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Abstract

We present state-of-the-art results on mor-
phosyntactic tagging across different varieties
of Arabic using fine-tuned pre-trained trans-
former language models. Our models consis-
tently outperform existing systems in Modern
Standard Arabic and all the Arabic dialects we
study, achieving 2.6% absolute improvement
over the previous state-of-the-art in Modern
Standard Arabic, 2.8% in Gulf, 1.6% in Egyp-
tian, and 8.3% in Levantine. We explore differ-
ent training setups for fine-tuning pre-trained
transformer language models, including train-
ing data size, the use of external linguistic re-
sources, and the use of annotated data from
other dialects in a low-resource scenario. Our
results show that strategic fine-tuning using
datasets from other high-resource dialects is
beneficial for a low-resource dialect. Addition-
ally, we show that high-quality morphological
analyzers as external linguistic resources are
beneficial especially in low-resource settings.

1 Introduction

Fine-tuning pre-trained language models like
BERT (Devlin et al., 2019) has achieved great
success in a wide variety of natural language
processing (NLP) tasks, e.g., sentiment analy-
sis (Abu Farha et al., 2021), question answer-
ing (Antoun et al., 2020), named entity recogni-
tion (Ghaddar et al., 2022), and dialect identifica-
tion (Abdelali et al., 2021). Pre-trained LMs have
also been used for enabling technologies such as
part-of-speech (POS) tagging (Lan et al., 2020;
Khalifa et al., 2021; Inoue et al., 2021) to produce
features for downstream processes. Previous POS
tagging results using pre-trained LMs focused on
core POS tagsets; however, it is still not clear how
these models perform on the full morphosyntac-
tic tagging task of very morphologically rich lan-
guages, where the size of the full tagset can be in
the thousands. One such language is Arabic, where
lemmas inflect to a large number of forms through

different combinations of morphological features
and cliticization. Additionally, Arabic orthography
omits the vast majority of its optional diacritical
marks which increases morphosyntactic ambiguity.

A third challenge for Arabic is its numerous vari-
ants. Modern Standard Arabic (MSA) is the pri-
marily written variety used in formal settings. Di-
alectal Arabic (DA), by contrast, is the primarily
spoken unstandardized variant. MSA and different
DAs, e.g., Gulf (GLF), Egyptian (EGY), and Lev-
antine (LEV), vary in terms of their grammar and
lexicon to the point of impeding system usability
cross-dialectally (Habash et al., 2012). Further-
more, these variants currently differ in the degree
of data availability: MSA is the highest resourced
variant, followed by GLF and EGY, and then LEV.

In this paper, we explore different training setups
for fine-tuning Arabic pre-trained language models
in the complex morphosyntactic tagging task for
four Arabic variants (MSA, GLF, EGY, and LEV)
under controlled experimental settings.

We aim to answer the following questions:

• How does the size of the fine-tuning data af-
fect the performance?

• What kind of tagset scheme is suitable for
modeling morphosyntactic features?

• Is there any additional value of using external
linguistic resources?

• How can we make use of annotated data in
some dialects to improve performance in an-
other low-resourced dialect?

Our system1 achieves state-of-the-art (SOTA)
performance in full morphosyntactic tagging ac-
curacy in all the variants we study, resulting in
2.6% absolute improvement over previous SOTA
in MSA, 2.8% in GLF, 1.6% in EGY, and 8.3% in
LEV.

1We make our models and data publicly available
at https://github.com/CAMeL-Lab/CAMeLBERT_
morphosyntactic_tagger.
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diac lex gloss pos prc3 prc2 prc1 prc0 per gen num asp vox mod stt cas enc0 Variant
(a) حَفیِدَكَ Hafiydaka حَفیِد Hafiyd grandchild noun - - - - - m s - - - c a 2ms_poss MSA
(b) حَفیِدَكِ Hafiydaki حَفیِد Hafiyd grandchild noun - - - - - m s - - - c a 2fs_poss MSA
(c) حَفیِدُكَ Hafiyduka حَفیِد Hafiyd grandchild noun - - - - - m s - - - c n 2ms_poss MSA
(d) حَفیِدُكِ Hafiyduki حَفیِد Hafiyd grandchild noun - - - - - m s - - - c n 2fs_poss MSA
(e) حَفیِدِكَ Hafiydika حَفیِد Hafiyd grandchild noun - - - - - m s - - - c g 2ms_poss MSA
(f) حَفیِدِكِ Hafiydiki حَفیِد Hafiyd grandchild noun - - - - - m s - - - c g 2fs_poss MSA
(g) حَفیِدِك Hafiydik حَفیِد Hafiyd grandchild noun - - - - - m s - - - c - 2ms_poss GLF
(h) حَفیِدَك Hafiydak حَفیِد Hafiyd grandchild noun - - - - - m s - - - c - 2ms_poss EGY,LEV
(i) حَفیِدِك Hafiydik حَفیِد Hafiyd grandchild noun - - - - - m s - - - c - 2fs_poss EGY,LEV
(j) حَفیِدَك Hafiydak فاد fAd benefit verb - - - fut 1 - s i - - - - 2ms_dobj EGY,LEV
(k) حَفیِدِك Hafiydik فاد fAd benefit verb - - - fut 1 - s i - - - - 2fs_dobj EGY,LEV

Table 1: This is an example of multiple readings of the word ¼YJ

	
®k Hfydk in the different variants of Arabic. The

table also shows the full range of morphological features: part-of-speech (pos), aspect (asp), mood (mod), voice
(vox), person (per), gender (gen), number (num), case (cas), state (stt) and clitics: proclitics (prc3, prc2, prc1,
prc0) and enclitic (enc0). In addition to the lemma (lex), fully diacritized form (diac), and English gloss (gloss).

