samples are in the same (cij = 1, Must-Link)
or different clusters (cij = 0, Cannot-Link). We
refer to true class labels as yi ∈ Y , where K = |Y|
describes the number of true underlying classes K
in the data set. When K is not known, the model’s
number of output neurons nout may differ from K.
We train a deep CC model f with its final head con-
sisting of a softmax layer i.e., the model predicts
a probability distribution over cluster assignments
ŷi = f(xi), where ŷil denotes the predicted proba-
bility of xi belonging to cluster l ∈ 1, ..., nout.

We follow Hsu and Kira (2016); Hsu et al. (2019)
for the training of the CC model: the model pre-
dictions ŷi, ŷj for text samples xi, xj are fed into
a pairwise loss function with their associated con-
straint cij . There exists a variety of loss functions
that can deal with pairwise constraints (Zhang et al.,
2021b), with the KCL (Hsu and Kira, 2016) and
the MCL (Hsu et al., 2019) being the most promi-
nent ones. The KCL is a pairwise loss function
based on the Kullback-Leibler divergence between
the pairwise model assignments ŷi, ŷj . Similarly,
the MCL loss is aligned on the binary cross en-
tropy loss and reportedly enables smoother model
training. Following prior work (Lin et al., 2020;
Zhang et al., 2021a), we use BERT (Devlin et al.,
2019) as a language model backbone for f .2 Note
that throughout our experiments we randomly sub-
sample a training dataset of 20, 000 pairwise con-
straints from the original fully labeled dataset.

Next to the application in settings where the true
number of clusters K is known a-priori, CC mod-
els can also be used when this information is ab-
sent during model training. This is also referred
to as overclustering (OC) where the model can

2Note that any (pre-trained) architecture can be used as
a backbone in conjunction with these loss functions. All
configurations can be found in Table 5 in Appendix A.
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assign more clusters than present in the data, i.e.
nout > K. This capability to learn the number
of clusters in the data from constraint annotations
differentiates CC from clustering methods such as
k-means, where K needs to be provided as a hyper-
parameter to the model, or supervised approaches.

3.2 Baselines
As a lower, unsupervised baseline, we use BERT
embeddings combined with K-MEANS++ (Arthur
and Vassilvitskii, 2006). For the fully supervised
upper bound trained via instance-level class labels,
we finetune the BERT-BASE-UNCASED architecture
from huggingface (Wolf et al., 2020), following
the standard pretrain-finetune paradigm. Both base-
lines are trained on the entire training dataset.

3.3 Dynamic Topic Discovery (DTD)
We now consider the scenario, where the set of
classes is not fixed and known a-priori at time point
t but is dynamically changing over time (t+ 1, t+
2, . . . ): First, at t, we have pairwise annotations for
samples that belong to Kt distinct classes. Second,
we train a CC model ft to assign any new data point
to one of the discovered clusters. Third, at t+1, we
obtain new samples that could either belong to one
of the initial Kt classes or to new, unseen classes
and the model fails to classify the new samples
accurately.

If our model was fully supervised (i.e., trained
on instance-level class labels), we would have to
reconsider the entire labeling scheme (i.e., produce
the new classes and revisit all existing labeled sam-
ples from t) and re-train the entire model. However,
in the case of CC, we can continue annotating the
data using pairwise constraints and continue to train
the existing model (i.e., let the model determine
(i) if there are new classes and (ii) how many of
them). We construct the following scenario to in-
vestigate the model’s capability to adapt to a chang-
ing number of classes over time: First, we fix the
architectural setup to CC-KCL on DBpedia and use
nout = 30 to provide the model with enough over-
clustering flexibility. Second, for t = 1, we take
a subset of the training set, consisting of samples
from 10 classes only, and sample nc = 20, 000
constraints from this subset, resulting in 38, 056
samples from 10 classes for training (Dtrain,t=1).
Third, for t = 2, we select 18, 000 samples from
the remainder of the training set (Dtrain,t=2) con-
trolling for the ratio of the classes that the samples
belong to x% from the ’old’ 10 classes at t = 1

and (100− x)% from the ’new’ 4 classes at t = 2,
which were withheld from Dtrain,t=1. The DB-
pedia test set is also split into two distinct parts:
Dtest,1 contains only samples from the 10 ’old’
classes, and Dtest,2 contains only samples from the
4 ’new’ ones. During the DTD experiments, we
denote the entire test set as Dtest,combined.

3.4 Datasets
We run experiments on three English datasets of
short texts with associated instance-level class la-
bels. An overview of the analyzed data sets AG
News (Zhang et al., 2015), TREC coarse (Li and
Roth, 2002), and DBpedia (Lehmann et al., 2015)
is provided in Table 1. We did not perform any fur-
ther special preprocessing. We used only DBPedia
for further experiments with respect to DTD, since
the number of classes in the other two data sets was
too small to construct a meaningful DTD scenario.

Name K #Train #V al #Test Avg. Length

AG News 4 120,000 8,000 7,600 40
TREC coarse 6 4,952 500 500 10

DBpedia 14 560,000 35,000 35,000 50

Table 1: Overview of the data sets used for evaluation.

3.5 Performance Metrics
Following prior work (Hsu et al., 2019; Lin et al.,
2020), we report model performance as measured
in Accuracy (ACC), Normalized Mutual Informa-
tion (NMI; Strehl and Ghosh, 2002) and the Ad-
justed Rand Index (ARI; Steinley, 2004). For more
in-depth explanations and for the formulas of all
three metrics, please refer to Appendix C. All three
metrics are normalized to [0, 1], where higher val-
ues indicate better performance. Similarly, we use
the Hungarian algorithm (Kuhn, 1955) to optimally
map predicted labels to the true cluster assignments
before calculating the performance metrics.

4 Experiments

In Table 2, we compare the CC models trained via
both the MCL and the KCL loss with the lower and
upper baselines. These results confirm that CC is a
suitable method to train weakly supervised models
for the detection of topics in short texts, reaching
almost full supervision performance.

Furthermore, we investigated the capabilities of
these models in the OC scenario, where the ground
truth number of classes is unknown during training
and the model can potentially assign nout = 30 >
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Lower Baseline CC-KCL CC-MCL Upper Baseline

Data set K ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AG News 4 0.830 0.577 0.605 0.870 0.714 0.739 0.917 0.755 0.795 0.919 0.759 0.800
TREC-coarse 6 0.542 0.299 0.302 0.953 0.890 0.900 0.967 0.908 0.923 0.962 0.897 0.917
DBPedia 14 0.631 0.726 0.494 0.982 0.963 0.967 0.661 0.805 0.653 0.989 0.974 0.977

Table 2: Averaged results for the baselines on all available training samples as well as for CC-MCL and CC-KCL
trained with 20, 000 constraints each. The better CC model (between KCL and MCL) is marked in bold and CC
models almost reach full supervision level performance (upper baseline). Refer to a larger version of this table
including standard deviations across runs in Appendix B, Table 6.

Dataset ACC NMI ARI

AG News 0.821± 0.068 0.670± 0.033 0.677± 0.067
TREC coarse 0.912± 0.070 0.892± 0.057 0.882± 0.075
DBpedia 0.986± 0.002 0.966± 0.003 0.969± 0.003

Table 3: Mean results ± std. deviations over 5 repe-
titions for overclustering with nout = 30. The model
performs well despite the absence of the true K.

K potential clusters. From the results in Table
3, we observe that CC copes very well with this
challenging scenario. This motivates the extension
towards DTD.

Following Section 3.3, we train five Phase 1
models fi,t=1 on Dtrain,t=1 and evaluate their per-
formance on the three different test sets using the
DBPedia data set. We use the KCL loss due to its
superior performance in the previous experiments.
We observe a decent performance on Dtest,1 along
with a correctly detected number of classes in Table
4. Note, that we consider a class as ’detected’ if the
model assigns at least one percent of the respective
test set to the specific cluster. We acknowledge that
this is a rather heuristic choice. For Dtest,2 and
Dtest,combined, the models perform substantially
worse and are not able to detect the correct number
of classes. Still, it is noteworthy, that the model is
able to detect that the four novel classes in Dtest,2

are distinct as it assigns them different clusters and
does not simply assign them one ’outlier’ cluster.
From the observation that the model detects a total
of ten clusters, as opposed to the correct K = 14
for Dtest,combined, we infer that while it realizes
these four new clusters are distinct, it assigns them
to the clusters present in Dtrain,t=1. However, the
Phase 2 model ft=2 obtained by fine-tuning the
best performing Phase 1 for 200 epochs on 10, 000
constraints sampled from Dtrain,t=2 (50% new vs.
50% old) performs very well on all three test sets
and is able to detect the correct overall number of
classes. Refer to the confusion matrices in Figure
2 for further illustration of these results. When

Dtrain,t=2 contains more samples from the ’old’
classes (25% new vs. 75% old), overall model
performance still improves compared to Phase 1,
but substantially less compared to when there is
more information about the ’new’ classes. These
results imply that the algorithm shows consider-
able sensitivity to the degree of novelty present in
the new training data, which has to be investigated
further in future research. This experiment shows
how an OC-KCL model can easily be adapted to a
dynamically changing number of clusters via con-
tinued training on pairwise annotations from newly
incoming training data.

