
Findings of the Association for Computational Linguistics: ACL 2022, pages 2204 - 2214
May 22-27, 2022 c©2022 Association for Computational Linguistics

The impact of lexical and grammatical processing on generating code
from natural language

Nathanaël Beau1,2 and Benoît Crabbé1
1 Université de Paris, LLF, CNRS, 75013 Paris, France
2 onepoint, 29 rue des Sablons, F-75116 Paris, France

n.beau@groupeonepoint.com
benoit.crabbe@u-paris.fr

Abstract

Considering the seq2seq architecture of Yin
and Neubig (2018) for natural language to
code translation, we identify four key compo-
nents of importance: grammatical constraints,
lexical preprocessing, input representations,
and copy mechanisms. To study the impact
of these components, we use a state-of-the-art
architecture that relies on BERT encoder and
a grammar-based decoder for which a formal-
ization is provided. The paper highlights the
importance of the lexical substitution compo-
nent in the current natural language to code
systems.

1 Introduction

Translating natural language program descriptions
to actual code is meant to help programmers to ease
writing reliable code efficiently by means of a set
of advanced code completion mechanisms.

There are mainly two classes of methods for ob-
taining code corresponding to a query expressed
in natural language. The first one is code retrieval,
which consists of searching and retrieving an ap-
propriate code snippet from a code database. The
second one is code generation, where the goal is to
generate code fragments from a natural language
description, generating potentially previously un-
seen code. In this work, we are interested in Python
code generation. Code generation features a mis-
match between an ambiguous and noisy natural
language input and the structured nature of the gen-
erated code. Although Python’s vocabulary has a
finite number of keywords, the set of values that can
be assigned to a variable is infinite and constitutes
one of the issues in predicting code corresponding
to natural language.

Like many other NLP tasks, current architectures
for natural language to code generally take advan-
tage of pre-trained language models such as BERT
(Devlin et al., 2019) or GPT (Brown et al., 2020)
based on the transformer architecture (Vaswani

et al., 2017). In particular, these architectures are
used for code generation where parallel data is
limited due to the human expertise required for
alignment. The best results on code generation are
reached by pretraining seq2seq models on exter-
nal sources, then by fine-tuning those models on
smaller data sets. For instance, Orlanski and Git-
tens (2021) fine-tune BART (Lewis et al., 2020)
on data pairs of natural language and code and by
taking advantage of external informations. Simi-
larly, Norouzi et al. (2021) used BERT and a trans-
former decoder in a semi-supervised way by taking
advantage of a large amount of additional mono-
lingual data. Another popular method is to train
large language models on code (Austin et al., 2021;
Hendrycks et al., 2021). Notably, GPT-3 has been
finetuned on a large quantity of data from Github
to obtain a powerful language model named Codex
(Chen et al., 2021) that powers Github Copilot, a
tool to help developers.

Overall the above mentioned solutions aim to
take advantage of large amounts of training data
available nowadays, but few of them care about
generating code that is guaranteed to be syntacti-
cally correct nor well typed. Let us mention some
exceptions from semantic parsing like Dong and
Lapata (2016); Rabinovich et al. (2017); Yin and
Neubig (2017) that rely on grammatical constraints
to ensure that the generated code can be executable.

In this work, we study variations around the
TranX seq2seq architecture (Yin and Neubig, 2018)
for translating natural language to code. Rather
than generating directly code tokens from natural
language, the architecture generates an Abstract
Syntax Tree (AST) constrained by the program-
ming language grammar.

The paper reports state of the art results on the
task and specifically introduces:

• A formalization of the grammar constrained
code generator relying on the Earley (1970)
parser transition system.

2204

• A study of the impact of key components of
the architecture on the performance of the sys-
tem: we study the impact of the grammatical
component itself, the impact of the language
model chosen, the impact of variable naming
and typing and the impact of the input/output
copy mechanisms.

It is structured as follows. Section 2 formalizes the
symbolic transition system used for generating the
grammatically correct code, Section 3 describes a
family of variants around the TranX architecture
that will be used to study the impact of these varia-
tions in the experimental part of the paper (Section
4).

2 A transition system for code generation

Among the models tested in the paper, some are
generating syntactically constrained code. In the
context of our study, we propose a transition model
that meets two objectives: the code generated is
grammatically valid in terms of syntax and the
whole translation process still reduces to a seq2seq
transduction mechanism that allows us to leverage
standard machine learning methods.