2 Arabic Language and Resources

2.1 Arabic and its Dialects
MSA is the primarily written form of Arabic used
in official media communications, official docu-
ments, news, and education. In contrast, the pri-
marily spoken varieties of Arabic are its dialects.
Arabic dialects vary among themselves and can be
categorized at different levels of regional classifi-
cations (Salameh et al., 2018). They are also differ-
ent from MSA in most linguistic aspects (namely
phonology, morphology, and syntax). Moreover,
dialects have no official status despite being widely
used in different means of daily communication
– spoken as well as increasingly written on social
media. In this work, we focus on MSA, Gulf Ara-
bic (GLF), Egyptian Arabic (EGY), and Levantine
Arabic (LEV).

2.2 Orthography
In this paper, we focus on Arabic written in Ara-
bic script for MSA and DA. An important feature
of Arabic orthography is the omission of diacriti-
cal marks which are mostly used to indicate short
vowels and consonantal doubling. This omission
introduces ambiguity to the text, e.g., the word
I.

�
J» ktb2 could mean ‘to write’ (I.

��
J
�
» katab) or

‘books’ (I.
��
J
�
» kutub) among other readings.

Unlike MSA, Arabic dialects have no official
standard orthography. Depending on the writer,
words are sometimes spelled phonetically or closer
to an MSA spelling through cognates or a mix of
both. It has been found that in extreme cases a word

2Arabic transliteration is presented in the HSB scheme
(Habash et al., 2007).

can have more than 20 different spellings (Habash
et al., 2018). This results in highly inconsistent and
sparse datasets and models. The Conventional Or-
thography for Dialectal Arabic (CODA) (Habash
et al., 2018) has been proposed and used in man-
ual annotations of many datasets including some
of those used in this paper. Ideally, the process of
morphological disambiguation should take raw text
as input, as this is more authentic than convention-
alized spelling. We follow this principle for EGY
and LEV where analyses are paired with the raw
text. However, the GLF dataset analyses are linked
to the CODA version only, since orthographic con-
ventionalization was applied as an independent step
during manual data annotations and there are no
simple direct mappings between the raw text and
the analyses (Khalifa et al., 2018).

2.3 Morphology

Arabic is a morphologically rich language where
a single lemma inflects to a large number of forms
through different combinations of morphological
features (gender, number, person, case, state, mood,
voice, aspect) and cliticization (prepositions, con-
junctions, determiners, pronominal objects, and
possessives). As some of the morphological fea-
tures are primarily expressed with optional diacriti-
cal marks, orthographic ambiguity results in differ-
ent morphological analyses, e.g., MSA can have up
to 12 analyses per word (out-of-context) on aver-
age (Pasha et al., 2014). MSA and DA differ in the
degree of morphological complexity, for example,
MSA retains nominal case and verbal mood fea-
tures; but these are absent in DA. On the other hand,
many dialects take more clitics than MSA, e.g., the
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Variant Resource Size Orthography Analyzer
MSA PATB 629k Standard Manual
GLF Gumar 202k CODA Automatic
EGY ARZTB 175k Spontaneous Manual
LEV Curras 57k Spontaneous Automatic

Table 2: An overview of the current status of the data
and morphological analyzers used in this work.

�
�+ + AÓ mA+ +š negation circumclitic structure
found in EGY and not MSA (Habash et al., 2012).

Table 1 shows different possible readings for the
word ¼YJ


	
®k Hfydk among MSA, EGY, GLF, and

LEV. Rows (a) to (i) are different inflections for
case or possessive pronouns or both of the lemma
YJ


	
®�
�
k Hafiyd ‘grandchild’ for all variants. Rows (j)

and (k) show different readings that are inflections
of the verb lemma XA

�	
¯ fAd ‘to benefit’, the inflec-

tions are for different object pronouns. Note that
even between the different POS inflections words
can sound and look exactly the same, this shows the
degree of morphological complexity and ambiguity
in Arabic and its dialects.

2.4 Resources
In this work, we use datasets that have been
fully annotated for morphological features and
cliticization among other lexical features such as
lemmas. We use the Penn Arabic Treebank for
MSA (Maamouri et al., 2004), ARZTB (Maamouri
et al., 2012) for EGY, the Gumar corpus (Khalifa
et al., 2018) for GLF, and the Curras corpus (Jarrar
et al., 2014) for LEV. We also use morphological
analyzers that provide out-of-context analyses for
a given word, those analyzers provide the same
set of features that are seen in the annotated data.
For MSA we use the SAMA database (Graff et al.,
2009), and for EGY we use CALIMA (Habash
et al., 2012). Both GLF and LEV do not have mor-
phological analyzers, instead, we use automatically
generated analyzers from their training data using
paradigm completion as described in Eskander et al.
(2013, 2016) and Khalifa et al. (2020). The quality
and coverage of analyzers, in general, can differ
depending on how they were created. Manually
created analyzers (MSA and EGY in this work)
tend to have a better quality and lexical coverage
over automatically created ones (GLF and LEV in
this work). The quality of automatically generated
analyzers is also highly dependent on the quality
and size of the training data used to create them.