5 Discussion and Conclusion

In this work, we connected two branches of re-
search: contemporary NLP research and weakly
supervised learning approaches. While the use-
fulness of CC-KCL (and MCL) had already been
shown for computer vision settings (Hsu and Kira,
2016; Hsu et al., 2019), we extended it towards
NLP. Based on this, we showcased how existing
shortcomings of ordinary supervised approaches –
the requirement of fixed, static label sets – could
be regarded as a new type of learning task which
we introduced as dynamic topic discovery. Within
DTD, we subsume a dynamic setting where an
initial, weakly annotated training data set at time
t = 1 is accompanied by a second data set at time
t = 2 which contains novel classes unseen at t = 1.
We proposed a potential solution for such DTD set-
tings via an alternative training scheme leveraging
the overclustering and category detection capabil-
ities of CC models. We acknowledge that there
are still numerous unsolved problems such as the
application on very short texts, very large label sets
with large class cardinality, or multi-label scenarios.
Nevertheless, we hope that our experimental results
can serve as a foundation for further research to-
ward tackling these increasingly complex problems
to ultimately reduce manual labeling efforts in NLP.
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Test set ACC NMI Predicted K

Phase 1 Dtest,1 0.988 / 0.982± 0.009 0.969 / 0.964± 0.005 10 (Range: [10− 10])
(Best / Mean ± Std. Dev) Dtest,2 0.616 / 0.570± 0.043 0.409 / 0.410± 0.048 4 (Range: [4− 5])

Dtest,combined 0.717 / 0.710± 0.011 0.809 / 0.808± 0.015 10 (Range: [10− 11])

50% new – 50% old 25% new – 75% old

ACC NMI Predicted K ACC NMI Predicted K

Phase 2 Dtest,1 0.980 0.951 10 0.880 0.895 9
Dtest,2 0.971 0.929 4 0.951 0.866 4
Dtest,combined 0.978 0.953 14 0.832 0.887 12

Table 4: DTD (with KCL) on DBpedia for different ratios of new versus old classes in Dtrain,t=2, from which
we sample the 10,000 constraints for Phase 2, controlling the degree of novelty. Phase 1 is based on five different
models on Dtrain,t=1. For Phase 2, we pick the best Phase 1 model and continue training on the constraints from
Dtrain,t=2 (no standard deviations, since no random initialization of any model weights for Phase 2).

Figure 2: Confusion matrices for the two DTD phases on the Dtest,combined. Phase 2 results (right) from the
50% new - 50% old setting illustrate a clear improvement over the results from Phase 1 (left). This shows that the
Phase 2 model is able to cluster both the new and old data correctly.

Further, we believe that there is a high necessity
for investigating DTD more in-depth. We believe
it is important to design appropriate benchmarks
and to investigate their relations to other dynamic
paradigms, such as e.g. online learning or novel cat-
egory discovery, and we hope this work can serve
as a step in that direction.

Limitations

While we hope that this work provides valuable
insights, there are still a couple of issues we did
not yet address. First, we observed considerable
instability during model training, especially for a
lower number of constraints. Second, we found
KCL to work better for DBpedia than MCL, which
is surprising given the findings of Hsu et al. (2019).
Finally, we (i) only evaluated DTD for one fixed set
of constraints, (ii) only used the DBPedia dataset
(due to the low number of classes in the other two
datasets), and (iii) used a rather heuristic rule for
determining the number of detected classes.
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Appendix

A Training Model Configurations

In Table 5 we list the specifications of the BERT-
based language model that we use as architec-
tural backbone which we obtained via huggingface
(Wolf et al., 2020). We implemented our models
and data loading logic in PyTorch (Paszke et al.,
2017). Model training for the constrained cluster-
ing and the overclustering experiments was done
on an NVIDIA A100-SXM4-40GB GPU with a
batch size of 256 for 200 epochs. The models for
the DTD part were trained on an NVIDIA Tesla-
V100-16GB GPU with a batch size of 196 for 100
training epochs for phase 1 and for 200 training
epochs for phase 2.

Parameter Value

Base model BERT-BASE-UNCASED

Learning rate 1× 10−5

Optimizer AdamW
(Loshchilov and Hutter, 2019)

Adam Epsilon 1× 10−8

Table 5: BERT configurations for all experiments.

B Detailed Results

In Table 6, we show results for the constrained clus-
tering experiments with nout = K and a total of
20.000 constraint annotations for model training
for the three datasets. This table includes mean
± standard deviations for the performance met-
rics across 5 repeated training runs to account for
randomness in the training process. The results
show that constrained clustering offers a viable
alternative to supervised learning, almost reach-
ing the upper baseline performance for the three
datasets. Further, the MCL loss works best for the
AGNews and the TREC-coarse datasets whereas
the KCL loss is more suitable for the DBPedia
dataset. Hence, we used the KCL loss in the experi-
ments on DBPedia for the dynamic topic discovery
experiments in Section 3.3.

C Performance metrics

Normalized Mutual Information (NMI) NMI
is generally used to measure the tightness of the
cluster formations. In other words, it quantifies
if all the clusters are mutually exclusive without
outliers (Strehl and Ghosh, 2002). Mathematically,

Lower Baseline

Data set K ACC NMI ARI

AG News 4 0.830 0.577 0.605
TREC-coarse 6 0.542 0.299 0.302
DBPedia 14 0.631 0.726 0.494

CC-KCL

AG News 4 0.870± 0.088 0.714± 0.059 0.739± 0.087
TREC-coarse 6 0.953± 0.007 0.890± 0.010 0.900± 0.012
DBPedia 14 0.982 ± 0.005 0.963 ± 0.005 0.967 ± 0.009

CC-MCL

AG News 4 0.917 ± 0.003 0.755 ± 0.004 0.795 ± 0.006
TREC-coarse 6 0.967 ± 0.004 0.908 ± 0.009 0.923 ± 0.009
DBPedia 14 0.661± 0.057 0.805± 0.038 0.653± 0.055

Upper Baseline

AG News 4 0.919± 0.001 0.759± 0.005 0.800± 0.003
TREC-coarse 6 0.962± 0.002 0.897± 0.006 0.917± 0.005
DBPedia 14 0.989± 0.001 0.974± 0.001 0.977± 0.001

Table 6: Results for the baselines on all available train-
ing samples for all of the analyzed data sets as well
as for CC-MCL and CC-KCL on 20,000 constraints
each. The better CC model (between KCL and MCL)
is marked in bold. Mean and standard deviations of the
metrics over five runs.

NMI describes the change in entropy of class labels
given the true cluster labels:

NMI =
2 · I(Y, Ŷ )

H(Y ) +H(Ŷ )

where I(Y, Ŷ ) = H(Y ) −H(Y |Ŷ ) is the mu-
tual information. H(Y ) and H(Ŷ ) are the entropy
of the ground truth class label Y distribution and
the entropy of the predicted cluster label distribu-
tion Ŷ , respectively. The NMI is bound to [0, 1]
where a higher score implies better clustering per-
formance.

Accuracy (ACC) Accuracy measures the similar-
ity of predicted results with the respective ground
truth. For clustering accuracy, we use the Hun-
garian algorithm (Kuhn, 1955) to assign predicted
clusters with associated class labels. Given ground
truth classes Y and predicted clusters Ŷ we calcu-
late accuracy as:

ACC =
TP + TN

TP + TN + FP + FN

where TP is the number of true positives, TN
is the number of true negatives, FP is the number
of false positives, and FN is the number of false
negatives.

Adjusted Rand Index (ARI) The ARI is used to
measure the similarity between two clustering out-
puts (Steinley, 2004). Here, the actual class labels
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are compared to predicted cluster labels to measure
the clustering performance. When comparing Y
and Ŷ , the ARI is calculated as follows:

R =
a+ b(

n
2

)

where a is the number of times, pairs of elements
are in the same cluster for Y and Ŷ , b is the number
of times a pair of elements is not in the same cluster
for Y and Ŷ and n is the total number of samples
in the batch.
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Abstract

This paper describes our methods for temporal
meaning shift detection, implemented during
the TempoWiC shared task. We present two
systems: with and without time span data usage.
Our approach is based on masked language
models continuously pre-trained with Twitter
data. Both systems outperformed all the com-
petition’s baselines except TimeLMs-SIM. Our
best submission achieved the macro-F1 score of
70.09% and took the 7th place. This result was
achieved by using diachronic language models
from the TimeLMs project.

1 Introduction

It is a commonplace that words change their mean-
ings and connotations through time. Despite nu-
merous studies about that, there are still difficulties
in semantic change detection. Static embeddings
are not suitable for working with semantic change,
since they cannot reflect the fact that a word can
have completely unrelated meanings. In this work,
we are focusing on contextualized embeddings,
which produce different vector representations de-
pending on the context.

There were a number of competitions dedicated
to semantic change detection, for example, Tem-
poWiC (Loureiro et al., 2022b) and LSCDiscov-
ery (Kashleva et al., 2022). These competitions
were aimed at determining the difference in the
meanings of words depending on the time period
in which they are used. Datasets at LSCDiscovery
consisted of texts from different centuries (Zamora-
Reina et al., 2022). For this shared task, Tem-
poWiC, the data with a time interval only of one
year is used. It significantly changes the approach
to the competition.

Temporal word in context (TempoWiC) bench-
mark aims to decide if there is a change between
the meaning of two words in a given pair of tweets.
TempoWiC is designed as a binary classification
problem where the target word is featured in two

tweets from different time periods, and the goal is
to detect whether there is a meaning shift or not.

When creating a dataset for the competition, the
authors decided to use data from social media (Twit-
ter), while when developing the previous dataset
WiC (Pilehvar and Camacho-Collados, 2018), word
usage was taken from more formal sources such as
Wiktionary, WordNet and VerbNet. The language
used in social networks is much more informal and
dynamic, so such a dataset is able to reflect even
minor changes in word usage.

The TempoWiC dataset consists of paired tweets
and is divided into train/validation/test samples of
size 1,428/396/1,473 instances, respectively. For
each sample, the set of target words is different. As
additional data, the publication date is indicated
for each tweet. There are no missing values in
the dataset. Participants of the competition were
asked to detect the change in the meaning of the
target word both with and without using time-span
information. To estimate the system’s performance,
the Macro-F1 score was used.

2 Systems Overview

In this section, we describe two systems that were
implemented by our team during the shared task.
Both systems are based on the pre-trained language
models. For our first system, we did not use time-
span information and extracted embeddings from
the Twitter-roBERTa-base model (Barbieri et al.,
2020). In the second approach, we tried to improve
our system’s performance by using diachronic lan-
guage models from the TimeLMs project (Loureiro
et al., 2022a).

