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Abstract

Distant supervision assumes that any sentence
containing the same entity pairs reflects iden-
tical relationships. Previous works of distantly
supervised relation extraction (DSRE) task gen-
erally focus on sentence-level or bag-level de-
noising techniques independently, neglecting
the explicit interaction with cross levels. In this
paper, we propose a Hierarchical Contrastive
Learning Framework for Distantly Supervised
Relation Extraction (HiCLRE) to reduce noisy
sentences, which integrate the global structural
information and local fine-grained interaction.
Specifically, we propose a three-level hierarchi-
cal learning framework to interact with cross
levels, generating the de-noising context-aware
representations via adapting the existing multi-
head self-attention, named Multi-Granularity
Recontextualization. Meanwhile, pseudo pos-
itive samples are also provided in the spe-
cific level for contrastive learning via a dy-
namic gradient-based data augmentation strat-
egy, named Dynamic Gradient Adversarial Per-
turbation. Experiments demonstrate that Hi-
CLRE significantly outperforms strong base-
lines in various mainstream DSRE datasets.1

1 Introduction

Relation extraction (RE) can draw relations of two
entities from unstructured text. It can be widely
used in natural language processing applications
such as knowledge graph construction (Khatib
et al., 2020; Tang et al., 2020) and question an-
swering (Wang and Jiang, 2019; Liu et al., 2020;
Saxena et al., 2020). Existing RE works (Wei et al.,
2020; Alt et al., 2020; Veyseh et al., 2020) rely
on a large-scale annotated dataset, which is time-
consuming and labor-intensive. DSRE (Mintz et al.,

∗D. Li and T. Zhang contributed equally to this work.
†Corresponding author.

1The source code and data can be available at https://github.
com/MatNLP/HiCLRE
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Figure 1: Example of semantic relationships in specific
levels and cross levels. The red cross means the seman-
tic difference of two bag-level relations and the dotted
arrow indicates the semantic overlapping of cross levels.
(Best viewed in color).

2009) attempts to address this issue via automati-
cally generating training text samples. Obviously,
this assumption introduces noisy data and may hurt
the performance. Hence, multi-instance learning
(MIL) (Zeng et al., 2015) is further proposed to
assign a bag containing “at least one” correct sen-
tence of relation triple.

The previous approaches of DSRE tackle the
task at different granularities (i.e. sentence-level
and bag-level). (1) Sentence-level. These works
(Wu et al., 2019; Li et al., 2019) focus on find-
ing the ground-truth relational labels from the in-
ternal semantics of the input sentences. (2) Bag-
level. Although these works (Su et al., 2018; Belt-
agy et al., 2019; Chen et al., 2021a; Christopoulou
et al., 2021) consider the information of sentence-
level and bag-level simultaneously, but they ignore
the explicit cross-level interactions, which contain
plenty of knowledge to further boost the DSRE
task performance. As shown in Figure 1, the rich
semantic information of bag-level and sentence-
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level are provided for the “Cook” and “Apple” in
the entity level. For example, “Steve Jobs” in s1
is also the co-founder of “Apple” company and
the label of bag-level is the “/business/person/com-
pany” exactly shows the relation of this entity pair.
Meanwhile, the huge semantic difference exists in
a specific level such as the “/business/person/com-
pany” and “/location/country/capital” in bag level.

To overcome the challenges mentioned above,
we propose a Hierarchical Contrastive Learning
framework for distantly supervised Relation
Extraction (HiCLRE), which facilities semantic
interactions within a specific level and cross levels:

(1) Multi-Granularity Recontextualization:
To capture the cross-level structural information,
we adapt the multi-head self-attention mechanism
into three-level granularities, including entity-level,
sentence-level and bag-level. We align the context-
aware feature of each layer with the input of atten-
tion mechanism respectively. The refined represen-
tations as recontextualized interaction semantics
are picked out for the corresponding level via the
attention scores aggregated by the other two levels.

(2) Dynamic Gradient Adversarial Perturba-
tion: To obtain the more accurate specific-level
representations, we employ gradient-based con-
trastive learning (Hadsell et al., 2006; van den Oord
et al., 2018) to pull the information of constructed
pseudo positive samples and push the difference of
negative samples. Concretely, we calculate the dy-
namic perturbation from two aspects, including the
normalized gradient of task loss and the temporal
weighted memories similarity between the last and
current epoch.