Table 2 shows the overall state of the resources

for each dialect studied in this work. In terms of
the size of fully annotated corpora in tokens, MSA
is approximately three times larger than GLF and
EGY and 11 times larger than LEV. Both MSA and
GLF have consistent orthography whereas EGY
and LEV are more noisy. When it comes to exter-
nal morphological analyzers, only MSA and EGY
have manually created and checked morphological
analyzers, while both GLF and LEV have analyz-
ers created automatically. This contrast of resource
availability allows us to study how challenging the
morphosyntactic tagging task can be in different
real-world situations.

3 Related Work

Arabic morphological modeling proved to be use-
ful in a number of downstream NLP tasks such
as machine translation (Sadat and Habash, 2006;
El Kholy and Habash, 2012) speech synthesis (Ha-
labi, 2016), dependency parsing (Marton et al.,
2013), sentiment analysis (Baly et al., 2017), and
gender reinflection (Alhafni et al., 2020). We ex-
pect all of these applications and others to benefit
from improvements in morphosyntactic tagging.

There have been multiple approaches to morpho-
logical modeling for Arabic. Those approaches dif-
fer depending on the target tagset (POS vs full mor-
phology) and the availability of linguistic resources.
When it comes to MSA and DA full morphological
tagging, MADAMIRA (Pasha et al., 2014) trained
separate SVM taggers for each morphological fea-
ture (including cliticization) and selected the most
probable answer provided by an external morpho-
logical analyzer all in one step for both MSA and
EGY. AMIRA (Diab et al., 2004) on the other hand
used a cascading approach where it performed POS
tagging after automatically segmenting the text.

A more recent similar approach to MADAMIRA
was introduced by Zalmout and Habash (2017) but
using a neural architecture instead. Inoue et al.
(2017) presented a multitask neural architecture
that jointly models individual morphological fea-
tures for MSA. Zalmout and Habash (2019) ex-
tended Zalmout and Habash (2017)’s work using
multitask learning and adversarial training for full
morphological tagging in MSA and EGY. Simi-
larly, Zalmout and Habash (2020) proposed an
approach where they jointly model lemmas, dia-
critized forms, and morphosyntactic features, pro-
viding the current state-of-the-art in MSA. The
same approach was used in Khalifa et al. (2020),
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where they focused on the effect of the size of the
data and the available linguistic resources and the
impact on the overall performance on morphosyn-
tactic tagging for GLF. Zalmout (2020) provides
the current state-of-the-art performance in LEV by
extending Khalifa et al. (2020)’s work to LEV.

Another line of research that works with DA in-
cludes Darwish et al. (2018), where they presented
a multi-dialectal CRF POS tagger, using a small set
of 350 manually annotated tweets for each of EGY,
GLF, LEV, and Maghrebi Arabic (Samih et al.,
2017). We do not evaluate on their data because
their task is defined as shallow morpheme segmen-
tation and tagging; this is quite different from, and
not easily mappable to, our task, where we dis-
ambiguate morphosyntactic features of the whole
word without identifying its morpheme segments.
Additionally, their tagset includes social media spe-
cific tags, such as HASH, EMOT, and MENTION,
which are not in any of the large standard dataset
and analyzers we study in this paper.

Pre-trained LM-based efforts in Arabic mor-
phosyntactic tagging are relatively limited and ei-
ther assume gold segmentation or only produce
core POS tags. Kondratyuk (2019) leveraged the
multilingual BERT model with additional word-
level and character-level LSTM layers for lemmati-
zation and morphological tagging, assuming gold
segmentation. They reported the results for the SIG-
MORPHON 2019 Shared Task (McCarthy et al.,
2019), which includes MSA. Inoue et al. (2021) re-
ported POS tagging results in MSA, GLF, and EGY
using BERT models pre-trained on Arabic text with
various pre-training configurations. They do not
assume pre-segmentation of the text, however, they
only consider the core POS tag, rather than the fully
specified morphosyntactic tag. Khalifa et al. (2021)
proposed a self-training approach for core POS
tagging where they iteratively improve the model
by incorporating the predicted examples into the
training set used for fine-tuning.

In this paper, we work with full morphosyntactic
modeling on unsegmented text in four different
variants of Arabic: MSA, GLF, EGY, and LEV.
Furthermore, we explore the behavior of the pre-
trained LM with respect to fine-tuning data size
under different training setups. Given the available
resources, we recognize our results’ limitations in
terms of applicability to different genres and styles,
as well as noisy social media text and Roman script
Arabic text (Darwish, 2014).