2.1 General approach

First, we apply the continual learning strategy and
train a masked language model with the TempoWiC
data, using the script provided by the HuggingFace
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team1. Depending on the experiment, we use the
entire dataset or a sub-set. In each experiment, we
split a given corpus into train and test sets with a
95:5 ratio and train the model for 4 epochs with
a learning rate of 2e-5. Then we extract summed
representations for target words from all 12 layers
of a corresponding language model. We decided
to focus on word-level representations since they
showed a better performance than sentence-level
embeddings (see Appendix A for comparison re-
sults). For a word representation we adopt only the
embedding of the first subword. Finally, we cal-
culate cosine similarities between representations
of two target words in each pair of tweets and use
the obtained values to train a logistic regression
model. Though the cosine-based approach is rather
straightforward, its performance may strongly vary
on the choice of the language model.

2.2 System 1. Twitter-roBERTa-base with
additional pre-training

Our first system is based on the Twitter-roBERTa-
base language model. It is a RoBERTa model (Liu
et al., 2019) that was trained on 58M tweets. We
chose this model because the competition’s task
was focused on Twitter data. For additional pre-
training, we took all of the available tweets from the
TempoWiC dataset, including train, validation, and
test sets. For comparison, we also tried the BERT-
base model (Devlin et al., 2018) as a baseline for
our first system.

2.3 System 2. Diachronic models from the
TimeLMs project

The distinguishing feature of the TempoWiC
dataset is that each tweet has a specified time pe-
riod: a year and a month when the tweet was posted.
That means we can take into account not only the
context of the tweet but also use time as an addi-
tional feature to improve our meaning shift detec-
tion system.

Our second solution is based on diachronic
language models from the TimeLMs project.
TimeLMs is a set of diachronic language models,
based on RoBERTa, continuously trained on Twit-
ter data over regular time intervals. The initial
model was trained on tweets that were posted from
2018 until the end of 2019. Since the beginning
of 2020, the base model has been continuously

1The script is available at https://github.com/
huggingface/transformers/blob/main/examples/
pytorch/language-modeling/run_mlm.py

Time span Model
01.2019-12.2019 twitter-roberta-base-2019-90m
01.2020-03.2020 twitter-roberta-base-mar2020
04.2020-06.2020 twitter-roberta-base-jun2020
07.2020-09.2020 twitter-roberta-base-sep2020
10.2020-12.2020 twitter-roberta-base-dec2020
01.2021-12.2021 twitter-roberta-base-2021-124m

Table 1: TimeLMs models used in System 2 in accor-
dance with time spans for the tweets from the Tem-
poWiC dataset.

pre-training on diachronic Twitter data every three
months. The project is active and at the time of
this writing, models from 2019 to June 2022 are
available. Since the TempoWiC dataset contains
tweets from 2019, 2020, and 2021, models from
the TimeLMs project can be applied to improve our
first ‘nondiachronic’ approach.

For our baseline diachronic approach, we used
three TimeLMs models trained on Twitter data for a
specific year: 2019, 2020 and 2021. The choice of
the diachronic model for extracting the representa-
tion of a target word depends on the tweet’s publica-
tion year. We also split the TempoWiC dataset into
three corpora by year and additionally pre-trained
each of the TimeLMs models with the correspond-
ing corpus.

As an improvement strategy, we also decided to
engage the TimeLMs models from a year’s quar-
ters. In this case, the choice of the model depends
on the year’s quarter in which the tweet was posted.
Due to the lack of quarterly models for 2019 and
because the number of tweets for 2021 was in-
sufficient for pre-training quarterly models, this
improvement was applied only to the tweets from
2020. Table 1 lists all of the TimeLMs models that
were used for our second system.

3 Results

Table 3 shows the results for our two final systems.
Submissions were evaluated using the Macro-F1
metric. Our best submission took 7th place. That
is better than all baselines except TimeLMs-SIM
(Logistic Regression based on Similarity of Con-
textual Embeddings from TimeLMs-2019-90M).
This result is interesting because our best model
(TimeLMs-with-quarter) seems more complex than
the TimeLMs-SIM baseline, since we used a differ-
ent model depending on the time span. According
to the description of the baselines that became avail-
able after the evaluation phase, the task organiz-
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Model Validation
(original LM)

Validation
(LM with extra pre-training)

Test
(original LM)

Test
(LM with extra pre-training)

BERT-base-uncased 57.39 59.47 67.98 67.11
Twitter-RoBERTa-base 58.26 67.61 68.29 68.76

TimeLMs-by-year 57.50 66.63 63.81 68.69
TimeLMs-with-quarters 57.97 68.70 64.22 70.09

Table 2: Macro F1-scores for all of our models, including post-evaluation results for the Test set. Best results for
Validation and Test sets are highlighted in bold.

ers used SP-WSD layer pooling weights (Loureiro
et al., 2022d). Whereas in our system, we extracted
summed embeddings from all 12 layers without
pooling strategy.

Submission 1 Submission 2
Rank User/Baseline Macro-F1 Macro-F1

Our results
7 lisatukhtina 70.09 68.76

TOP-3 results from other teams
1 dma 77.05 77.05
2 macd 76.60 74.74
3 zackchen 73.64 74.87

Baselines
— TimeLMs - SIM 70.33
— RoBERTa-L - SIM 67.09
— RoBERTa-L - FT 59.10
— TimeLMs - FT 57.70
— Random 50.00
— All True 26.79

Table 3: Submission leaderboard

Table 2 shows detailed results for all the mod-
els we implemented during the shared task. For
the validation set, there is a noticeable difference
between the models with and without continued
pre-training. We expected a similar trend for the
test sample. To test this assumption, we obtained re-
sults for all our models in the post-evaluation phase.
The results showed that for the BERT and Twitter-
RoBERTa-base models, additional pre-training did
not improve the quality on the test set. As for
TimeLMs models, the results are correlated with
the validation set. It is also interesting that such a
general model as BERT-base performed as well as
more complex solutions, even without pre-training
for Twitter domain.

For the validation set, we also obtained Macro-
F1 scores for each target word (see Table 4). The
most challenging words for both models were re-
count and primo.

Word Macro-F1
Twitter-RoBERTa-base TimeLMs

impostor 65.97 70.62
lotte 67.07 64.10

recount 52.88 61.86
primo 57.65 60.17

Table 4: Macro-F1 scores for each word from the vali-
dation set.

4 Discussion

The main question that is still open is that: can
we really detect a meaning shift on such a short
time period as about a year? At TempoWiC it
was postulated that in social media we can observe
faster semantic shifts (Loureiro et al., 2022c). From
a linguistic point of view, a change occurred, when
there is evidence of transmission of innovations to
others, i.e., of conventionalization (Traugott, 2017).
It seems that one year is too short time for any
language innovation to become widespread, even
via social media. Moreover, it may take more time
to be sure that this is a real change and not a nonce
word. Let us consider words that were taken for a
validation set. There were 4 of them (lotte, primo,
recount, and impostor). According to the corpus
provided by the organizers, the word recount was
mostly used in the context of elections, lotte in the
context of a concert and as a hotel name. It means
that at least 50% of validation words demonstrate
that trending words in Twitter in general most likely
describe ongoing or recent events.

It was said that at TempoWiC the task was to
decide if the meaning of the first target word in con-
text is the same as the second one or not (Loureiro
et al., 2022c). There are also examples of anno-
tated sentences with target words in the article (see
Table 5). These examples demonstrate polysemy,
not semantic change. So it can be assumed that
the TempoWiC dataset is much more suitable for
word sense disambiguation task than for seman-
tic change detection. It is difficult to differentiate
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Tweet 1 Tweet 2 Label
2019-08

"In case you were wondering facial
devotion still worked with a face mask on"

2020-08
"With these mask at work customers

are forever confusing me and Reyna lmao"
1

Table 5: An example from the TempoWiC training set for a target word ’mask’. Label 1 indicates that the word has
different meanings in the two tweets.

between polysemy and semantic change on such
restricted data. That makes this shared task even
more complicated.

5 Conclusion

We presented two systems for temporal meaning
shift detection in Twitter, both with and without
time span data usage. The best result was ob-
tained with diachronic language models continu-
ously trained for the Twitter domain. For our future
research, we will consider weight-pooling methods
as an attempt to improve our system’s performance.
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Macro-F1 of 0.3613), we chose the word-level ap-
proach.

Macro-F1
Model Sentence-level Word-level

BERT-base-uncased 56.33 57.39
Twitter-RoBERTa-base 36.13 58.26

Table 6: Comparison of sentence-level and word-level
representations. Macro-F1 scores for Validation set.
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Abstract

We present a study on the integration of time-
sensitive information in lexicon-based offen-
sive language detection systems. Our focus
is on Offenseval sub-task A, aimed at detect-
ing offensive tweets. We apply a semantic
change detection algorithm over a short time
span of two years to detect words whose se-
mantics has changed and we focus particularly
on those words that acquired or lost an offen-
sive meaning between 2019 and 2020. Us-
ing the output of this semantic change detec-
tion approach, we train an Support Vector Ma-
chine (SVM) classifier on the Offenseval 2019
training set. We build on the already com-
petitive SINAI system submitted to Offense-
val 2019 by adding new lexical features, in-
cluding those that capture the change in usage
of words and their association with emerging
offensive usages. We discuss the challenges,
opportunities and limitations of integrating se-
mantic change detection in offensive language
detection models. Our work draws attention
to an often neglected aspect of offensive lan-
guage, namely that the meanings of words are
constantly evolving and that NLP systems that
account for this change can achieve good per-
formance even when not trained on the most
recent training data.