To verify the effectiveness of HiCLRE, we evalu-
ate our model on three mainstream DSRE datasets,
including NYT10 (Riedel et al., 2010), GDS (Jat
et al., 2017), and KBP (Ling and Weld, 2012). The
experimental results show that HiCLRE signifi-
cantly outperforms the state-of-the-art baselines’
performance, achieving a 2.2% relative AUC in-
crease and improving the P@M score from 77.2%
to 78.2%. Furthermore, the ablation study shows
the individual contributions of each module.

Accordingly, the major contributions of this pa-
per are summarized as follows:

• We propose a hierarchical contrastive learning
framework for DSRE task (HiCLRE), which
fully utilizes the semantic interaction within
the specific level and cross levels, reducing
the influence of noisy data.

• The multi-granularity recontextualization is
proposed to enhance the cross-level interac-
tion and the dynamic gradient adversarial per-
turbation learns better representations within
three specific levels.

• Extensive experiments show that our model
outperforms the strong baseline over DSRE
datasets and detailed analysis demonstrates
the modules are also effective.

2 Related Work

2.1 Distantly Supervised Relation Extraction
Recently, these works are divided into two cate-
gories. (1) Human-designed Feature. (Yao et al.,
2011) propose three types of LDA (i.e. Rel-LDA,
Rel-LDA1, and Type-LDA) to cluster the similar
triples together. MIML (Hoffmann et al., 2011; Sur-
deanu et al., 2012) and MIL (Zeng et al., 2015) at-
tempt to relax the limitation of distantly supervision
assumption to tackle the data generation problem.
(2) Neural Networks Representation. These models
automatically generate the feature representation
via end-to-end learning to reduce manual interven-
tion. (Qin et al., 2018) introduce a generative adver-
sarial training framework that provides a cleaned
dataset for RE task. (Ye and Ling, 2019) consider
both inter-bag and intra-bag attention to handle
the noise at sentence-level and bag-level indepen-
dently. SENT (Ma et al., 2021) is a sentence-level
framework to generate efficient training samples
by negative training to filter the noisy data. These
works generally use the partial levels’ information
independently to explore the relational semantics.

2.2 Contrastive Learning
Loss Function NCE (Gutmann and Hyvärinen,
2010) learns a classifier to distinguish the clean
and noisy examples with the probability density
function. InfoNCE (van den Oord et al., 2018) inte-
grates the mutual information into the NCE, which
can maximize similarity and minimize the differ-
ence.

Data Augmentation These works can be gener-
ally divided into three categories. (1) Data augmen-
tation by simple text processing. EDA (Wei and
Zou, 2019) proposes synonyms replace, randomly
insert and randomly delete operations. CIL (Chen
et al., 2021a) utilizes TF-IDF scores to insert/substi-
tute some unimportant words to/in instance to con-
struct positive samples. (2) Data augmentation by
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Figure 2: Model overview of HiCLRE. The left part is our model architecture and the right part shows the details on
pseudo positive sample construction and multi-granularity recontextualization. (Best viewed in color).

.

embedding processing. ConSERT (Yan et al., 2021)
explore four different data augmentation strategies
(i.e. adversarial attack, token shuffling, cutoff and
dropout) to generate views in BERT (Devlin et al.,
2019) embedding layer. SimCSE (Gao et al., 2021)
applies twice dropout in the forward process to
refine the better sentence representation. (3) Data
augmentation by external knowledge. ERICA (Qin
et al., 2021) enumerates all the entity pairs in the
training samples to link the corresponding rela-
tion from the external knowledge graph to obtain
sufficient augmented data. The mentioned above
methods are generally augmenting from the data
aspect, ignoring the influence of the changes in-
side the model during the training process (Zang
et al., 2020; Zou et al., 2020). Hence, we propose a
hierarchical contrastive learning model to capture
the global structure information and fine-grained
interaction within the levels.

3 Methodology

3.1 Model Overview and Notations

The main architecture of our model is shown in
Figure 2. The HiCLRE mainly includes two com-
ponents. (1) Multi-Granularity Recontextualization

aims to integrate the importance of cross levels to
determine what valuable representation should be
extracted in the target level. (2) Dynamic Gradient
Adversarial Perturbation is proposed for specific
levels to enhance the internal semantics via con-
structing the pseudo positive samples.