4 Methodology

4.1 Morphosyntactic Tagging with
Pre-trained LMs

To obtain a fully specified morphosyntactic tag
sequence, we build a classifier for each mor-
phosyntactic feature independently, inspired by
MADAMIRA. Unlike MADAMIRA where they
use an SVM classifier, we use two pre-trained LM
based classifiers: CAMeLBERT-Mix for DA and
CAMeLBERT-MSA for MSA (Inoue et al., 2021).
In selecting these pre-trained language models, we
considered the results from Inoue et al. (2021) who
showed that CAMeLBERT-Mix, their largest Ara-
bic BERT model by training data size, gives the
best results on DA tasks. CAMeLBERT-MSA,
which outperforms CAMeLBERT-Mix on MSA
tasks, is only second to AraBERT (Antoun et al.,
2020), but since it was created under the same set-
ting as CAMeLBERT-Mix, it minimizes experi-
mental variations in our study.3 Following the work
of Devlin et al. (2019), fine-tuning the CAMeL-
BERT models is done by appending a linear layer
on top of its architecture. We use the representation
of the first sub-token as an input to the linear layer.

4.2 Factored and Unfactored Tagset

One of the challenges of the morphosyntactic tag-
ging is the large size of the full tagset due to mor-
phological complexity of the language, where a
complete single tag is a concatenation of all the
morphosyntactic features. For example, MSA and
EGY data have approximately 2,000 unique com-
plete tags in the training data, whereas GLF and
LEV have around 1,400 and 1,000 tags, respec-
tively. These are not the full tagsets as there are
many feature combinations that are not seen in the
data.

MADAMIRA’s basic approach is to use a fac-
tored feature tagset that comprises multiple tags,
each representing a corresponding morphosyntac-
tic category.4 This approach remedies the issue
of the large tagset size by dividing it into multiple
sub-tagsets of small sizes, however, it may produce
inconsistent tag combinations.

Alternatively, one can combine the individual
tags into a single tag. This approach has the advan-

3We leave engineering optimization using other pre-trained
language models to future work.

4For example, the tagset for MSA comprises POS (34
tags), per (4), gen (3), num (5), asp (4), vox (4), mod (5), stt
(5), cas (5), prc3 (3), prc2 (9), prc1 (17), prc0 (7), enc0 (48).
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tage of guaranteeing the consistency of morphosyn-
tactic feature combinations. However, it may not
be optimal in terms of tag coverage due to a large
number of unseen tags in the test data in addition
to the large space of classes.

To determine which approach is most suitable
for modeling, we build morphosyntactic taggers
with both the factored tagset and the unfactored
tagset for each variant. Additionally, we explore
the effect of the training data size for both settings.

4.3 Retagging via Morphological Analyzers

In previous efforts (Zalmout and Habash, 2017;
Khalifa et al., 2020), it has been shown that lexi-
cal resources such as morphological analyzers can
boost the performance of morphosyntactic tagging
through an in-context ranking of out-of-context an-
swers provided by the analyzer.

In this work, we follow their approach, where we
use the morphological analyzers as a later step after
tagging with the fine-tuned pre-trained model. We
use the analyzers described in Section 2.4 to pro-
vide out-of-context analyses. For each word, the
analyzer may provide more than one answer.5 The
analyses are then ranked based on the unweighted
sum of successful matches between the values of
the predictions from the individual taggers and
those provided by the analyzer. To break ties dur-
ing the ranking, we take the weighted sum of the
probability of the unfactored feature tag and the
product of the probabilities of all the individual
tags as follows:

1

2
P (tunfactored) +

1

2

∏
m∈M

P (tm) (1)

where t is the tag for the feature m and M is the
set of morphosyntactic features. The probabilities
are obtained through unigram models based on the
respective training data split.

4.4 Merged and Continued Training

Morphosyntactic modeling for DA is especially
challenging because of data scarcity. Among the
datasets that we use, LEV is the least resourced
variant, having 11 times less training data than
MSA. Therefore, we want to investigate an opti-
mal approach to utilize data from other variants to

5Both the MSA and EGY analyzers provide backoff modes.
We use the recommended setting by Zalmout and Habash
(2017). For GLF and LEV analyzers we keep the original
predictions if no answer is returned.

Split MSA GLF EGY LEV
TRAIN 478k 154k 127k 43k
TUNE 26k 8k 7k 2k
DEV 63k 20k 21k 6k
TEST 63k 20k 20k 6k
ALL 629k 202k 175k 57k

Table 3: Statistics on TRAIN, TUNE, DEV, and TEST
for each variant in terms of number of words.

improve upon the performance of morphosyntactic
tagging for LEV.

In this work, we experiment with the follow-
ing two settings: (a) we merge all the datasets
together and fine-tune a pre-trained LM on the
merged datasets in a single step; and (b) similar to
Zalmout (2020), we start fine-tuning a pre-trained
LM on a mix of high-resource datasets (MSA, GLF,
and EGY), and then continue fine-tuning on a low-
resource dataset (LEV).

5 Experiments

5.1 Experimental Settings
Data To be able to compare with previous SOTA
(Zalmout and Habash, 2020, 2019; Khalifa et al.,
2020; Zalmout, 2020), we follow the same con-
ventions they used for data splits: MSA and EGY
(Diab et al., 2013), GLF (Khalifa et al., 2018), and
LEV (Eskander et al., 2016). In Table 3, we show
the statistics of our datasets.