To this end we introduce a transition system for
code generation that generates an AST as a se-
quence of actions. The derivations can then be
translated into ASTs and in actual Python code
by means of deterministic functions. The set of
valid ASTs is a set of trees that are generated by
an ASDL grammar (Wang et al., 1997). An ASDL
grammar is essentially a context free grammar ab-
stracting away from low level syntactic details of
the programming language and aims to ease the se-
mantic interpretation of the parse trees. To this end
ASDL grammar rules come with additional deco-
rators called constructors and field names (Figure
1).

Our transition system generates derivations, or
sequences of actions, that can be translated to a
syntactically correct Python code. We adapt to
code generation the transition system of the Ear-
ley parser (Earley, 1970) as formalized in Figure
2. The generator state is a stack of dotted rules. A
dotted rule is a rule of the formA→ α•Xβ where
α is a sequence of grammar symbols whose sub-
trees are already generated and Xβ is a sequence
of grammar symbols for which the subtrees are yet
to be generated. The •X symbol is the dotted sym-
bol or the next symbol for which the system has to
generate the subtree. The Python ASDL grammar

includes rules with star (∗) qualifiers allowing zero
or more occurrences of the starred symbol. The
transition system uses an additional set of starred
actions and a CLOSE action to stop these iterations
(Figure 2).

Each PREDICT(C) action starts the generation
of a new subtree from its parent. The GENERATE

action adds a new leaf to a tree. The COMPLETE ac-
tion finishes the generation of a subtree and contin-
ues the generation process with its parent. The set
of PREDICT actions is parametrized by the ASDL
rule constructor (C), thus there are as many predict
actions as there are constructors in the ASDL gram-
mar. Constructors are required in order to generate
the actual ASTs from the derivations.

GENERATE(V) actions are actions responsible
for generating the terminal or primitive sym-
bols. The Python ASDL grammar generates ASTs
with primitive leaf types (identifier, int,
string, constant) that have to be filled with
actual values for the AST to be useful. To generate
actual primitive values the set of generate actions
is also parametrized by the actual values V for the
primitive types. The set of such values is infinite
and consequently the set of generate actions is also
infinite.

Non-Determinism comes from the use of PRE-
DICT(C), GENERATE(V) and CLOSE rules. By con-
trast the application of the COMPLETE action is
entirely deterministic: once the generator has a
completed dotted rule on the top of its stack, it has
no other choice than applying the complete rule.

The sequential generation process is illustrated
in Figure 3. Given a start state, at each time step,
the generator has to decide which action to perform
according to the current state of the stack and up-
dates the stack accordingly. Once the generator
reaches the goal state, we collect the list of actions
performed (the derivation) in order to build the
AST that we finally translate into actual Python
code1.

3 Factors influencing code prediction

All architectures analyzed in this study are varia-
tions around a seq2seq architecture. We describe
the several variants of this architecture used in this
paper both on the encoder and decoder side. We
identify key factors that have an impact on the
natural-language-to-code translation architecture

1We use the astor library to this end.

2205

expr = BinOp expr left, operator op, expr right
operator = Add
expr = Constant constant value
expr = List expr* elts

Figure 1: Example of ASDL rules for the Python language. Each rule is built from a set of grammatical symbols
(in blue), is uniquely identified by a constructor name (in red) and provides names to its right hand side symbols,
its fields (in green). Grammatical symbols are split in nonterminals (like expr) and terminals or primitives (like
constant). Grammatical symbols can also be annotated with qualifiers (*) that allow for zero or more iterations
of the symbol.