1 Introduction

The task of automatic detection of offensive lan-
guage has attracted considerable attention in the

Natural Language Processing (NLP) community
recently. Policy makers and online platforms can
leverage computational methods of offensive lan-
guage detection to oppose online abuse and online
harm at scale. These methods can also support com-
putational social science and linguistics research in
identifying innovative ways in which individuals
and groups express offense online (Garland et al.,
2020). The last two editions of the OffensEval
shared task, organised as part of the SemEval com-
petition, have offered a platform for assessing the
state of the art in this area. Existing methods for
automatic offensive language detection have been
tested on a different large-scale annotated datasets,
most notably the Offensive Language Identification
Dataset (OLID) used in OffensEval 2019 (Zampieri
et al., 2019a) and the Semi-Supervised Offensive
Language Identification Dataset (SOLID) from Of-
fensEval 2020 (Rosenthal et al., 2020).

The most effective methods proposed so far typ-
ically rely on ensembles of very large transformer-
based language models such as BERT (Devlin
et al., 2019) and its successors RoBERTa (Liu et al.,
2019) and ALBERT (Lan et al., 2019). For exam-
ple, Wiedemann et al. (2020), the top performing
team for the offensive language detection task at
OffensEval 2020, use tweets from SOLID to fine-
tune the masked language modeling objective of
BERT-like models before training them on the la-
beled OLID data for the task of offensive language
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detection. Other systems (e.g. Arslan (2020) for
Turkish) rely on more tailored sets of features such
as existing lexicons of offensive words.

In spite of the growing amount of work on this
topic, little attention has been devoted to more so-
phisticated uses of lexical features and on the role
of the time dimension in offensive language phe-
nomena. Languages are subject to constant change
and their lexicons are no exception. Over time,
words can acquire new meanings, or change or lose
existing ones (Koptjevskaja-Tamm, 2002). These
changes in the semantic profile of a word can take
various shapes. For example, they can widen or nar-
row its semantic scope or change its polarity. An
example is sick, which gained a positive connota-
tion of ‘excellent, impressive; risky’ (OED Online)
in slang contexts in the early 1980s. Lexical seman-
tic change is a highly complex phenomenon and
its study helps us better understand the relation be-
tween language and social, cultural and historical
factors, and how this relation changes over time.
This has important consequences for all compu-
tational systems that rely on word lists as input,
including those used in offensive language detec-
tion systems, as such lists tend to be static and
therefore do not account for the changes that words
are subject to.

This paper focuses on the task of offensive lan-
guage detection and follows the framework set up
in the Offenseval 2019 and 2020 competitions, par-
ticularly subtask A. We build on SINAI (Plaza-del
Arco et al., 2019), the only lexicon-based system
submitted to Offenseval 2019 for which we could
access the code. Our system relies on a set of re-
fined lexical features which cover the surface-level
spelling of offensive content as well as their seman-
tic change over a short time period. Our system is
aware of the change in meaning of the word Karen,
for example, which, according to Dictionary.com,
in 2020 acquired an offensive meaning.1 Our work
shows that accounting for language change and
more sophisticated lexical features can help re-
search in offensive language detection. At the same
time, we show that detecting semantic changes that
occurred in a very short time interval (one year
in our case) presents challenges because this phe-
nomenon affects a small number of words. Focus-

1“Karen is a pejorative slang term for an obnoxious, an-
gry, entitled, and often racist middle-aged white woman
who uses her privilege to get her way or police other peo-
ple’s behaviors” https://www.dictionary.com/e/
slang/karen/.

ing on offensive language (and therefore on words
whose semantics changed towards or away from an
offensive meaning) presents additional challenges,
as this phenomenon affects an even smaller num-
ber of words. Our results are promising, especially
considering that they are obtained by drawing on
lexical features from datasets covering only two
consecutive years, the only years for which the Of-
fenseval training and test sets are available. During
this period, only a small number of words changed
their meaning or polarity. Therefore, we expect
our method to have a bigger impact when tested
on a larger time span. We stress that one important
methodological strength of our method is that it
does not need an up-to-date training set. Because
it uses an older annotated dataset as its training
set, it enables significant savings in the human ef-
fort and computational resources needed to create
high-quality labelled data, while still being able
to handle the ever-evolving lexical semantics of
offensive language.

In addition to presenting a manually curated list
of words that acquired or lost an offensive meaning
between 2019 and 2020, we perform an extensive
error analysis to explore the categories of texts
that are misclassified by our system. We find that
further improvements will likely come from better
contextual representations: these will help prevent
cases in which models detect offense in any text
that contains a word that might be offensive in
certain contexts. We suggest expanding the current
set of offensive words will help to correctly label
cases in which rare but offensive words are used.

2 Related work

2.1 Offensive language detection

There has been extensive work on offensive lan-
guage detection, with a particular focus on plat-
forms such as Twitter (Davidson et al., 2017; Lee
et al., 2018; Founta et al., 2018); Reddit (Mit-
tos et al., 2020; Hada et al., 2021; Ribeiro and
Silva, 2019) and YouTube (Ottoni et al., 2018).
Researchers have experimented with a range of
classification models that strive to identify offen-
sive language automatically. Early work relied on
established machine learning techniques such as
logistic regression (Waseem and Hovy, 2016) and
SVMs (Karan and Šnajder, 2018). Researchers
have also developed deep learning models to detect
abusive language, e.g., using Convolutional Neu-
ral networks (Gambäck and Sikdar, 2017; Ribeiro
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and Silva, 2019), Gated Recurrent Unit networks
(Zhang et al., 2018) and Long short-term memory
models (Badjatiya et al., 2017), as well as ensem-
ble architectures of neural with non-neural models
(Anand et al., 2022). Recent large pre-trained lan-
guage models have led researchers to experiment
with transfer learning approaches (El-Alami et al.,
2022; Guest et al., 2021; Sohn and Lee, 2019; Polig-
nano et al., 2019). For example, Mozafari et al.
(2019) fine-tune a pre-trained BERT model for hate
speech detection, gaining F1-score of 88% and 92%
on two datasets (Waseem et al., 2017; Davidson
et al., 2017). The efficacy of BERT-based tech-
niques has been evidenced in various competitions
(Zampieri et al., 2019b, 2020).

One issue of the aforementioned classification
approaches is that they need large and up-to-date
annotated datasets for model training. To address
this issue in offensive language detection, Singh
and Li (2021) propose a domain adaptation training
for bidirectional transformers to enhance the detec-
tion performance on a target dataset by exploit-
ing an external dataset. However, this approach
has three main limitations: 1) target and auxiliary
datasets might not share the same label space, re-
sulting in ad-hoc data transformations; 2) an ex-
ternal large-scale dataset relevant to the target task
is still needed; and 3) adding time-independent
information does not remove the need for up-to-
date annotated datasets. Indeed, language is sub-
ject to constant change: new words emerge all the
time to refer to new concepts, for example, and
existing words acquire new meanings (or lose their
existing ones), a phenomenon that affects mainly
open-class items (nouns, verbs, adjectives and ad-
verbs), including offensive terms. By introducing a
semantic change module, our work leverages time-
dependent lexical features for offensive language
detection which, in turn, could lighten the burden
on having large-scale and up-to-date data.

2.2 Lexical semantic change detection

Over the past 15 years, the area of lexical semantic
change detection has attracted a growing level of
attention (Tahmasebi et al., 2018; Kutuzov et al.,
2022). This task aims at identifying which words
changed their meaning in a given time period. Re-
searchers have proposed a range of methods to
address this, from graph-based models (Mitra et al.,
2015; Tahmasebi and Risse, 2017) to topic mod-
els (Cook et al., 2014; Lau et al., 2014; Frermann

and Lapata, 2016), but the most successful meth-
ods involve type or token word embeddings (Kim
et al., 2014; Basile and McGillivray, 2018; Kulka-
rni et al., 2015; Hamilton et al., 2016; Dubossarsky
et al., 2017; Tahmasebi, 2018; Rudolph and Blei,
2018; Jatowt et al., 2018; Tang, 2018).

The most common approach to lexical seman-
tic change detection consists in building type or
token embedding representations of the semantics
of words from an input diachronic corpus, which
is split into subcorpora covering different time in-
tervals. If type embeddings are used, these need to
be aligned over the temporal sub-corpora, usually
via orthogonal Procrustes (Hamilton et al., 2016),
vector initialisation (Kim et al., 2014) or tempo-
ral referencing (Dubossarsky et al., 2019). Finally,
significant shifts which can be interpreted as indica-
tions of semantic change are detected by measuring
the change between the representations of the same
word over time. This is typically done via distance
metrics based on cosine or local neighbours.

In 2020 the first standard evaluation framework
and dataset for this task were created for the Se-
mEval 2020 shared task on Unsupervised lexical se-
mantic change detection (Schlechtweg et al., 2020).
The best-performing systems in this task use type
embedding models, although the quality of the re-
sults differs depending on the language. Averaging
over all four languages, the best result had an ac-
curacy of 0.687 for sub-task 1 and a Spearman
correlation coefficient of 0.527 for sub-task 2.

3 Approach

3.1 Overview

We experimented with enriching a lexicon-based
offensive language detection system (OLD) with
time-sensitive lexical features derived from lexical
semantic change detection (LSCD) in a new system
which we called LSCD+OLD. The idea behind
this is to rely on “dated” manually annotated data
to train a classifier that can label new instances of
text for its offensiveness. Imagine that we have
data annotated in 2019 (e.g. the OLID dataset) and
we are interested in detecting offensive language
in 2020. We expect that most of the words have
not changed their meaning between 2019 and
2020, but some have, and a portion of those have
acquired (or lost) an offensive meaning. These
new meanings will not be recorded in the 2019
data and therefore our classifier is likely to miss
instances of offensive texts if they contain one or
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Figure 1: Diagram of our system, with the Semantic
Change Detection (left) and the Offensive Language
Detection (right) modules.

more of these words. We propose to overcome this
by incorporating semantic change knowledge into
the system. This means that we would not need
to engage in the expensive process of producing
new manually annotated data from 2020. Figure 1
shows the architecture of our system and the next
sections describe its modules. The two modules
are joined by a series of features that use the
output of the LSCD module as input to the OLD
classifier. Our code is available at https://
github.com/alan-turing-institute/
offenseval-semantic-change.