Fine-tuning We fine-tuned the CAMeLBERT
models (Inoue et al., 2021) on each morphosyn-
tactic tagging task. Following their recommenda-
tion, we used CAMeLBERT-MSA for MSA and
CAMeLBERT-Mix for the dialects. We used Hug-
ging Face’s transformers (Wolf et al., 2020) for
implementation. We trained our models for 10
epochs with a learning rate of 5e-5, a batch size of
32, and a maximum sequence length of 512. We
pick the best checkpoint based on TUNE and report
results on DEV and TEST from a single run.

Learning Curve To investigate the effect of fine-
tuning data sizes, we randomly sample training
examples on a scale of 5k, 10k, 20k, 40k, 80k,
120k, and 150k tokens. We use 150k, 120k, and
40k since they are comparable to the number of
tokens in GLF, EGY, and LEV datasets, respec-
tively. This allows us to measure the performance
difference across different dialects in a controlled
manner. This also gives us insight into the amount

1712



ALL TAGS POS Ortho
M

orph5k 10k 20k 40k 80k 120k 150k 480k 5k 10k 20k 40k 80k 120k 150k 480k

M
SA

Unfactored 43.2 65.5 79.2 88.1 91.6 93.3 93.9 95.5 80.1 90.5 94.1 96.9 97.7 98.0 98.1 98.5 C
onsistent

M
anual

 +Morph 63.4 77.6 85.4 91.3 93.3 94.4 94.8 95.9 81.6 91.6 95.1 97.4 98.1 98.3 98.5 98.7
Factored 75.3 86.1 90.8 93.0 94.1 94.7 94.9 95.5 93.0 96.4 97.6 98.1 98.3 98.3 98.4 98.6

 +Morph 86.5 91.3 93.6 94.7 95.2 95.5 95.7 96.1 95.1 97.1 98.0 98.5 98.6 98.6 98.7 98.8

G
L

F

Unfactored 75.1 81.0 89.6 93.3 94.8 95.3 95.8 90.3 92.6 95.6 96.8 97.2 97.7 97.8 C
onsistent

A
uto

 +Morph 86.4 87.1 90.7 92.3 93.1 93.4 93.8 93.9 94.1 95.5 96.1 96.4 96.7 96.6
Factored 87.1 89.8 92.4 94.0 94.7 95.1 95.5 94.6 95.5 96.6 97.1 97.5 97.9 98.0

 +Morph 90.8 90.6 92.1 92.9 93.4 93.8 93.9 95.4 95.5 96.0 96.3 96.6 96.8 96.8

E
G

Y

Unfactored 64.6 77.3 83.0 86.1 87.7 88.8 84.0 87.8 90.5 92.0 92.7 93.0

Spontaneous

M
anual

 +Morph 76.4 83.8 87.4 89.2 89.9 90.5 81.9 87.9 91.5 93.1 93.7 94.0
Factored 77.1 82.0 84.1 85.7 86.8 87.4 89.9 91.0 92.0 92.6 92.9 93.2

 +Morph 86.3 88.3 89.2 89.8 90.3 90.6 90.9 92.6 93.4 93.7 94.0 94.1

L
E

V

Unfactored 73.6 80.8 85.0 88.1 86.7 91.0 93.1 94.5

Spontaneous

A
uto

 +Morph 77.0 80.7 83.2 85.5 87.3 89.8 91.6 92.7
Factored 80.6 84.6 86.6 88.9 91.4 93.2 94.1 94.7

 +Morph 81.2 83.5 84.8 86.4 90.0 91.3 92.2 93.0

Table 4: DEV results on a learning curve of the training data size. Morph refers to the model with an additional step
of retagging using a morphological analyzer. We bold the best score for each variant. Underlined scores denote
that the differences between those scores and the best scores are statistically insignificant with McNemar’s test
(p < 0.05).

of annotated data required to achieve a certain per-
formance, which is useful when creating annotated
resources for new dialects. We use this setup in all
the reported experiments.

Pre-processing for Merged and Continued
Training Although the different datasets provide
the same set of morphosyntactic features, there
exist some inconsistencies between them. The
datasets were annotated by different groups using
slightly different annotation guidelines, therefore,
we need to bring all the feature values into a com-
mon space with LEV. We performed the following
steps to address those inconsistencies: (a) we drop
the stt, cas, mod, vox, enc1, and enc2 features; (b)
we remove the diactization from the lexical parts of
the proclitic features, e.g., the conjunction +ð w+
realized as wa_conj in MSA and wi_conj in EGY
both maps to w_conj in LEV; and (c) for certain
POS classes some features have default values in
case they are not present, those default values were
different for different datasets. Thus, we mapped
those default values to match whatever was spec-
ified as default in LEV. We only performed these
modifications for the experiments on merged and
continued training.

Evaluation Metrics We compute the accuracy
in terms of the core POS and the combined mor-
phosyntactic features (ALL TAGS). For MSA, we

use 14 features, which are pos, per, gen, num, asp,
vox, mod, stt, cas, prc3, prc2, prc1, prc0, and enc0.
For dialects, we use 16 features, where we include
enc1 and enc2 in addition to the 14 features used in
MSA. In the merged and continued training setup,
we use a reduced set of 10 features, pos, per, gen,
num, asp, prc3, prc2, prc1, prc0, and enc0, which
we refer to as ALL TAGS 10.