Action Transition Condition

START(C) 〈A→ •α〉
GOAL 〈A→ α•〉

PREDICT(C) 〈S|A→ α •Bβ〉 ⇒ 〈S|A→ α •Bβ|B → •γ〉 (B → γ ∈ rules)
GENERATE(V) 〈S|A→ α • tβ〉 ⇒ 〈S|A→ αt • β〉 (t ∈ primitives)
COMPLETE 〈S|A→ α •Bβ|B → γ•〉 ⇒ 〈S|A→ αB • β〉

PREDICT∗(C) 〈S|A→ α •B∗β〉 ⇒ 〈S|A→ α •B∗β|B → •γ〉 (B → γ ∈ rules)
GENERATE∗(V) 〈S|A→ α • t∗β〉 ⇒ 〈S|A→ αt•t∗β〉 (t ∈ primitives)
COMPLETE∗ 〈S|A→ α •B∗β|B → γ•〉 ⇒ 〈S|A→ αB •B∗β〉
CLOSE∗ 〈S|A→ α •X∗β〉 ⇒ 〈S|A→ α • β〉

Figure 2: An Earley inspired transition system for generating Abstract Syntactic Trees. The state of the generator
is a stack of dotted rules whose bottom is S. As in the the Earley parser, the PREDICT rule starts the generation of
a new subtree by pushing a new dotted rule on the stack, the GENERATE rule adds a leaf to the tree by swapping
the top of the stack and the COMPLETE rule attaches a generated subtree into its parent by popping the top two
elements of the stack and pushing an updated dotted rule. To handle * qualifiers we add the starred inference rules
where COMPLETE∗ and GENERATE∗ implement an iteration that stops with the CLOSE∗ rule.

Generator State (stack) Action

〈expr→ •expr∗〉 START(List)
〈expr→ •expr∗|expr→ •expr operator expr〉 PREDICT∗(BinOp)
〈expr→ •expr∗|expr→ •expr operator expr|expr→ •constant〉 PREDICT(Constant)
〈expr→ •expr∗|expr→ •expr operator expr|expr→ constant•〉 GENERATE(7)
〈expr→ •expr∗|expr→ expr • operator expr〉 COMPLETE

〈expr→ •expr∗|expr→ expr • operator expr|expr→ •〉 PREDICT(Add)
〈expr→ •expr∗|expr→ expr operator • expr〉 COMPLETE

〈expr→ •expr∗|expr→ expr operator • expr|expr→ •constant〉 PREDICT(Constant)
〈expr→ •expr∗|expr→ expr operator • expr|expr→ constant•〉 GENERATE(5)
〈expr→ •expr∗|expr→ expr operator expr•〉 COMPLETE

〈expr→ expr • expr∗〉 COMPLETE∗

〈expr→ expr • expr∗|expr→ •constant〉 PREDICT∗(Constant)
〈expr→ expr • expr∗|expr→ constant•〉 GENERATE(4)
〈expr→ expr expr • expr∗〉 COMPLETE∗

〈expr→ expr expr•〉 CLOSE∗

expr
(List)

expr:elts
(Constant)

constant:value
4

expr:elts
(BinOp)

expr:right
(Constant)

constant:value
5

operator:op
(Add)

expr:left
(Constant)

constant:value
7

Figure 3: Example derivation for the generation of the Python list expression [7+5,4]. The derivation starts
with expr as axiom symbol and applies transitions until the goal is reached. The list of actions performed is called
the generator derivation. Given a generated derivation we can design a straightforward deterministic procedure to
translate it into an AST. The actual Python code is generated from the AST by the astor library.

2206

and we formalize a family of models that allow to
test variations of these factors.

We consider a family of models generating
Python code y from a natural language description
x, that have the generic form:

p(y|x) =
∏
t

p(yt|y<t, x) (1)

y is either a sequence of code tokens in case we do
not use a grammar, or a sequence of actions from a
derivation in case we use a grammar. The decoding
objective aims to find the most-probable hypothe-
sis among all candidate hypotheses by solving the
following optimization problem:

ŷ = argmax
y

p(y|x) (2)

The family of models varies according to four
key qualitative factors that we identify in the TranX
architecture. First we describe a substitution proce-
dure managing variables and lists names in section
3.1). Second, in section 3.2, we test the architec-
tural variations for encoding the natural language
sequence. Third, in section 3.3, we describe vari-
ations related to constraining the generated code
with grammatical constraints and architectural vari-
ations that allow to copy symbols from the natural
language input to the generated code.

3.1 Substitution
Programming languages come with a wide range of
variable names and constant identifiers that make
the set of lexical symbols infinite. Rather than
learning statistics on a set of ad-hoc symbols, we
rather normalize variable and constant names with
a pre-processing method, reusing the method of
Yin and Neubig (2018).