In HiCLRE, each sentence of input samples is
consisted of certain tokens Sij = (ti1, ti2, · · · , tik),
where Sij denotes the i-th sentence of bag Bj . k
is the total number of tokens in Sij and j repre-
sents the bag’s index. ei1 and ei2 are head and tail
entity of sentence Sij respectively. Each bag con-
tains n sentences Bj = (S1j , S2j , · · · , Snj). Our
model aims to predict the specific relation rj of bag
Bj from |r| relations. d denotes the hidden state
dimension of pre-trained language models (PLMs).

3.2 Hierarchical Learning Modeling

We first introduce our hierarchical learning process
including sentence-level and bag-level respectively
and then describe the Multi-Granularity Recontex-
tualization and Dynamic Gradient Adversarial Per-
turbation specifically.
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3.2.1 Sentence Representation
To be specific, the input of sentence encoder is
the token sequence of sentence Sij and its corre-
sponding head entity ei1 and tail entity ei2

2. The
textual encoder sums the token embedding, seg-
ment embedding and position embedding for each
token to achieve its input embedding, and then com-
putes context-aware hidden representations H=
{hti1 , hti2 , · · · , hei1 , · · · , hei2 , · · · , htik}:

H = F ({ti1, ti2, · · · , tik}) (1)

where F is the PLMs (e.g. BERT) as our encoder
and H ∈ Rk×d. The sentence’s embedding is cal-
culated by the hidden representations of head entity,
tail entity and the [CLS] tag, which is in the first
position of the input sequence to denote the whole
semantic of the sentence.

hSij = σ([hei1 ∥ hei2 ∥ h[CLS]] ·WS) + bS (2)

where the ∥ means the concatenation operation,
WS ∈ R3d×d is a weight matrix and bS is the bias.
σ denotes the non-linear function.

3.2.2 Bag Representation
In this section, we use a sentence-level attention-
based mechanism (Lin et al., 2016) to yield the
aggregated bag representation. Let hBj ∈ Rd de-
notes the bag representation, and which is com-
puted from the sentence’s attention weight αij and
hidden representation hSij .

hBj =
n∑

i=1

αijhSij (3)

To avoid naively treating each sentence of bags
equally, the selective attention mechanism assigns
the importance to reduce the noise instance. Each
weight αij is generated by a query-based function:

αij =
exp (fij)∑
n exp (fij)

(4)

where fij measures how well the input sentence
Sij and the predicted relation rj matches.

fij = hSijAjrj (5)

where Aj ∈ Rd×d is a weighted diagonal matrix,
and rj ∈ Rd is the representation of relation rj

2Entity’s representation is calculated by averaging all to-
kens hidden states of the entity.

which is mapped from the relation label. The final
relation type of bag Bj is predicted:

p(rj | hBj , θ) =
exp (Or)∑|r|
p=1 exp (Op)

(6)

Or = σ(Wr · hBj ) + br (7)

where Wr ∈ R|r|×d is trainable transformation
matrix and br ∈ R|r| is the bias. θ denotes bag en-
coder’s parameters. Or ∈ R|r| represents the final
output of our model, which is associated with all
relation types. Therefore, the relation classification
objective function of DSRE task is denoted as:

Ltask = −
|r|∑
j=1

log p
(
rj | hBj , θ

)
(8)

3.3 Multi-Granularity Recontextualization
The hierarchical learning process described above
neglects the explicit interaction of cross levels to
refine the better level’s representation. Hence, after
updating the hidden representations generated by
the PLMs, our HiCLRE model attempts to recon-
textualize the enhanced representations for each
level. This is accomplished using a modified Trans-
former layer (Vaswani et al., 2017) that substitutes
the multi-headed self-attention with multi-headed
attention between the target level and the other two
levels’ representations.

Specifically, the underlying calculation process
of multi-head self-attention is defined as:

Att.(Q,K, V ) = softmax

(
QKT

√
dk

)
V (9)

where <Q, K, V > means query, key, and value re-
spectively. dk is the dimension of K. For example,
if we focus on the enhanced bag-level representa-
tion 3, the hBj is substituted for the value, whereas
the sentence-level hSij and entity-level he mean
the key and query respectively4:

h
′
Bj

= MLP(Att.(he, hSij , hBj )) (10)

where MLP is the linear multi-layer linear function.
The similarity calculation (i.e. query and key) acts
as the cross-level information interaction attending
to the bag-level representation. After the interac-
tion with multi-headed attention, we run a position-
wise MLP similar to the standard transformer layer.