3.2 Lexical semantic change detection
module

The LSCD module (left hand side of Figure 1) takes
as input two corpora, representing the first time
period t1 (typically the time period when the man-
ually annotated dataset was produced, 2019 in our
case) and the second time period t2 (the time af-
ter the manually annotated dataset was produced,
2020 in our case), respectively. Word embeddings
are trained on the two corpora. For every target
word in the intersection between the two vocabular-
ies, the LSCD module outputs a semantic change
score, representing the degree by which the word
has changed between t1 and t2.

We chose UWB (Pražák et al., 2020) for the im-
plementation of the LSCD module. UWB ranked
first in sub-task 1 of SemEval 2020’s shared task
on unsupervised lexical semantic change detection,
with an absolute accuracy of 0.687, which was the
best result on average over all four languages (En-
glish, German, Latin, and Swedish). UWB involves
training word embeddings for each of the two time-
separated corpora, setting up two semantic vector
spaces. Canonical Correlation Analysis, using the
implementation from Brychcin et al. (2019) and
a modification of the Orthogonal Transformation
from VecMap (Artetxe et al., 2018) are then used

to compute a linear transformation between the ear-
lier and later spaces. Finally, the cosine distance
between the transformed vector for the target word
from the earlier corpus and the vector for the target
word in the later corpus is measured and presented
as the semantic change score. UWB’s system con-
sists of the following adjustable hyperparameters,
with which we experimented with: (i) Embedding
dimensions: the dimensions of the continuous vec-
tor space onto which the learned word representa-
tions are translated; (ii) Window size: the number
of adjacent words used to determine the context
of each word; (iii) Iterations: the number of times
parameters are updated; (iv) Minimum frequency
count: the minimum frequency below which un-
common words are set to unknown; and (v) Maxi-
mum links: the maximum number of links, i.e. size
of vocabulary.

3.3 Offensive language detection module

The lexicon-based OLD module takes as input a
training set and a list of offensive terms, which are
used to train a classifier that can label a new set
of texts as offensive or not. A description of the
datasets is given in Section 4. The offensive lan-
guage detection component of the proposed system
is based on SINAI, developed by Plaza-del Arco
et al. (2019) for SemEval-2019 Task 6: Identify-
ing and Categorizing Offensive Language in Social
Media (OffensEval). SINAI uses OLID data for
training and testing and was the only lexicon-based
system for which we could find the underlying code
and were able to reproduce the Offenseval 2019 re-
sults. SINAI was chosen because the description
of the other lexicon-based systems available in the
corresponding system description papers for the Of-
fenseval shared task were not sufficiently detailed
to ensure that our implementation would have led
to the same results as the original systems.

The system preprocesses the OLID data to re-
move mentions and URLs, and tokenize the tweets.
It then trains a Support Vector Machine (SVM)
classifier on statistical features (specifically TF-
IDF scores) and the following two lexical features.
(1) Sentiment: vaderSentiment2 is used to obtain a
vector with four scores: negative, positive, neu-
tral, and compound polarity; and (2) Offensive
word list: the proportion of tokens in the Offen-
sive/Profane Word List3 out of all tokens in each

2https://pypi.org/project/
vaderSentiment/

3https://www.cs.cmu.edu/~biglou/
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Table 1: Summary of OLID and SOLID datasets

Dataset Tweets in training set Tweets in test set
OLID 13,240 860
SOLID 6,209,964 3,887

tweet. In addition to SINAI’s original features, we
introduce three additional lexical features, a time-
independent one and two time-dependent ones. The
effect of introducing the time-dependent ones is
that they consider the semantic change that affected
words between 2019 and 2020 and therefore allow
the classifier to “update” the 2019 training set.

Character length: For each tweet, the average
number of characters of its tokens if they are con-
tained in a offensive word list; this is based on the
fact that many highly offensive words in English
are short (typically four characters) (Bergen, 2016).

Polarity change: for every token found in both
the 2019 and the 2020 corpora, we calculate the
proportion of negative-sentiment tweets the token
occurred in out of all tweets it occurred in. We
calculate the difference between these two propor-
tions and divide it by the 2019 proportion, to obtain
the token’s rate of change in proportion of nega-
tive tweets over time. For every tweet, we take the
maximum polarity change value of all its tokens.

Sentiment and semantic change scores: for each
token we multiply its semantic change score by
its polarity change score as defined in the Polar-
ity change features, and take the maximum value.
This way, we aim to capture those words which
underwent usage change and polarity change com-
bined, with the idea to approximate the detection of
those words that not only changed semantically, but
whose semantics changed in an offensive direction.

4 Data

We rely on the OLID training dataset, which in-
cludes 13,240 tweets from late 2018 and 2019
annotated according to a three-layer hierarchical
annotation scheme. The first layer identifies a
tweet as containing offensive language (OFF) or
not (NOT). The second layer categorizes the offen-
sive language in tweets as a targeted insult (TIN)
or an untargeted insult (UNT). The third layer cate-
gorises the targets of insults as an individual (IND),
a group (GRP), or other (OTH) (Zampieri et al.,
2019a). The OLID test set includes tweets catego-
rized according to the sub-tasks, along with their
gold labels. The offensive language detection sys-

resources/

tem of our model uses the OLID training set for
sub-task A.

SOLID contains tweet IDs for over 9,000,000
tweets from early 2020, also annotated accord-
ing to the three-level hierarchy of OLID. We ex-
tract the content of over 6,000,000 tweets using
the Twitter API by matching the SOLID tweet
IDs. Contrary to the OLID dataset, SOLID does
not contain gold standard labels for any of the
sub-tasks. Instead, SOLID uses a democratic co-
training method to provide the average confidence
(AVG_CONF) and standard deviation from the
AVG_CONF (CONF_STD) values of a particular
tweet belonging to the positive class of that sub-
task. For sub-task A, a tweet belongs to the positive
class if it is labelled as offensive, or OFF (Rosen-
thal et al., 2020). We utilise a similar method as
that used by Plaza del Arco et al. (2020) to gen-
erate the tweet labels using the AVG_CONF and
CONF_STD values. We take 0.5 to be the threshold
value for a tweet to be labelled offensive. If, for a
given tweet, the AVG_CONF + CONF_STD value
is still below the threshold value of 0.5, we label the
tweet as NOT. If the AVG_CONF - CONF_STD
gives a value more than the threshold, we label
the tweet as OFF. Any tweets whose AVG_CONF
+ CONF_STD values were greater than 0.5, or
AVG_CONF - CONF_STD values were less than
0.5 are discarded, as this indicates the OFF/NOT
classification is not strongly established, and varies
based on the standard deviation.

Table 1 gives a summary of the OLID and
SOLID datasets. Following Plaza-del Arco et al.
(2019), we preprocess the OLID and SOLID
datasets by tokenizing the tweets using NLTK,
lower-casing all tokens and removing URLs and
Twitter user mentions.

4.1 Twitter corpora

In order to collect Twitter data from several years
in the past, we download samples collected by the
Archive Team.4 These samples are taken from the
Twitter 1% streaming API from 2012 until the time
of the present study. We use only a small portion
of this dataset from each year in order to keep
the training time of the semantic change model
manageable. We select a sample from the same
time of each year (beginning of March). We obtain
an average of 114,995 tweets for each year. More

4https://archive.org/details/
twitterstream
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Table 2: Summary of Twitter data sample to be used for
LSCD module.

Year Tweets Tokens
2019 226,275 2,624,412
2012-2019 919,965 8,391,550
2020 364,708 4,205,419

statistics about the dataset can be found in Table 2.
We remove URLs, Twitter handles, and punctu-

ation marks, and apply lower-casing. We correct
cases in which the same character is repeated in
a string (e.g. faaast vs. fast). We also lemmatise
the text and exclude strings with fewer than three
characters, with the exception of a fixed list of func-
tion words like pronouns and prepositions. Finally,
we replace emoji with corresponding text using
the emoji5 Python package and tokenize using the
Twitter tokenizer in NLTK (Bird et al., 2009). This
last step was taken to simplify the data processing.
However, we recognise that replacing emoji with
their names will not capture the semantic change
of emoji themselves, which we have investigated in
one of our previous studies (Robertson et al., 2021).
In future work we could look into incorporating
these changes into our system.

4.2 Ground truth for semantic change
We compile a list of words for the evaluation of
the LSCD module. These words not only changed
their semantics between 2019 and 2020 but also
did so by acquiring a new offensive meaning. We
analyse a mix of online sources in order to identify
offensive words whose definitions shifted between
2011 and 2019: Hatebase, an online repository
of words associated with hate speech, and earlier
academic offensive language lists, namely those by
Luis von Ahn (Horta Ribeiro et al., 2018),6 and by
ElSherief et al. (2018b,a).7

We search Urban Dictionary8 and
Dictionary.com to confirm definitions
and dates of meaning change. The criterion
for selecting words from previously compiled
lists was that they had to display at least one
non-offensive and one offensive definition. We
rely on Urban Dictionary, a crowd-sourced slang
language dictionary, to verify definitions and to

5https://pypi.org/project/emoji/
6https://github.com/

manoelhortaribeiro/HatefulUsersTwitter/
blob/master/data/extra/bad_words.txt

7https://github.com/mayelsherif/hate_
speech_icwsm18/blob/master/hate_keywords.
txt

8https://www.urbandictionary.com/

approximate the date at which a change occurred.
We then search Dictionary.com’s slang definition
list of almost 1,000 words and phrases to find new
negative connotations to existing words.

Lexical semantic change over a short time period
such as the one considered here is a low-frequency
phenomenon. Moreover, lexical semantic change
involving a new offensive sense, which emerges
alongside the established non-offensive senses, is
an even rarer phenomenon. For this reason, the
list had to be further refined to make sure that the
corpora at our disposal displayed evidence of the
words having undergone this phenomenon.