Preprocessing amounts to substitute the actual
names of the variables with a normalized set of pre-
defined names known to the statistical model. The
substitution step renames all variables both in the
natural language and in the code with conventional
names such as var_0, var_1, etc. for variables
and lst_0,lst_1, etc. for lists. A post process-
ing step substitutes back the predicted names with
the original variable names in the system output.
For example, given the natural language intent:

create list `done` containing permuta-
tions of each element in list `[a, b,
c, d]` with variable `x` as tuples

is transformed into:

create list var_0 containing permuta-
tions of each element in list lst_0 with
variable var_1 as tuples

The predicted code such as var_0 = [(el,
var_1) for el in [lst_0]] is trans-
formed back into done = [(el, x) for
el in [a, b, c, d]].

Models using variable replacement as illustrated
above, are identified with the notation SUBSTITU-
TION = TRUE in section 4. Implementing this
heuristic is made easy by the design of the CoNaLa
data set where all such names are explicitly quoted
in the data while for Django we had to detect vari-
able names by comparing natural language with its
corresponding code.

3.2 Encoder

We switched between a classic bi-LSTM and a
pretrained BERTBASE to encode the input natural
language {xi, i ∈ J1, nK} of n words into a vecto-
rial representations {h(enc)i , i ∈ J1, nK} which are
later used to compute the attention mechanism.
We set the BERT factor to TRUE when using it and
FALSE when using the bi-LSTM.

3.3 Decoder

At each time step t, the LSTM decoder computes
its internal hidden state h(dec)t :

h
(dec)
t = LSTM([et−1 : ãt−1], h

(dec)
t−1) (3)

where et−1 is the embedding from the previous
prediction, ãt−1 is the attentional vector.

We compute the attentional vector ãt as in Lu-
ong et al. (2015) combining the weighted average
over all the source hidden state ct and the decoder
hidden state h(dec)t :

ãt =Wa[ct : h
(dec)
t] (4)

It is the attention vector ãt which is the key to
determine the next prediction yt.

We use several variants of the code generator,
that we describe by order of increasing complexity.
The basic generator is a feed forward that uses the
attention vector to generate a code token v from a
vocabulary V :

p(yt = GENERATE[v]|x, e<t) =

softmax(e>v ·Wg · ãt)
(5)

2207

Figure 4: Illustration of the seq2seq model with the variables SUBSTITUTION, GRAMMAR, BERT, POINTERNET
set to TRUE. We describe here the complete process where we predict a derivation sequence composed of grammar
rules and CLOSE (PREDRULE) or Python variables/built-in (GENERATE). The astor library is used to transform the
AST constructed with the derivation sequence into Pyton code. In the case where GRAMMAR = FALSE, we only
have the GENERATE action which exclusively predicts unconstrained code tokens (as for a classical seq2seq).

These models are not constrained by the Python
grammar and we identify these models with GRAM-
MAR = FALSE.

We also use a pointer network that may either
copy symbols from input to output or generate sym-
bols from V . Then the probability of generating
the symbol v is given by the marginal probability:

p(yt = GENERATE[v]|x, e<t) =

p(gen|x, e<t)p(v|gen, x, e<t)

+p(copy|x, e<t)p(v|copy, x, e<t)

(6)

The probabilities p(gen|.) and p(copy|.) sum to
1 and are computed with softmax(W · ãt). The
probability of generating v from the vocabulary
V p(v|gen, .) is defined in the same way as (5).
We use the pointer net architecture (Vinyals et al.,
2015) to compute the probability p(v|copy, .) of
copying an element from the natural language x.
Models that use a pointer network are identified
with PN = TRUE, otherwise with PN = FALSE .

Finally we use a set of models that are con-
strained by the Python grammar and that rely on
the transition system from section 2. Rather than
directly generating Python code, these models gen-
erate a derivation whose actions are predicted using
two prediction tasks.
When the generator is in a state where the dot of the

item on the top of the stack points on a nonterminal
symbol, the PREDRULE is used. This task either
outputs a PREDICT(C) action or the CLOSE action:

p(yt = PREDRULE[c]|x, e<t) =

softmax(e>r ·Wp · ãt)
(7)

When the generator is in a state where the dot of
the item on the top of the stack points on a terminal
symbol, the generate task is used. This amounts to
reuse either equation (5) or equation (6) according
to the model at hand. Models constrained by the
grammar are labelled with GRAMMAR = TRUE.
Recall that the COMPLETE action of the transition
system is called deterministically (Section 2).