5.2 Results

Factored vs Unfactored Models Table 4 shows
the DEV results for the models trained with the fac-
tored and unfactored tagset (henceforth, factored
and unfactored models, respectively) on a learning
curve of the training data size. In the extremely low-
resource setting of 5k tokens in the ALL TAGS
metric, we observe that factored models consis-
tently outperform unfactored models across all the
variants (15.9% absolute increase on average). In
particular, MSA benefited most with a 32.1% ab-
solute increase, followed by EGY (12.5%), GLF
(12.0%), and LEV (7.1%).

However, this gap shrinks as the data size in-
creases. For instance in MSA, the differences be-
tween the scores of the factored model and the un-
factored model become statistically insignificant by
McNemar’s test (McNemar, 1947) with p < 0.05
when trained on the full data. This is presumably
due to the decrease in the number of unseen unfac-
tored tags in DEV. In fact, 3.9% of the unfactored
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tags in DEV are not seen in TRAIN in the 5k set-
ting, whereas only 0.1% of tags are unseen in DEV
when we use the full data.

The factored model performs better than the un-
factored model across all the data sizes in MSA and
LEV. The EGY and GLF models follow a similar
pattern in the low resourced settings, however, the
unfactored models begin to perform better than the
factored ones from 20k for EGY and 40k for GLF.
Our results suggest that the factored tagset is opti-
mal compared to the unfactored tagset, especially
in low-resource settings.

Retagging with Morphological Analyzer We
observe that the use of a morphological analyzer
consistently improves the performance of both un-
factored and factored models across all the differ-
ent training data sizes in MSA and EGY in ALL
TAGS. The value of a morphological analyzer is es-
pecially apparent in the very low resourced setting
(5k), with an increase of 20.2% (MSA) and 11.8%
(EGY) in the unfactored model and 11.2% (MSA)
and 9.2% (EGY) in the factored model. However,
the effect of retagging with a morphological an-
alyzer diminishes as the data size increases, yet
providing a performance gain of 0.4% in the un-
factored model with the analyzer and 0.5% in its
factored counterpart in the high resourced setting
in MSA.

Similarly, we observe an increase in performance
when we include a morphological analyzer in the
very low-resourced settings in GLF and LEV. How-
ever, as we increase the training data size, the use
of a morphological analyzer starts to hurt the per-
formance at 40k in GLF and 10k in LEV in the
unfactored model and 20k in GLF and 10k in LEV
in the factored model. We observe here that the
quality of the analyzer has direct implications on
the performance. The analyzers used for MSA and
EGY are of higher quality since they were manu-
ally created and checked, whereas GLF and LEV
analyzers are impacted by the quality and size of
the annotated data used to create them. This is also
consistent with the findings of Khalifa et al. (2020).

Comparison with Previous SOTA Systems Ta-
ble 5 shows DEV and TEST results for our mod-
els and a number of previously published state-of-
the-art morphosyntactic tagging systems. For our
models, we use the best systems in terms of ALL
TAGS metric, namely, the factored model with a
morphological analyzer for MSA and EGY, the un-

factored model for GLF, and the factored model
for LEV. For existing models, we report the best
results from Zalmout and Habash (2020) (ZH’20)
for MSA, Khalifa et al. (2020) (K’20) for GLF,
Zalmout and Habash (2019) (ZH’19) for EGY, and
Zalmout (2020) (Z’20) for LEV.

Since some of these systems do not report on
all of the features that we report on, but rather on
different subsets of them, we include in the table
our results when matched with their features (ALL
TAGS* in Table 5). There is no difference for
MSA; however the ALL TAGS* setting for EGY
and LEV excludes enc1 and enc2. As for GLF,
ALL TAGS* consists of only 10 features: pos,
asp, per, gen, num, prc0, prc1, prc2, prc3, and
enc0.

We observe that our models consistently out-
perform the existing systems in all variants. Our
model achieves 2.6% absolute improvement over
the state-of-the-art system in MSA, 2.8% in GLF,
1.6% in EGY, and 8.3% in LEV.

Merged and Continued Training Table 6 shows
the results on LEV for the merged and the contin-
ued training setups. We use the factored model
without the analyzer as it was the best setup in
the experiments presented so far. The results for
merged training are consistently below those for
the baseline across different data sizes, even though
they have access to more data. This is most likely
a result of the disproportionately small size of the
LEV dataset when compared to the other variants.

In contrast, the results for continued training
show consistent improvements over the LEV-only
baseline model. Continued training provides a sub-
stantial increase in performance, especially in the
very low resourced setting with only 5k tokens, giv-
ing 3.6% absolute improvement over the baseline
on the DEV set. Our results show that continued
training from the model trained on high-resourced
dialects is very beneficial with lower amounts of
training data. These results are not directly compa-
rable to the previous SOTA because of the different
training data and metric used.