For example, beta occurs 49 times in the 2019
Twitter corpus and 67 times in the 2020 Twitter
corpus. In 2019 the majority of its usages refer to
the neutral software-related meaning reported by
the Oxford English Dictionary as “a test of machin-
ery, software, etc. in course of final development,
carried out by a party or parties unconnected with
the developer” (bet, 2021) as in (1) and none of the
2019 usages are offensive. On the other hand, the
2020 data show eight offensive usages out of 56 of
“a slang insult for or describing a man who is seen
as passive, subservient, weak, and effeminate”,9 as
in (2):

(1) RTL Release 0.2.16-beta New Feature: Rout-
ing Peers - Routing history analysis by Peers (re-
quested by @USER)

(2) Jelly viagra these man r so beta
For each of the selected words, we conduct a

diachronic corpus analysis to check that the word
was used in an offensive sense more often in the
2020 corpus than in the 2019 corpus. Through
this, we obtain a subset of 21 lemmas. For each
of these 21 lemmas we search for a corresponding
stable lemma which did not acquire a new sense in
2020 (as checked against the Oxford English Dic-
tionary) and which had similar frequency counts in
the 2019 and 2020 corpus and same part of speech.
In Appendix A, Table 7 shows the final list of 42
lemmas and Table 8 shows the list of positive gold
standard words, i.e. the words that acquired an
offensive meaning. The gold standard words are:
beta, canceled, cap, cringe, fag, globalist, karen,
monkey, mug, ratchet, salty, simp, skip, snowflake,
sus, thirsty, illegal, chad, gammon, Brexiter, trig-
gered. Appendix A contains additional information
about their semantics.

9https://www.dictionary.com/e/slang/
beta/
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5 Experiments

In this section, we present the experiments per-
formed to find the best configuration of parameters
for our system.

5.1 Experimental setup

Our aim is to assess whether it is possible to train
an OLD system on older data and achieve compara-
ble performance when using this system to classify
newer data. Therefore, we use the OLID training
dataset as our training set, and the SOLID test set
as our test set. During the development phase we
could not use a portion of the OLID training set be-
cause its content is not from the same time period
covered by SOLID. Therefore, we use a portion of
SOLID as development — 0.2% of its data, cor-
responding to 9,915 tweets. We train the linear
SVM classification algorithm (SVC) with C pa-
rameter 0.5 on SINAI’s original features and also
experiment with the additional lexical features we
introduced in section 3.3.

Semantic change detection As part of the
LSCD module of our system, we run the UWB
code on two sets of corpora: Twitter 2019 vs. Twit-
ter 2020; and Twitter 2012-2019 vs. Twitter 2020.
Even though the time periods covered by OLID
and SOLID are 2019 and 2020, respectively, we
also want to see whether expanding the time period
further back helps the performance.

Word embedding training As an input, we train
word type embeddings with the following parame-
ters: embedding dimensions: 100, 300, 1000; win-
dow size: 2, 5, 10; iterations: 5; min freq count:
1, 5, 10, 50, 100; embedding type: fasttext and
word2vec; and embedding algorithm: skipgram
and continuous-bags-of-words

Change detection We run the UWB code for the
LSCD module of our system. We then train the
SVC classifier on the features listed in section 3.3,
setting three values for the threshold on the seman-
tic change score: 0.5, 0.7, and 0.9.

5.2 Results

Our best model uses von Ahn’s list of offensive
words, the features described in Section 3.3 plus
the TF-IDF features and SINAI’s lexical featurxes,
but not SINAI’s sentiment features. The best sys-
tem is based on the following parameters for the
LSCD module: t1 = 2019 and t2 = 2020, word2vec

Table 3: Evaluation results of the lexical semantic
change module against our gold standard by different
threshold values applied to the semantic change scores.
The fifth row shows the number of words in the posi-
tive gold standard set that were also found as positive
candidates for semantic change.

Metric 0.4 0.5 0.6 0.7 0.8 0.9
F1 0.93 0.93 0.57 0.42 0.24 0.24
Acc 0.89 0.92 0.64 0.58 0.50 0.50
Prec 1.00 1.00 1.00 1.00 1.00 1.00
Rec 0.87 0.87 0.40 0.27 0.13 0.13
#GS words 12 12 6 4 2 0

Table 4: Results of the quantitative comparison be-
tween the lexical semantic change output and the posi-
tive gold standard words.

Metric Value
average score (positive gold standard) 0.60
median score (positive gold standard) 0.59

average score (other words) 0.49
median score (other words) 0.52

Mann-Whitney statistic 87631
Mann-Whitney p-value 0.02

embeddings with the continuous bag of words al-
gorithm, 1000 dimensions, 5 iterations, a context
window of 10, a minimum frequency count of 10
and 100000 maximum number of links used by the
UWB code.

The output of the LSCD code is the list of the
vocabulary words, paired with a lexical semantic
change score. The higher the score the higher the
likelihood that the word underwent lexical seman-
tic change. In order to obtain a list of candidates
for semantic change, a threshold must be set for
the score: all words with a score above the thresh-
old are then considered as candidates. We eval-
uate the LSCD module against the gold standard
described in Section 4.2. True positives (TP) are
the words that are identified as having undergone
semantic change and that also appear in the gold
standard set of changed words. True negatives
(TN) are the words that are identified as not having
changed and also appear in the gold standard set
of unchanged words. False positives (FP) are the
words that are identified as having changed but are
in the gold standard list of unchanged words. False
negatives (FN) are the words that are identified as
not having changed but are in the gold standard
list of changed words. Accuracy is calculated as
(TP + TN)/(TP + FP + TN + FN). Preci-
sion is calculated as TP/(TP +FP ) and recall as
TP/(TP + FN).

Table 3 shows the results. Table 4 shows an
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Table 5: Results of experiments on the OffensEval
2020 test set; all systems were trained on the OLID
training set (2019), apart from the last one, which was
trained on SOLID (2020).

SINAI LSCD+OLD SINAI
Training Data OLID OLID SOLID
Test Data SOLID SOLID SOLID
Precision (NOT) 0.97 0.97 0.99
Recall (NOT) 0.91 0.92 0.90
Prec. (OFF) 0.79 0.82 0.79
Recall (OFF) 0.93 0.93 0.98
Prec. (Macro) 0.88 0.90 0.89
Prec. (Weighted) 0.92 0.93 0.94
Recall (Macro) 0.92 0.93 0.94
Recall (Weighted) 0.91 0.92 0.92
Accuracy 0.91 0.92 0.92
F1 (Macro) 0.90 0.91 0.91

additional analysis aimed at measuring the output
against the gold standard by comparing the aver-
age and median lexical semantic change score of
the positive gold standard words and of the other
words. Tables 3 and 4 show that the algorithm’s
performance with a threshold of 0.5 (the threshold
chosen for the final model) is very good, even better
than the current state-of-the-art from the SemEval
2020 task 1 results, where UWB achieved an aver-
age accuracy of 0.687 on the four languages and
0.622 on English. The setup of that shared task was
very different to this study, as the English dataset
covered a much longer time span (t1 =1810–1860
and t2 =1960–2010). Table 4 shows that the set of
positive gold standard words have a significantly
higher semantic change score compared with the
other words, with an average of 0.60 vs. 0.49 and a
median of 0.59 vs. 0.52, respectively.

Table 5 shows how our system compares to the
original SINAI system trained on OLID and on its
version trained on SOLID. The three system’s per-
formances are generally quite close to each other,
with small differences. Our system combining ex-
tra general and time-dependent lexical features into
SINAI performs better than the baseline in all met-
rics apart from the precision on the NOT class
where it achieves the same results as the baseline.

It is interesting to note that our system achieved
a macro-averaged F1 score of 0.94 on the develop-
ment set drawn from 0.02% of the SOLID training
set. This result may be explained by the fact that a
larger set is more likely to capture a higher number
of words that acquired an offensive meaning be-
tween 2019 and 2020, since this is a low-frequency
phenomenon as we have seen. This suggests that
our system may achieve even better performance
when tested against a larger time span than the

one-year period studied here.

6 Error analysis

In order to gain a better understanding of the 297
errors made by our proposed system, we quali-
tatively inspected the misclassified examples and
sorted them into seven major categories (summa-
rized in Table 6). Each misclassified instance was
categorized by two of the authors. We calculated
the Inter-Annotator Agreement (IAA) as Cohen’s
κ =

∑
a−∑

ef
N−∑

ef , where
∑
a is the number of agree-

ments,
∑
ef is the sum of the expected frequencies

of agreement by chance, and N is the the num-
ber of misclassified instances (Cohen, 1960). We
interpreted the IAA scores according to the fol-
lowing criteria: 0.01-0.20 points to no agreement/
slight agreement, 0.21-0.40 to fair agreement, 0.41-
0.60 to moderate agreement, 0.61-0.80 to substan-
tial agreement, and 0.81-1.00 to strong agreement.
The average of the pairwise agreement is moderate
(0.46), see Table 9 in Appendix A. This shows that
the task is quite difficult, even for human annota-
tors.

To present the analysis of the distribution of the
seven categories we identified in the list of errors,
we focus on 178 errors whose classification the
two annotators agreed on. For examples that were
misclassifed as offensive, the most common fea-
ture was the presence of offense-related words that
were not being used in an offensive way. Models
based solely on lexical features that do not account
for the contextual meaning of words will naturally
struggle with these cases, and the high number of
these errors suggests that improving the semantic
change detection may not have as large of an im-
pact compared to including better contextual rep-
resentations of potentially offensive words. The
next most common category of misclassified of-
fensive was self-deprecating statements: those that
used statements that would be considered offensive
had they been targeted at someone else, but they
were instead directed at the author of the text (e.g.,
“I am ugly”). A few statements misclassified as
offensive actually employed irony, in which the
surface meaning of the text appears offensive, but
the intended meaning of the text was not offensive.