3The calculation process of other modules is identical for
entity level and sentence level. Hence, we take the bag level
as an example in the following paper.

4Swapping the meaning of Q and K is also permitted.
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Next, we concatenate enhanced target level repre-
sentation with original hierarchical hidden state to
obtain an informative level’s representation:

hBattj
= σ([hBj ∥ h

′
Bj
] ·Watt) + batt (11)

where Watt ∈ R2d×d is a weight matrix and batt
is the bias. Finally, we leverage the three-level en-
hanced representation heattj , hSattj

and hBattj
to

replace the hierarchical hidden representation in
the following calculation process.

3.4 Dynamic Gradient Adversarial
Perturbation

In addition to considering the interaction of cross
levels, the semantic differences of fine-grained re-
lations within the levels can also help models fur-
ther enhance the context-aware representations. We
construct a pseudo positive sample for contrastive
learning (Jaiswal et al., 2020) to push the dissimilar
relations away. Since the changes of specific-level
gradient (Zhang et al., 2020) and the better context-
aware semantic can boost the robustness represen-
tations, we devise the gradient perturbation and
inertia weight memory mechanisms respectively.

3.4.1 Gradient Perturbation
The continuous gradient perturbations ptadv is cal-
culated from the gradient g of the task loss with the
parameter V .

gj = ▽V Ltask(hBj ; θ) (12)

where V is the representation of the bag’s sentences.
We differentiate the entity to generate the gradient
perturbation for sentence level and the token for
the entity level.

ptadvj = ϵ · gj
∥gj∥

(13)

where ∥g∥ is the norm of the gradient from the
loss function, ϵ is a hyperparameter to control the
disturbing degree.

3.4.2 Inertia Weight Memory
With the training epoch increasing, we use the time-
sequential information of different granularities to
further improve the robustness of internal seman-
tics. Specifically, we add the inertia weight informa-
tion (Shi and Eberhart, 1998) on the perturbation
term, which takes advantage of the difference of
representations between the last and the current

epoch. The inertia weight information is denoted
as follows:

Iw =
T − u

T
sim

(
rep(u), rep(u−1)

)
(14)

where T is the total epoch number of the training
process and u is the current epoch index. rep(u) can
denote the entity, sentence, or bag representation
respectively of the u-th epoch. rep is a embedding
matrix saving the semantic memory in the order
of element index, updated from the second epoch
during the training process. Then, we combine the
inertia weight information with gradient perturba-
tion for bag level:

ptadvj = ϵ
gj
∥gj∥

+
T − u

T
sim

(
rep(u), rep(u−1)

)
(15)

We add ptadvj into the bag embedding, and get
pseudo positive sample h

′
Bj

= hBj + ptadvj . Then
we randomly sample a bag in the batch act as the
negative sample. The positive and negative samples
in InfoNCE loss (van den Oord et al., 2018) are
replaced by the dynamic gradient perturbations and
random bags respectively:

Linfo
bag = − log

exp
(
cos

(
hBj , h

′
Bj

)
/τ

)
∑m

k=1 1[k ̸=j] exp
(
cos

(
hBj , hBkj

)
/τ

)
(16)

where 1[k ̸=j] is an indicator function, τ is a hyper-
parameter and cos is the cosine function. Due to
the different granularities in the hierarchical frame-
work, we devise different memories for entity-level,
sentence-level, and bag-level, respectively.

3.5 Training Objective
In HiCLRE, our training objective contains two
components, including the DSRE task loss and
the contrastive learning loss. The total loss of con-
trastive learning is the sum of three-level infoNCE
loss. Therefore, the overall objective function is
formulated as follows:

Ltotal = λ1Linfo
en +λ2Linfo

sen +λ3Linfo
bag +λ4Ltask

(17)
where λl is hyper-parameter and

∑4
l=1 λl = 1,

denoting the weight of each components.

