@inproceedings{zheng-kordjamshidi-2022-relevant,
title = "Relevant {C}ommon{S}ense Subgraphs for {``}What if...{''} Procedural Reasoning",
author = "Zheng, Chen and
Kordjamshidi, Parisa",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.152",
doi = "10.18653/v1/2022.findings-acl.152",
pages = "1927--1933",
abstract = "We study the challenge of learning causal reasoning over procedural text to answer {``}What if...{''} questions when external commonsense knowledge is required. We propose a novel multi-hop graph reasoning model to 1) efficiently extract a commonsense subgraph with the most relevant information from a large knowledge graph; 2) predict the causal answer by reasoning over the representations obtained from the commonsense subgraph and the contextual interactions between the questions and context. We evaluate our model on WIQA benchmark and achieve state-of-the-art performance compared to the recent models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-kordjamshidi-2022-relevant">
<titleInfo>
<title>Relevant CommonSense Subgraphs for “What if...” Procedural Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parisa</namePart>
<namePart type="family">Kordjamshidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study the challenge of learning causal reasoning over procedural text to answer “What if...” questions when external commonsense knowledge is required. We propose a novel multi-hop graph reasoning model to 1) efficiently extract a commonsense subgraph with the most relevant information from a large knowledge graph; 2) predict the causal answer by reasoning over the representations obtained from the commonsense subgraph and the contextual interactions between the questions and context. We evaluate our model on WIQA benchmark and achieve state-of-the-art performance compared to the recent models.</abstract>
<identifier type="citekey">zheng-kordjamshidi-2022-relevant</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.152</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.152</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1927</start>
<end>1933</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Relevant CommonSense Subgraphs for “What if...” Procedural Reasoning
%A Zheng, Chen
%A Kordjamshidi, Parisa
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F zheng-kordjamshidi-2022-relevant
%X We study the challenge of learning causal reasoning over procedural text to answer “What if...” questions when external commonsense knowledge is required. We propose a novel multi-hop graph reasoning model to 1) efficiently extract a commonsense subgraph with the most relevant information from a large knowledge graph; 2) predict the causal answer by reasoning over the representations obtained from the commonsense subgraph and the contextual interactions between the questions and context. We evaluate our model on WIQA benchmark and achieve state-of-the-art performance compared to the recent models.
%R 10.18653/v1/2022.findings-acl.152
%U https://aclanthology.org/2022.findings-acl.152
%U https://doi.org/10.18653/v1/2022.findings-acl.152
%P 1927-1933
Markdown (Informal)
[Relevant CommonSense Subgraphs for “What if...” Procedural Reasoning](https://aclanthology.org/2022.findings-acl.152) (Zheng & Kordjamshidi, Findings 2022)
ACL