4 Experiments

In this section we describe the characteristics of the
data sets on which we have tested our different se-
tups and the underlying experimental parameters2.

4.1 Data sets
In this study we use two available data sets, Django
and CoNaLa, to perform our code generation task.

The Django data set provides line-by-line com-
ments with code from the Django web framework.

2The code of our experiments is public and available at
https://gitlab.com/codegenfact/BertranX

2208

About 70% of the 18805 examples are simple
Python operation ranging from function declara-
tions to package imports, and including excep-
tion handling. Those examples strongly share the
natural language structure (e.g. call the function
cache.close → cache.close()). More than
26% of the words in the natural language are also
present in the code, BLEU score between the natu-
ral language and code is equal to 19.4.

CoNaLa is made up of 600k NL-code pairs from
StackOverflow, among which 2879 examples
have been been manually cleaned up by developers.
All results are reported on the manually curated
examples, unless stated otherwise. The natural lan-
guage descriptions are actual developer queries (e.g.
Delete an element 0 from a dictionary ‘a‘) and the
associated code is diverse and idiomatic (e.g. {i:
a[i] for i in a if (i != 0)}). Com-
pared to Django, the code is much more challeng-
ing to generate. Especially because the number of
words shared between the NL and the code is much
lower (BLEU = 0.32). Also, the code is longer and
more complex with an AST depth of 7.1 on average
against 5.1 for Django.

4.2 Vocabulary generation

The vocabulary of natural language and code is
essential. Usually, this vocabulary is created by
adding all the words present in the training data set.
There are however exceptions that are detailed in
this section.

The natural language vocabulary relies on a byte
pair encoding tokenizer when BERT = TRUE. As
explained in section 3.1, the variable names are
replaced with special tokens var_i and lst_i.
These new tokens are crucial to our problem, and
added to the BERT vocabulary . We can then fine-
tune BERT with this augmented vocabulary on our
data sets.

For the decoder part, when GRAMMAR = TRUE,
the vocabulary of grammatical actions is fixed,
while the vocabulary of AST leaves has to be built.
This associated vocabulary can be composed of
built-in Python functions, libraries with their asso-
ciated functions or variable names. Its creation is
consequently a major milestone in the generation
process.

To create this external vocabulary, we proceed as
in TranX. From the code, we create the derivation
sequence composed of the action of the grammar
as well as the primitives. All primitives of the

action sequences are incorporated into our external
vocabulary.

4.3 Setup

When BERT = FALSE, the size of the representa-
tions is kept small to prevent overfitting. Encoder
and decoder embedding size is set to 128. The hid-
den layer size of the encoder and decoder bi-LSTM
is set to 256 and the resulting attention vector size
is 300. We have two dropout layers: for embed-
dings and at the output of the attention. We use
Adam optimizer with learning rate α = 5.10−3.

When BERT = TRUE, encoder embeddings have
a natural size of 756 with BERT. We therefore
apply a linear transformation to its output to get an
embedding size equal to 512. The size of LSTM
decoder hidden state and attention vector are set to
512. We regularize only the attentional vector in
that case. We use Adam optimizer with learning
rate α = 5.10−5. In both cases, we use a beam
search size of 15 for decoding.

Evaluation To compare with previous work, we
report the standard evaluation metrics for each data
set: exact match accuracy and corpus-level BLEU.

Python version As the grammar slightly
changes between Python versions, let us mention
that all our experiments have been carried out with
Python 3.7.

4.4 Ablation study

Figure 5: Difference between the marginal mean of
each variable for the TRUE and FALSE conditions.

To highlight the contribution of the different fac-
tors, SUBSTITUTION, BERT, GRAMMAR, PN on the
Django and CoNaLa data sets we report a detailed
study of their impact in Table 1.

