@inproceedings{montariol-etal-2022-multilingual,
title = "Multilingual Auxiliary Tasks Training: Bridging the Gap between Languages for Zero-Shot Transfer of Hate Speech Detection Models",
author = "Montariol, Syrielle and
Riabi, Arij and
Seddah, Djam{\'e}",
editor = "He, Yulan and
Ji, Heng and
Li, Sujian and
Liu, Yang and
Chang, Chua-Hui",
booktitle = "Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-aacl.33",
doi = "10.18653/v1/2022.findings-aacl.33",
pages = "347--363",
abstract = "Zero-shot cross-lingual transfer learning has been shown to be highly challenging for tasks involving a lot of linguistic specificities or when a cultural gap is present between lan- guages, such as in hate speech detection. In this paper, we highlight this limitation for hate speech detection in several domains and languages using strict experimental settings. Then, we propose to train on multilingual auxiliary tasks {--} sentiment analysis, named entity recognition, and tasks relying on syntactic information {--} to improve zero-shot transfer of hate speech detection models across languages. We show how hate speech detection models benefit from a cross-lingual knowledge proxy brought by auxiliary tasks fine-tuning and highlight these tasks{'} positive impact on bridging the hate speech linguistic and cultural gap between languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="montariol-etal-2022-multilingual">
<titleInfo>
<title>Multilingual Auxiliary Tasks Training: Bridging the Gap between Languages for Zero-Shot Transfer of Hate Speech Detection Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Syrielle</namePart>
<namePart type="family">Montariol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arij</namePart>
<namePart type="family">Riabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Djamé</namePart>
<namePart type="family">Seddah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chua-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online only</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Zero-shot cross-lingual transfer learning has been shown to be highly challenging for tasks involving a lot of linguistic specificities or when a cultural gap is present between lan- guages, such as in hate speech detection. In this paper, we highlight this limitation for hate speech detection in several domains and languages using strict experimental settings. Then, we propose to train on multilingual auxiliary tasks – sentiment analysis, named entity recognition, and tasks relying on syntactic information – to improve zero-shot transfer of hate speech detection models across languages. We show how hate speech detection models benefit from a cross-lingual knowledge proxy brought by auxiliary tasks fine-tuning and highlight these tasks’ positive impact on bridging the hate speech linguistic and cultural gap between languages.</abstract>
<identifier type="citekey">montariol-etal-2022-multilingual</identifier>
<identifier type="doi">10.18653/v1/2022.findings-aacl.33</identifier>
<location>
<url>https://aclanthology.org/2022.findings-aacl.33</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>347</start>
<end>363</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Auxiliary Tasks Training: Bridging the Gap between Languages for Zero-Shot Transfer of Hate Speech Detection Models
%A Montariol, Syrielle
%A Riabi, Arij
%A Seddah, Djamé
%Y He, Yulan
%Y Ji, Heng
%Y Li, Sujian
%Y Liu, Yang
%Y Chang, Chua-Hui
%S Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022
%D 2022
%8 November
%I Association for Computational Linguistics
%C Online only
%F montariol-etal-2022-multilingual
%X Zero-shot cross-lingual transfer learning has been shown to be highly challenging for tasks involving a lot of linguistic specificities or when a cultural gap is present between lan- guages, such as in hate speech detection. In this paper, we highlight this limitation for hate speech detection in several domains and languages using strict experimental settings. Then, we propose to train on multilingual auxiliary tasks – sentiment analysis, named entity recognition, and tasks relying on syntactic information – to improve zero-shot transfer of hate speech detection models across languages. We show how hate speech detection models benefit from a cross-lingual knowledge proxy brought by auxiliary tasks fine-tuning and highlight these tasks’ positive impact on bridging the hate speech linguistic and cultural gap between languages.
%R 10.18653/v1/2022.findings-aacl.33
%U https://aclanthology.org/2022.findings-aacl.33
%U https://doi.org/10.18653/v1/2022.findings-aacl.33
%P 347-363
Markdown (Informal)
[Multilingual Auxiliary Tasks Training: Bridging the Gap between Languages for Zero-Shot Transfer of Hate Speech Detection Models](https://aclanthology.org/2022.findings-aacl.33) (Montariol et al., Findings 2022)
ACL