@inproceedings{gaci-etal-2022-conceptual,
title = "Conceptual Similarity for Subjective Tags",
author = "Gaci, Yacine and
Benatallah, Boualem and
Casati, Fabio and
Benabdeslem, Khalid",
editor = "He, Yulan and
Ji, Heng and
Li, Sujian and
Liu, Yang and
Chang, Chua-Hui",
booktitle = "Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-aacl.5",
doi = "10.18653/v1/2022.findings-aacl.5",
pages = "54--66",
abstract = "Tagging in the context of online resources is a fundamental addition to search systems. Tags assist with the indexing, management, and retrieval of online products and services to answer complex user queries. Traditional methods of matching user queries with tags either rely on cosine similarity, or employ semantic similarity models that fail to recognize conceptual connections between tags, e.g. ambiance and music. In this work, we focus on subjective tags which characterize subjective aspects of a product or service. We propose conceptual similarity to leverage conceptual awareness when assessing similarity between tags. We also provide a simple cost-effective pipeline to automatically generate data in order to train the conceptual similarity model. We show that our pipeline generates high-quality datasets, and evaluate the similarity model both systematically and on a downstream application. Experiments show that conceptual similarity outperforms existing work when using subjective tags.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gaci-etal-2022-conceptual">
<titleInfo>
<title>Conceptual Similarity for Subjective Tags</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yacine</namePart>
<namePart type="family">Gaci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Boualem</namePart>
<namePart type="family">Benatallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Casati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Benabdeslem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chua-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online only</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Tagging in the context of online resources is a fundamental addition to search systems. Tags assist with the indexing, management, and retrieval of online products and services to answer complex user queries. Traditional methods of matching user queries with tags either rely on cosine similarity, or employ semantic similarity models that fail to recognize conceptual connections between tags, e.g. ambiance and music. In this work, we focus on subjective tags which characterize subjective aspects of a product or service. We propose conceptual similarity to leverage conceptual awareness when assessing similarity between tags. We also provide a simple cost-effective pipeline to automatically generate data in order to train the conceptual similarity model. We show that our pipeline generates high-quality datasets, and evaluate the similarity model both systematically and on a downstream application. Experiments show that conceptual similarity outperforms existing work when using subjective tags.</abstract>
<identifier type="citekey">gaci-etal-2022-conceptual</identifier>
<identifier type="doi">10.18653/v1/2022.findings-aacl.5</identifier>
<location>
<url>https://aclanthology.org/2022.findings-aacl.5</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>54</start>
<end>66</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conceptual Similarity for Subjective Tags
%A Gaci, Yacine
%A Benatallah, Boualem
%A Casati, Fabio
%A Benabdeslem, Khalid
%Y He, Yulan
%Y Ji, Heng
%Y Li, Sujian
%Y Liu, Yang
%Y Chang, Chua-Hui
%S Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022
%D 2022
%8 November
%I Association for Computational Linguistics
%C Online only
%F gaci-etal-2022-conceptual
%X Tagging in the context of online resources is a fundamental addition to search systems. Tags assist with the indexing, management, and retrieval of online products and services to answer complex user queries. Traditional methods of matching user queries with tags either rely on cosine similarity, or employ semantic similarity models that fail to recognize conceptual connections between tags, e.g. ambiance and music. In this work, we focus on subjective tags which characterize subjective aspects of a product or service. We propose conceptual similarity to leverage conceptual awareness when assessing similarity between tags. We also provide a simple cost-effective pipeline to automatically generate data in order to train the conceptual similarity model. We show that our pipeline generates high-quality datasets, and evaluate the similarity model both systematically and on a downstream application. Experiments show that conceptual similarity outperforms existing work when using subjective tags.
%R 10.18653/v1/2022.findings-aacl.5
%U https://aclanthology.org/2022.findings-aacl.5
%U https://doi.org/10.18653/v1/2022.findings-aacl.5
%P 54-66
Markdown (Informal)
[Conceptual Similarity for Subjective Tags](https://aclanthology.org/2022.findings-aacl.5) (Gaci et al., Findings 2022)
ACL
- Yacine Gaci, Boualem Benatallah, Fabio Casati, and Khalid Benabdeslem. 2022. Conceptual Similarity for Subjective Tags. In Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 54–66, Online only. Association for Computational Linguistics.