5.3 Error Analysis

OOV To better understand the effect of different
training setups, we examine the performance of our
models on out-of-vocabulary (OOV) tokens alone.
Here, we observe a stronger and more consistent
pattern. The average difference between the best
model and the weakest model in ALL TAGS across
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DEV TEST
MSA GLF EGY LEV MSA GLF EGY LEV

Ours ZH'20 Ours K'20 Ours ZH'19 Ours Z'20 Ours Ours K'20 Ours ZH'19 Ours
POS 98.8 98.1 97.8 96.8 94.2 93.3 94.7 89.4 98.9 97.9 96.9 94.6 93.8 94.0

ALL TAGS 96.1 93.5 95.8 - 90.6 - 88.9 - 96.3 95.7 - 91.0 - 87.6
ALL TAGS* 96.1 93.5 95.8 93.3 90.7 89.3 89.1 80.8 96.3 95.7 92.9 91.0 89.4 87.8

Table 5: DEV and TEST results of our systems and previously published systems on the same datasets.

DEV TEST
ALL TAGS 10 POS ALL TAGS 10 POS

5k 10k 20k 40k 5k 10k 20k 40k 5k 10k 20k 40k 5k 10k 20k 40k
SINGLE 81.5 85.4 87.4 89.2 91.4 93.2 94.1 94.7 79.3 84.0 86.2 88.0 89.9 91.8 92.9 94.0

MERGED 77.9 80.6 82.7 85.0 87.3 89.4 90.9 92.3 77.1 79.8 82.0 84.6 87.6 89.3 90.3 91.9
CONTINUED 85.1 86.9 88.2 89.5 92.0 93.3 94.2 94.8 84.3 85.8 87.4 88.8 91.8 92.6 93.6 94.2

Table 6: DEV and TEST results on LEV for the merged training setup (MERGED) and the continued training setup
(CONTINUED). SINGLE refers to the model trained only on LEV.

variants is larger in OOV tokens (6.7%) than in
all tokens (2.3%). On OOV tokens, the factored
model with a morphological analyzer consistently
performs best in all the data sizes for all the variants
except for LEV. In LEV, however, the same model
without the morphological analyzer outperforms
the one with the analyzer. This is presumably due
to the orthographic inconsistency in the data along
with the quality of the morphological analyzer as
discussed in Section 2.4.

Error Statistics Table 7 presents the number and
percentage of specific feature errors among the
ALL TAGS errors in the best systems on the DEV
set. On average, there are two feature prediction
failures within an unfactored tag across the dif-
ferent variants. We observe that MSA and DA
exhibit different error patterns: In MSA, case is
the largest error contributor among other features,
which is consistent with the previous findings along
the line (Zalmout and Habash, 2020), whereas in
dialects, POS is the largest error contributor.

Among the POS errors, the most common error
type is mislabeling a nominal tag with a different
nominal tag, at 44.2% of the errors in GLF, 67.3%
in EGY, and 57.8% in LEV, while this type of error
is more dominant in MSA (80.8%). Mislabeling
nominals with verbs is more common in DA at
23.1% in GLF, 13.0% in EGY, and 20.1% in LEV,
compared to MSA (7.7%).

The core morphological features such as per, gen,
num, and asp have a higher percentage of errors in
DA than in MSA. Another noticeable difference is
enc0 feature (MSA ∼2% vs DA on average ∼17%).
This is likely due to label distribution differences

in pronominal enclitics: MSA has a highly skewed
distribution with 90%, 1%, and 9% ratio for 3rd,
2nd and 1st persons as expected in MSA news
genre. In comparison, DA has less skew with 50%,
17%, and 32% respectively, which increases the
likelihood of error.

Among the three dialects, we observe similar
patterns in terms of feature error contribution, es-
pecially for GLF and LEV with a correlation coef-
ficient of 0.93. However, in EGY specifically, we
observe a high percentage of errors in mod, vox, stt,
and cas, partly due to the difference and inconsis-
tency in annotation schemes.

We also found some gold errors which affect all
of the systems we compared (previous SOTA and
ours). For example, there are cases where genitive
diptotes are annotated as accusative,6 e.g., the word
	
à@QK
 @

ǍyrAn ‘Iran’ in the context 	
à@QK
 @

ú



	
¯ fy ǍyrAn

‘in Iran’. As the results on Arabic morphosyntactic
disambiguation are reaching new heights, it may
be useful for the community using these resources
to revisit their annotations.

6 Conclusion and Future Work

In this paper, we presented the state-of-the-art re-
sults in the morphosyntactic tagging task for Mod-
ern Standard Arabic and three Arabic dialects that
differ in terms of linguistic properties and resource
availability. We conducted different experiments to
examine the performance of pre-trained LMs under
different fine-tuning setups. We showed that the
factored model outperforms the unfactored model

6For more information on Arabic morphology in a compu-
tational context, see Habash (2010).
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ALL TAGS 
Error Rate

# Error 
Features

Feature Contribution to ALL TAGS Error Rate
pos per gen num asp mod vox stt cas prc0 prc1 prc2 prc3 enc0 enc1 enc2