2209

Substitution BERT Grammar PN CoNaLa BLEU CoNaLa accuracy Django BLEU Django accuracy

False

False
False

False 21.05± 0.81 0.9± 0.42 42.58± 1.54 26.86± 1.15
True 22.33± 0.78 1.7± 0.90 64.79± 1.00 62.85± 1.21

True
False 20.59± 0.74 2.87± 0.48 43.23± 1.62 30.12± 0.63
True 22.16± 1.93 3.87± 1.65 62.55± 1.60 65.20± 0.03

True
False

False 30.83± 4.08 2± 0.94 53.18± 0.87 30.28± 0.26
True 30.98± 1.33 3.3± 1.48 58.69± 1.28 37.96± 0.27

True
False 25.88± 0.94 3.8± 1.96 47.32± 0.50 29.62± 0.33

False

True 28.43± 0.64 4.4± 1.67 52.55± 0.51 37.38± 0.38

False
False 31.17± 0.88 3.1± 1.52 70.4± 0.25 70.40± 0.29

True

True 32.10± 1.06 3.1± 1.24 70.28± 0.38 70.46± 0.37

True
False 33.36± 1.63 6.37± 0.63 70.82± 0.22 71.3± 0.19
True 32.86± 1.75 5± 1.67 70.62± 0.49 71.47± 0.19

True

False
False 36.43± 0.41 4.5± 1.84 76.97 ± 0.15 74.58± 0.27

True
36.29± 2.27 5± 1.32 76.62± 0.50 76 ± 0.71
35.42± 1.75∗ 5.2± 1.33∗ - -

True
False 35.04± 1.03 7.3± 1.25 76.20± 0.46 74.88± 0.56

True
37.99± 1.85 7.5± 1.12 76.32± 0.59 75.32± 1.54

39.01 ± 1.08∗ 7.7 ± 1.92∗ - -

Table 1: Performances with different natural language encoders on the development sets with and without a gram-
matical component. The scores reported are the mean and standard deviation resulting from training with 5 differ-
ent seeds. The * refers to the use of 100k CoNaLa mined data in addition to clean examples.

The results are analyzed by distinguishing lex-
ical and grammatical aspects and by identifying
relations between the different factors. We start by
a comparison of the marginal mean of the BLEU
score for each of our variables in both conditions.
Figure 5 highlights the mean difference between
the conditions by contrasting the case where the
value is TRUE with the case where the value is
FALSE.

Pointer network The pointer network can im-
prove the results, especially when SUBSTITUTION

= FALSE. This is because the only way to obtain
the name of the variables is to copy them. Com-
bined with substitution, the pointer network of-
fers an additional possibility to predict the var_i,
lst_i which allows to achieve the best results
with a BLEU score of 39.01 on CoNaLa and an
exact match accuracy of 76 on Django.

Substitution and Typing The scores are sta-
bilised and much higher with substitution. We gain
more than 9 points of BLEU on CoNaLa (respec-
tively 20 points on Django) thanks to substitution.
The "weakest" configuration where all variables
are FALSE except the substitution gives better re-
sults than all configurations where SUBSTITUTION

= FALSE.
The increase in BLEU with substitution can be ex-
plained in two ways. On the one hand, we remark
that the model has difficulties to memorize the val-

ues to fill the lists with GENERATE. For example,
four tokens of code must be generated to predict
the list [a, b, c, d]. Using substitution, the
model can just predict lst_0 which will be re-
placed by [a, b, c, d] during postprocessing.
This avoids a potential error in the creation of the
list and directly gives a valid 4-gram. This con-
tributes to greatly increase the BLEU, which shows
the importance of replacing lists. On CoNaLa,
BLEU score on the development set drops from an
average of 37.99 to an average of 30.66 without list
replacement. Besides list replacement, the architec-
ture has also a weakness with respect to variable
typing. When using the grammar without substi-
tution, the results are lower than without grammar.
This effect is the result of a type checking failure.
The model predicts ill-typed AST structures. For
instance it predicts an AST whose corresponding
code should be 1.append([6,7]). However
the AST library we used prevents from generating
such ill-typed code. The absence of code genera-
tion in such cases explain the decrease in BLEU
score.

The use of substitution partially corrects for
these typing errors because the substituted sym-
bols var_i, lst_i are generally more likely to
be predicted and are likely to have the right type
thanks to the mapping.