For texts misclassified as not offensive, the most
commonly noticed feature was that an offensive
word was present, but it was not included in the
offensive word list that was used by the best per-
forming model. Some of these words acquired
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Table 6: Analysis of error categories. The columns rep-
resent the category of error agreed upon by two annota-
tors; the second and third column contain the incorrect
prediction by our model and the last column contains
the total counts.

Error category NOT OFF Total
offensive-related words
not used in an offensive way 0 96 96
offensive word not in list 20 0 20
self-deprecating 1 18 19
indirect offense 10 6 16
incorrect groundtruth 9 3 12
other/unexplained 5 7 12
irony 0 2 2

an offensive meaning over time. An example is
“@USER I thought you magas refused to use Nike
because they don’t hate black people”. In this tweet,
the word magas is a case of a semantically-changed
word which here is employed in an offensive way.
In Urban Dictionary, this word is defined in Novem-
ber 2018 as “a word used in the campaign of trump,
signals neo nazis and white supremacists”. For
these examples, we hypothesize that better expan-
sion of the offensive word list may help with being
able to correctly categorize these examples. For
both types of misclassification, a handful of the
instances contained more indirect examples of of-
fense, which has been highlighted as an impor-
tant category to focus on within the offense detec-
tion domain that may require multi-hop reasoning
(Zhang et al., 2022). A small number of other ex-
amples appear to have been incorrectly labeled in
the original dataset, and a handful were difficult to
categorize (other) or understand (unexplained).

7 Conclusion

We have presented a study on combining lexical
semantic change information into a new system
that performs offensive language detection based
on lexical features, and a curated gold standard list
of English words that acquired or lost an offensive
meaning between 2019 and 2020. From the point
of view of the performance, our system trained on
the much smaller and older OLID data performs
better than SINAI trained on the same data. Further,
by including our time-dependent lexical features,
our system, trained only on the older OLID data,
has performance on the newer SOLID test set that
is comparable to a SINAI model that was trained
directly on the much larger and newer SOLID train-
ing set. This shows that it indeed language change
affects offensive language and it is possible to per-
form offensive language detection by taking into

account such change and without relying on large
labelled datasets that have been produced around
the same time as the texts on which it is applied.
Additionally, we discuss the challenges of perform-
ing short-term semantic change detection, espe-
cially for the rare words that acquired or lost an
offensive meaning over a period of two years. Fu-
ture work will involve expanding our evaluation
across other time periods and corpora.
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A Appendix

Table 7: Gold standard list of words that acquired an offensive sense for which there is evidence in our 2020 corpus
(left) and stable words (right). For each group, the first column provides the part of speech, the second the lemma,
the third the frequency in the 2019 Twitter corpus and the fourth the frequency in the 2020 Twitter corpus.

pos Lemma Freq 2019 Freq 2020 Stable word Freq 2019 Freq 2020
N beta 49 67 academy 50 65
ADJ cancel 25 64 acceptable 23 63
N cap 153 221 fish 151 228
ADJ cringe 36 65 additional 33 72
N fag 15 20 accuracy 16 17
N globalist 17 21 absurd 23 23
N karen 39 106 behaviour 48 99
N monkey 60 97 corporation 59 99
N mug 68 93 cage 62 85
N ratchet 2 12 moonstone 2 3
ADJ salty 17 31 alcoholic 19 22
N simp 5 67 whorehouse 5 63
N skip 155 148 abandonment 5 10
N snowflake 11 27 calamity 2 19
ADJ sus 11 24 beneficial 8 20
ADJ thirsty 33 35 dreamy 26 29
N illegal 170 217 direction 163 223
N chad 8 23 contestant 9 213
N gammon 4 6 gravel 3 8
N Brexiter 1 9 grenade 3 12
ADJ triggered 31 31 analytic 27 39
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Table 8: Gold standard list of words that acquired an offensive meaning, the date of its first recorded usage and the
source dictionary.

pos Lemma Offensive meaning Source Date
N beta Insult describing a man who is seen as passive,

subservient, weak, and effeminate.
https://www.dictionary.com/
e/slang/beta/

1990

ADJ canceled When a person is canceled, they are no longer
supported publicly. Sometimes used as a threat,
"to cancel."

https://www.dictionary.
com/e/pop-culture/
cancel-culture/

2015

N cap A lie. https://www.
urbandictionary.com/define.
php?term=cap

2020

ADJ cringe Someone or something extremely embarrassing
or awkward.

https://www.
urbandictionary.com/define.
php?term=Cringe

2013

N fag A derogatory term for homosexual. https://www.
urbandictionary.com/define.
php?term=fag

2010

N globalist Coded language often used as a negative eu-
phemism for Jew.

https://www.
urbandictionary.com/define.
php?term=Globalist

2018

N karen Karen is a pejorative slang term for an obnox-
ious, angry, entitled, and often racist middle-
aged white woman who uses her privilege to get
her way or police other people’s behaviors.

https://www.dictionary.com/
e/slang/karen/

2020

N monkey A derogatory term for a black person. https://www.
urbandictionary.com/define.
php?term=Monkey

2011

N mug Unattractive, unappealing, or unpleasant. https://oed.com/view/Entry/
89666161?rskey=Vq0ZKB&
result=0&isAdvanced=true#
firstMatch

2009

N ratchet Someone whose actions could be considered as
severely undistinguishable; possesing little or no
class.

https://oed.com/view/Entry/
89666161?rskey=Vq0ZKB&
result=0&isAdvanced=true#
firstMatch

2009

ADJ salty Angry, upset, or hostile, especially due to embar-
rassment or failure.

https://www.dictionary.com/
browse/salty

2011

N simp Simp is a slang insult for men who are seen
as too attentive and submissive to women, es-
pecially out of a failed hope of winning some
entitled sexual attention or activity from them.
Can also refer to an avid fan of a celebrity.

https://www.dictionary.com/
e/slang/simp/

2011

N skip A white Australian, alluding to Skippy the Bush
Kangaroo, a once-popular Australian television
show for children.

https://www.dictionary.com/
browse/salty

2011

N snowflake A political insult for someone who is perceived
as too sensitive, often used against young people
and those with progressive political viewpoints.

https://www.dictionary.com/
browse/snowflake

2015

ADJ sus Giving the impression that something is ques-
tionable or dishonest; suspicious.

https://www.dictionary.com/
browse/snowflake

2015

ADJ thirsty Describes a graceless need for approval, affec-
tion or attention, to the point of another becom-
ing uncomfortable.

https://www.dictionary.com/
browse/snowflake

2015

N illegal Derogatory term for a Hispanic or Latino person
in the United States.

https://www.dictionary.com/
browse/snowflake

2015

N chad A rude, and often sexually promiscuous, man. https://www.
urbandictionary.com/define.
php?term=Chad&page=4

2017

N gammon A term used against anyone who was white and
voted for Brexit.

https://www.
urbandictionary.com/define.
php?term=Gammon

2018

N Brexiter An derogatory term to refer to someone who
voted for Brexit.

https://www.
urbandictionary.com/define.
php?term=Brexiter

2016

ADJ triggered An emotional/psychological reaction caused by
something that somehow relates to an upsetting
time or happening in someone’s life.

https://www.
urbandictionary.com/define.
php?term=Triggered

2016
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Table 9: Pairwise Inter-Annotator Agreement (IAA) scores for the error analysis.

Annotators IAA
A1 & A2 0.53 (moderate)
A2 & A3 0.88 (strong)
A1 & A3 0.09 (disagreement)
A2 & A4 0.39 (fair)
A4 & A5 0.40 (fair)
A3 & A5 0.37 (fair)
A3 & A4 0.56 (moderate)
A1 & A4 0.46 (moderate)
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Abstract

Meaning of words constantly change given the
events in modern civilization. Large Language
Models use word embeddings, which are often
static and thus cannot cope with this semantic
change. Thus,it is important to resolve ambigu-
ity in word meanings. This paper is an effort
in this direction, where we explore methods
for word sense disambiguation for the EvoNLP
shared task. We conduct rigorous ablations for
two solutions to this problem. We see that an
approach using time-aware language models
helps this task. Furthermore, we explore possi-
ble future directions to this problem.

1 Introduction

A change in the meaning of a word in varying se-
mantic contents is a challenge for various NLP
tasks such as text and sentence classification, ques-
tion answering and sentence prediction. Recent
developments in large language models (LLMs)
like ELMo (Peters et al., 2018), BERT (Devlin
et al., 2019) and GPT (Brown et al., 2020) have
revolutionised the field of NLP with context depen-
dent word embeddings. These models have been
trained on a large corpus of unlabelled text. While
these models take in consideration the semantics
of the text, it is limited to the corpus it was trained
on. This introduces a new challenge of the shift in
the meaning of a word across the temporal axis.

Word Sense Disambiguation (Huang et al., 2019)
is the process of identifying the meaning of a word
from multiple possible meanings in varying con-
texts. This task can be further extended as a pol-
ysemy resolution task to classify the meaning of
words in different contexts. Our system performs
a similar task while classifying two texts with a
common word with the same or different meaning.
Specifically, the premise of our system is to clas-
sify tweets from two different time periods with a

∗Equal Contribution

common word. The variation in the meaning of a
word is caused by two factors, the context of the
word in the form of a tweet or a change in the us-
age and hence in the meaning of a word because
of the shift along the time axis. Historically it has
been observed that the meanings of some words
have been altered over time. For example, the word
"fathom" originally meant "to encircle with one’s
arms” and now is defined as “to understand after
much thought”. The ever expanding nature of the
internet and social media have led to rapid evolu-
tion of words, with the meanings of words changing
and new words getting csoined. This means that
the corpus of data used for training a LLM will
keep changing over time. Hence, the pretrained
models for existing LLMs like BERT, RoBERTa
cannot be used to compare word embeddings for a
word from two different time periods. This shared
task (Loureiro et al., 2022b) focusses precisely on
this problem statement.