MSA 3.9 1.5 31.1 4.2 5.1 3.5 3.2 4.9 5.1 21.9 64.1 4.0 2.3 2.2 0.7 2.2 - -
GLF 4.2 2.0 51.7 33.9 38.0 14.3 19.7 0.8 0.8 0.8 0.8 1.3 5.9 10.7 0.8 19.5 0.8 0.8
EGY 9.4 2.4 62.2 14.6 15.9 14.0 11.0 17.4 11.3 20.0 21.5 9.2 11.3 8.9 2.1 12.9 2.3 2.3
LEV 11.1 1.9 47.6 19.8 22.9 15.3 12.7 0.5 9.6 1.4 1.9 8.2 8.5 6.8 2.2 18.7 5.7 3.7

Table 7: The number and percentage of specific feature errors among the ALL TAGS errors in the best systems on
the DEV set.

in low-resource settings; however, this gap dimin-
ishes as the data size increases. Additionally, high-
quality morphological analyzers proved to be help-
ful, especially in low-resource settings. Our results
also show that fine-tuning using datasets from other
dialects followed by fine-tuning using the target di-
alect is beneficial for low-resource settings. Our
systems outperform previously published SOTA on
this task.

In the future, we plan to investigate continued
training further and find other ways where we can
utilize resources and datasets for low-resourced di-
alects. We also intend to explore other architectures
for morphosyntactic tagging using multi-task learn-
ing in the context of pre-trained LMs, as well as
work on the task of automatic lemmatization. We
also plan to integrate some of our best models as
part of the Python open-source Arabic NLP toolkit
CAMeL Tools (Obeid et al., 2020).

7 Ethical Considerations

The experiments reported in this work rely on pre-
viously published datasets described in Section 2.4.
We used the CAMeLBERT models along with mor-
phosyntactically annotated datasets to build our
morphosyntactic taggers, which is in line with their
intended use. Our work is on core and generic NLP
technologies that can be potentially used with mali-
cious intent, for example, as part of the pipeline. To
ensure reproducibility, we make our code publicly
available. The details on the datasets and train-
ing are described in Appendix A. Given the focus
of this paper and the available resources, we rec-
ognize the limitations of our findings in terms of
applicability to different genres, styles, and other
languages.
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A Replicability

A.1 Resources

Pretrained transfromer models We fine-tuned
CAMeLBERT-MSA for the morphosyntactic tag-
ging task in MSA and CAMeLBERT-Mix (Inoue
et al., 2021) for EGY, GLF, and LEV.

Fine-tuning Data We used the Penn Arabic
Treebank for MSA (Maamouri et al., 2004),
ARZTB (Maamouri et al., 2012) for EGY, the Gu-
mar corpus (Khalifa et al., 2018) for GLF, and the
Curras corpus (Jarrar et al., 2014) for LEV. The
preprocessing of the data includes fixing inconsis-
tent annotations and removing diacritics through
CAMeL Tools (Obeid et al., 2020). This prepro-
cessing was followed in all the previous work we
compared with Zalmout and Habash (2019, 2020);
Khalifa et al. (2020); Zalmout (2020).
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Data Sampling For the learning curve experi-
ment in Section 5.1, we sampled the training data
up to 5k, 20k, 40k, 80k, 120k, 150k tokens after
shuffling the entire dataset. Each sample after 5k is
inclusive of the smaller samples.

Morphological Analyzers The morphological
analyzers used in our experiments are the following:
For MSA we use the SAMA database (Graff et al.,
2009), and for EGY we use CALIMA (Habash
et al., 2012). For GLF and LEV, we use automati-
cally generated analyzers from their training data
using paradigm completion as described in Eskan-
der et al. (2013, 2016) and Khalifa et al. (2020).

Data Accessibility MSA and EGY related
resources need a license from the Linguistic Data
Consortium (LDC). The GLF data is available
at http://resources.camel-lab.com/
and the LEV data is available at https:
//portal.sina.birzeit.edu/curras/.
We provide conversion scripts to gen-
erate our preprocessed datasets from
legally accessed third-party datasets at
https://github.com/CAMeL-Lab/
CAMeLBERT_morphosyntactic_tagger.

A.2 Implementation
We used Hugging Face’s transformers (Wolf et al.,
2020) for implementation. Fine-tuning is done
by adding a fully connected linear layer to the
last hidden state. We release our code including
the hyperparameters used in the experiments
at https://github.com/CAMeL-Lab/
CAMeLBERT_morphosyntactic_tagger.

For the experiments in Section 5, we use the fol-
lowing hyperparameters: a random seed of 12345,
training for 10 epochs, saving the model for every
500 steps, a learning rate of 5e-5, a batch size of
32, and a maximum sequence length of 512. We
pick the best checkpoint based on TUNE and report
results on DEV and TEST from a single run.

The number of parameters of the factored model
for MSA is about 1.5 billion, while the factored
model for GLF, EGY, and LEV has 1.8 billion pa-
rameters in total. The unfactored model has about
110 million parameters for MSA, GLF, EGY, and
LEV.

The factored model is the most computation-
ally expensive model to train, which took about 21
hours for MSA, 16 hours for GLF, 13 hours for
EGY, and five hours for LEV on a single NVIDIA-
V100 card. The unfactored model took about 90

minutes to train for MSA, 60 minutes for GLF, 50
minutes for EGY, and 20 minutes for LEV on the
same machine.
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