Grammatical aspect The transition system
doesn’t improve the results on average because

2210

System CoNaLa BLEU CoNaLa accuracy Django BLEU Django accuracy

(Yin and Neubig, 2018) 27.2 - - 73.7
(Yin and Neubig, 2018) + mined 28.1 - - -
(Orlanski and Gittens, 2021) + mined 100k 30.55 - - -
(Norouzi et al., 2021) + 600k mined 32.57 - - 81.03

Ours BERT + GRAMMAR 31.6 4.5 79.86 79.77
Ours BERT + GRAMMAR + 100k mined 34.20 5.8 - -
Ours BERT (tokens) 30.73 1.40 79.81 79.61
Ours BERT + 100k mined (tokens) 32.39 3.4 - -

Table 2: Comparisons of the systems trained without external data sources on CoNaLa and Django test sets.

of the empty predictions when SUBSTITUTION =
FALSE. The use of the transition system leads to
better results when SUBSTITUTION = TRUE but not
as drastically as one would have expected. How-
ever the real contribution of the grammar associated
with substitution is the syntactic validity of the code
in 100% of the cases, as tested with our architec-
ture obtaining the best results. In scenarios where
we do not use the grammar, it is never the case to
have an empty output. But then the proportion of
code sequences that are actually syntactically valid
in this setup is 92% on average.

BERT As expected when using BERT to encode
the natural language input we get an improvement
of about 6 marginal BLEU on CoNaLa (respec-
tively +3 BLEU on Django). More interestingly,
this effect is lower than the one of the substitution
operation.

We conclude that the use of a pre-trained model
increases the results but less than substitution, de-
spite what one might think and it suggests that im-
proving the management of variable names and
lists is one of the key elements for improving
the system. The contribution of grammatical con-
straints in BLEU may seem detrimental but we
could see that this is a side effect of typing con-
straints in adversarial scenarios. Overall the non-
constrained generated code is syntactically incor-
rect in 8% of the cases.

4.5 Test

We compare in table 2 our results with other sys-
tems on CoNaLa and Django test sets. We report
our best performing models on the development set
with and without grammatical constraints. We also
use models trained on the full CoNaLa including
mined examples to get relevant comparisons.

Among the other systems Yin and Neubig (2018)
is the only one that uses grammatical constraints.

Our architecture differs with the use of a BERT
encoder whereas Yin and Neubig (2018) use an
LSTM. The other systems do not use grammati-
cal constraints but rather try to take advantage of
additional data. Orlanski and Gittens (2021) and
Norouzi et al. (2021) aim to take advantage of the
CoNaLa mined examples. As these mined exam-
ples are noisy, Orlanski and Gittens (2021) takes
advantage of BART (Lewis et al., 2020), a denois-
ing encoder. They also enrich the natural language
input with the results of queries from StackOver-
flow by adding the title of the post, its associated
tags, etc. Norouzi et al. (2021) use BERT as en-
coder and a transformer decoder. They apply the
Target Autoencoding method introduced by Currey
et al. (2017). During training, the encoder parame-
ters are frozen and the decoder is trained to recon-
struct code examples. They use this method on the
mined examples to take maximal advantage of the
additional noisy data.

We observe that our grammar based model with
BERT encoder is state of the art on CoNaLa while
the transformer encoder/decoder architecture of
Norouzi et al. (2021) performs best on Django.
Quite interestingly the exact match accurracy of
these models remain weak on CoNaLa.

5 Conclusion

We formalized a transition system that allows us
to guarantee the generation of syntactically cor-
rect code. A detailed study of the components of
the seq2seq architecture reveals that the models
have difficulties at managing accurately variable
names and list encodings. The comparison with
models trained on larger noisy data sets reveals that
our grammatically constrained architecture with-
out explicit denoising remains competitive. This
further highlights the importance of grammatical
constraints and of specific processes dedicated to
manage variables, list naming and typing.

2211

Finally, we observe that BLEU and exact match,
used in this paper, although commonly used in the
literature, are not ideal metrics especially because
high BLEU scores do not guarantee that the code
will be executable. Even exact match is not sati-
factory since a single natural language query can
be solved by several python programs. In future
work, we plan to build extensions to the datasets
used here with additional test cases assessing the
correction of the generated code. These tests are
likely to support more relevant metrics for code
generation evaluation.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and
Charles Sutton. 2021. Program synthesis with large
language models. CoRR, abs/2108.07732.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott
Gray, Nick Ryder, Mikhail Pavlov, Alethea Power,
Lukasz Kaiser, Mohammad Bavarian, Clemens Win-
ter, Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating large language models trained on code. vol-
ume abs/2107.03374.