To address this problem, we propose a system
comprising of TimeLMs (Loureiro et al., 2022a) to
incorporate the time aspect of the data. TimeLMs
are language models that are trained using data up
to a certain time instance. In this case they are
trained on tweets gathered by the end of a year.
Therefore there exists a unique TimeLM model for
each year which takes into account the time aspect
of data. The dataset used for testing our system
consists of tweets from the years 2019, 2020 and
2021. Tweets from two different time periods con-
taining a common word are paired in this dataset
and labelled to indicate similarity or dissimilarity
in the meanings of that word in the two tweets. The
TimeLMs used in our system are Roberta models
trained on tweets upto the specific year. This en-
ables our system to get an accurate representations
of the words based on their use upto that time pe-
riod. The embeddings are then compared based on
a similarity metric to classify the tweets using a
preset threshold value for similarity.
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This paper is organised as follows. We analyse
existing research and methods in Section (2). We
give a overview of the dataset used for our sys-
tem in Section (3). We provide a overview of our
system implementation in Section (4). We also
compare the results of our experiments in devel-
oping this system in Section (5). We discuss the
possible improvements and scope of this system in
Section (6).

2 Related work

In Natural Language Processing, the meaning of
words is denoted by a vector, commonly known as
word embedding. Works like GloVe (Pennington
et al., 2014) and Word2Vec (Mikolov et al., 2013)
were one of the first ones to represent a word using
vectors. However, the embeddings thus generated
were context-agnostic, meaning their meaning was
fixed and were not dependent on the context.

With the dawn of modern text encoders (Vaswani
et al., 2017; Devlin et al., 2019), context dependent
embeddings can be easily calculated. Works like
Pilehvar and Camacho-Collados; Raganato et al.
aim to have manually annotated datasets contain-
ing pairs of sentences having same or different
meaning, and labelling them as such. To solve this
task, several methods have been developed. Works
like Levine et al. (2020); Peters et al. (2019) try to
impart context based knowledge into the embed-
dings by using WordNet (Miller, 1995) attributes.
The models are trained in a self-supervised fash-
ion with entity linking. Another approach is to use
word-level embeddings. Loureiro and Jorge (2019)
use this approach, combining it with a k-NN (k
Nearest Neighbours) method to disambiguate the
word embeddings. Note that transformers can also
be used for this purpose, since the output features
from the transformers can be interpreted as word
embeddings. Loureiro et al. (2022c) studies model
layers to understand the effect of attention-based
architectures in word sense disambiguation task.
Elmo (Peters et al., 2018) is one of many available
architectures in this direction. Lastly, work has
been done to incorporate the semantic space knowl-
edge into the embeddings (Colla et al., 2020), also
known as sense-based disambiguation.

Given this, little work has been done on word
meaning disambiguation in a temporal setting. This
means that the information about the time of text
utterance is also provided along with the sentence
itself. This paper tries to provide a solution to

this problem - word meaning disambiguation when
temporal information is available.

3 Dataset description

The dataset consists of 1428 training samples and
396 validation samples. The final scores were cal-
culated on a set of 10,000 unseen test samples. In
every training sample, we were provided with two
sentences and the word whose semantic meaning
was to be compared. Some metadata like tokens
and start and end of word was also included in every
sample.In the training dataset, out of the 1428 sam-
ples, 650 examples had the words in two sentences
having same meaning, whereas 778 samples had
the words in two sentences having different mean-
ing. Note that since this dataset is relatively bal-
anced, and hence does not need any additional pre-
processing to balance the data distribution. How-
ever, it is important to note that the target words in
the training and testing dataset constitute two dif-
ferent sets, and hence the problem should be solved
in a way that is target word agnostic.

An illustration of the data is shown in Figure 1.
The left part shows an example where the meaning
of the target word "virus" is different in both tweets.
Specifically, in the top left tweet it indicates to the
disease-causing organism whereas the bottom left
tweet indicates to a thing that the person likes. In
the right part, both instances of the target word
mean the same, denoting disease-causing organism.

The dataset also provides the month and year
when the tweet was written. This provides us the
temporal information, which can be useful for the
semantic evaluation of the words in the given con-
text. Our approach aims at using this semantic
information in a way that a language model rele-
vant to the tweet is used to get the semantic features
of the tweet.

4 Methodology

4.1 TimeLMs aided word sense
disambiguation

As mentioned in Section 3, the date of posting
of the tweet is provided as a data attribute. In
this approach, we used this information to choose
the transformer model to extract target features.
We use TimeLMs (Loureiro et al., 2022a) for this
purpose. We observe this performs better compared
to using a single model. Our method is illustrated
in Figure 2.
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"Khalid - Alive is my new virus
❤ "

"I'm hopeful you understand that we NEED social
distancing to slow the immediate rise of this virus."

Different
meaning

(0)

"At this point it's inevitable that unvaccinated
children and adults will contract the measles

virus."

"Let me just sincerely ask this: How we can
stop/prevent/reduce the spread of the virus without

social distancing?"

Same
meaning

(1)

Figure 1: Examples from the datset.
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Figure 2: TimeLMs aided word sense disambiguation
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Figure 3: Contrastive feature based classification

Specifically, we observe that the tweets in the
input data are posted in the years 2019 and 2020
only. Thus, we use the variants of TimeLMs trained
on Twitter data collected until December 2019 and
2020 for respectively dated tweets. In this way, we
can encapsulate the difference in semantic repre-
sentations of sentences across time.

After extracting the contextualized sentence fea-
tures from the respective models, we extract the tar-
get word features. We hereby get two word feature
vectors, one corresponding to each tweet. Note that
since one word may be split into multiple tokens,
we use the mean of these token-wise features for
out computation. Note that the feature vectors for a
tweet is the mean of the last four layers of the lan-
guage models concatenated to the pooled ([CLS]
token) output. These two feature vectors are then
compared with each other using cosine similarity.
If this cosine similarity is high, the meaning of

the target word in two sentences is the same, al-
ternatively if the cosine similarity is low then the
meaning of the target word in the two sentences is
different.

Since this approach does not actually train the
parameters of the model, we use the training dataset
to calculate the thresholds. Specifically, we iterate
over potential thresholds between 0 and 1 with a
step of 0.001. We then rank the thresholds based
on their F1 scores. The best performing thresh-
old is then used for generating the final predic-
tions. The threshold for our best performing model
(TimeLMs) was 0.917. We use five models for our
ablations: ELECTRA (small) (Clark et al., 2020),
ALBERT (base) (Lan et al., 2019), BERT (base,
uncased) (Devlin et al., 2019), RoBERTa (base)
(Zhuang et al., 2021), TimeLMs (Loureiro et al.,
2022a).
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4.2 Contrastive feature based classification

The task essentially being identifying whether the
usage of word is similar or not we thought of
training the language models in a Siamese setting.
Siamese networks involves two similar encoder net-
works with the same weights and a classification
system, which determines the similarity based on
the distance between encoded features and a thresh-
old. As mentioned in the previous sub section we
are extracting the target word features using trans-
former models which will be the encoders. If the
meaning of the word in both the sentences is same
then the target word features given by the trans-
former model should be similar.

We trained the model using a simple contrastive
loss involving euclidean distance between the tar-
get word features. We used the same models as
mentions in the previous sections, except for the
TimeLMs. For determining the threshold for the
classification process we iterated through a range
of 0 to 4, with a step of 0.01, while testing on the
validation data. The threshold was determined for
the euclidean distance between the word embed-
dings obtained from the model. The threshold for
our best performing model (TimeLMs) was 1.148.

4.3 Implementation details

We use the HuggingFace library (Wolf et al., 2020)
for our experiments. For the cosine similarity ex-
periments, we find a threshold of 0.917 for our
best performing solution. We use a batch size of
64. Here the threshold was selected for the cosine
distance between the two word embeddings.

For the contrastive method experiments, we find
a threshold of 1.148 for our best performing solu-
tion (RoBERTa). We used a batch size of 8. Here
the threshold was selected for the euclidean dis-
tance between the two word embeddings.

In both cases, the inference distance value (co-
sine or euclidean) below the threshold indicated
similar meaning for the two words, and the the
inference distance value above the threshold indi-
cated different meaning for the two words.

5 Results

We hereby present the results of both of our meth-
ods. We report several interesting observations
based on the results.

Our results based on our cosine similarity are
shown in Table 1 and our results based on the con-
trastive method are shown in Table 2.

Model Val
F1-score

Val
Accuracy

Test
F1-score

Electra 61.00 54.78 38.77
RoBERTa 60.00 56.51 38.96
BERT 60.80 56.77 38.77
Albert 60.73 56.77 39.00
TimeLMs 61 61.71 57.94

Table 1: Results of Similarity Method

Model Val
F1-score

Val
Accuracy

Test
F1-score

Electra 66.67 75 46.15
RoBERTa 60.8 44.01 48.97
BERT 65.44 48.98 44.34
Albert 66.6 66.6 43.75

Table 2: Results of Contrastive Method

1. TimeLMs based method performs the best:
We observe that the TimeLMs based method
performs the best. We speculate this is be-
cause of the time-aware nature of the models.
Some words, for example "lockdown" have
significantly different meaning before and af-
ter the pandemix. Thus, models pretrained on
the specific data results in better performance.

2. BERT and AlBERT have similar perfor-
mance: We see that BERT and Albert have
very similar Accuracy and Macro-F1. We hy-
pothesize that this is because of the similar-
ity in their pretraining objectives. Albert is
a model aimed to mimic the capabilities of
BERT, but with lower number of parameters.
Thus, it makes sense that these models have
very similar validation metrics.

3. Electra has a better language representa-
tion: As seen on state of art benchmarks like
GLUE and SQuAD Electra is outperforming
RoBERTa, ALBERT. Electra has achieved bet-
ter F1-score and accuracy compared to both.

6 Conclusion

In this paper, we explore two solutions to the word
sense disambiguation problem within the scope
of EvoNLP shared task. We report a maximum
testing F1-score of 57.94% with TimeLMs. We
foresee several research directions for this work.
One line of work can be explore robustness of the
contrastive models. The threshold search technique
for this method can be explored in greater detail.
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