Anna Currey, Antonio Valerio Miceli Barone, and Ken-
neth Heafield. 2017. Copied monolingual data im-
proves low-resource neural machine translation. In
Proceedings of the Second Conference on Machine
Translation, WMT 2017, Copenhagen, Denmark,

September 7-8, 2017, pages 148–156. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. pages 4171–4186.

Li Dong and Mirella Lapata. 2016. Language to log-
ical form with neural attention. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics.

Jay Earley. 1970. An efficient context-free parsing al-
gorithm. Commun. ACM, 13(2):94–102.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. CoRR, abs/2105.09938.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence
pre-training for natural language generation, trans-
lation, and comprehension. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 7871–7880. Association for Com-
putational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. pages 1412–1421.

Sajad Norouzi, Keyi Tang, and Yanshuai Cao. 2021.
Code generation from natural language with less
prior knowledge and more monolingual data. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume
2: Short Papers), Virtual Event, August 1-6, 2021,
pages 776–785. Association for Computational Lin-
guistics.

Gabriel Orlanski and Alex Gittens. 2021. Read-
ing stackoverflow encourages cheating: Adding
question text improves extractive code generation.
CoRR, abs/2106.04447.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code gener-
ation and semantic parsing. In Proceedings of
the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 1: Long Papers,
pages 1139–1149. Association for Computational
Linguistics.

2212

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/w17-4715
https://doi.org/10.18653/v1/w17-4715
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/p16-1004
http://arxiv.org/abs/2105.09938
http://arxiv.org/abs/2105.09938
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/d15-1166
https://doi.org/10.18653/v1/d15-1166
https://doi.org/10.18653/v1/2021.acl-short.98
https://doi.org/10.18653/v1/2021.acl-short.98
http://arxiv.org/abs/2106.04447
http://arxiv.org/abs/2106.04447
http://arxiv.org/abs/2106.04447
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. pages 2692–2700.

Daniel C. Wang, Andrew W. Appel, Jeffrey L. Korn,
and Christopher S. Serra. 1997. The zephyr ab-
stract syntax description language. In Proceedings
of the Conference on Domain-Specific Languages,
October 15-17, 1997, Santa Barbara, California,
USA, pages 213–228.

Pengcheng Yin and Graham Neubig. 2017. A syntac-
tic neural model for general-purpose code genera-
tion. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4,
Volume 1: Long Papers, pages 440–450. Associa-
tion for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser
for semantic parsing and code generation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 7–12, Brussels, Belgium. As-
sociation for Computational Linguistics.

A Additional Qualitative Examples

We present examples of code generated by our best
models with and without grammar.

Source declare an array

Gold my_list = []

Grammar x = [0] * 2

Without [(0) for _ in range
(10000)]

Remark Source is not precise enough.

Source increment piece by first element of
elt

Gold piece += elt[0]

Grammar piece += elt[1]

Without piece += elt[1]

Remark First element of a list is zero.

Source remove first element of text

Gold text = text[1:]

Grammar text = text[1:]

Without text[1:

Remark Syntax mistake for the code with-
out grammar.

Source get the position of item 1 in
‘testlist‘

Gold [i for i, x in
enumerate(testlist)
if x == 1]

Grammar [i for i, v in
enumerate(testlist)
if v == 1]

Without testlist = [i for i in
testlist if i != 1]

Remark Grammar output is not equal to
Gold due to dummy variable.

Source append a numpy array ‘b‘ to a
numpy array ‘a‘

Gold np.vstack((a, b))

Grammar a = numpy.array([b,
a])

Without z = np.array([b]).
reshape((3, 3))

Remark Gold is not accurate with np unde-
fined before. vstack function not
in the external vocabulary.

Source activate is a lambda function which
returns None for any argument x.

Gold activate = lambda x :
None

Grammar activate = lambda x =
None : x

Without activate = lambda x :
None

Remark Good BLEU for grammar output
while the result is not adequate.

2213

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041

Source convert tuple ‘t‘ to list

Gold list(t)

Grammar [x for x in t for x in
t]

Without [i for i in t]

Remark Problem of CLOSE for the Gram-
mar output. Without grammar the
code is correct but with a low
BLEU.

2214