4 Experiments

4.1 Datasets and Baselines
We evaluate our HiCLRE model on three DSRE
datasets, including NYT10 (Riedel et al., 2010),
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NYT10 GDS
Models AUC P@100 P@200 P@300 P@M AUC P@500 P@1000 P@300 P@M

Mintz 10.7 52.3 50.2 45.0 49.2 - - - - -
PCNN-ATT 34.1 73.0 68.0 67.3 69.4 79.9 90.6 87.6 75.2 84.5
MTB-MIL 40.8 76.2 71.1 69.4 72.2 88.5 94.8 92.2 87.0 91.3
RESIDE 41.5 81.8 75.4 74.3 77.2 89.1 94.8 91.1 82.7 89.5

REDSandT 42.4 78.8 75.0 73.0 75.3 86.1 95.6 92.6 84.6 91.0
DISTRE 42.2 68.0 67.0 65.3 66.8 89.9 97.0 93.8 87.6 92.8

CIL 43.1 81.5 75.5 72.1 76.9 90.8 97.1 94.0 87.8 93.0

HiCLRE(ours) 45.3 82.0 78.5 74.0 78.2 95.5 99.6 98.4 98.3 98.8

Table 1: General experimental results of HiCLRE and baselines on NYT10 and GDS datasets.

GDS (Jat et al., 2017), and KBP (Ling and Weld,
2012). Table 4 shows the detailed statistics. NYT10
is annotated from the New York Times and aligned
to Freebase and NYT10-M removes the noisy rela-
tion types manually from NYT10. GDS is extracted
from human-judged Google Relation Extraction
corpus. KBP is constructed over the newswire
and web text from the corpus, which is used in
the yearly TAC Knowledge Base Population chal-
lenges (Ji et al., 2010). Statistics of four datasets
are showed in Appendix A.

Mintz (Mintz et al., 2009) concatenates various
features of sentences to train a multi-class logis-
tic regression classifier. PCNN-ATT (Lin et al.,
2016) proposes a selective attention-based piece-
wise CNN to get sentence embeddings. MTB-MIL
(Soares et al., 2019) proposes a Matching the
Blanks method to learn the sentences’ represen-
tation by the entity linked text. RESIDE (Vashishth
et al., 2018) exploits the information of entity
type and relation alias to add a soft limitation
for relation classification. REDSandT (Christou
and Tsoumakas, 2021) employs the PLMs to fo-
cus on instance embedding, aggregating the repre-
sentations to the attention modules. DISTRE (Alt
et al., 2019) combines the selective attention to its
Transformer-based model. CIL (Chen et al., 2021a)
proposes a contrastive instance learning method
under the MIL framework.

4.2 Evaluation Metrics

Following the previous works (Chen et al., 2021b),
we adopt the five general evaluation metrics in
DSRE task to evaluate the performance, includ-
ing AUC, P@N and P@M. Specifically, AUC (i.e.
Area Under Curve) depicts the area under the ROC
curve 5. P@N refers to the P@100, P@200 and

5ROC curve is plotted by false positive rate and true posi-
tive rate.

P@300 used in the metrics, denoting the top 100,
top 200 and top 300 precision respectively. P@M
is the mean value of the above three P@N results.

4.3 Parameter Settings
The underlying encoders of the entity level and sen-
tence level are implemented by BERT_base (De-
vlin et al., 2019). The backbone encoder contains
12 Transformer layers and 12 self-attention heads,
generating 768 hidden units for each token context-
aware representation. During the training stage, we
set the model’s learning rate as {1e-5, 2e-5, 2e-7}.
We choose AdamW (Loshchilov and Hutter, 2017)
as our model’s loss optimizer, which weight decay
is 1e-5 and learning rate is 0.1. The max epoch is
set to 5. We find the best hyper-parameter of tem-
perature τ is 0.05, the λ set is {0.4, 0.4, 0.1, 0.1}
and ϵ is 2. We show the important hyper parameters’
searching results at Appendix C.

4.4 General Experimental Results
We first evaluate our HiCLRE model in the NYT10
and GDS that are popular used datasets in the
DSRE task. Table 1 shows the overall performance
on the NYT10 and GDS datasets. From the results6,
we can observe that (1) On both two datasets, the
performance of our HiCLRE model outperforms
all the strong baseline models significantly on the
four metrics, achieving a new state-of-the-art re-
sult. (2) The performance of HiCLRE is greatly
improved compared with the strongest baseline in
two distantly supervised datasets (i.e. +2.2 AUC
/ +4.7 AUC). Meanwhile, we find the results of
other four metrics are also increasing consistently.
In general, it can be seen from Table 1 that the
multi-granularity recontextualization for cross lev-
els interaction and the dynamic gradient-based ad-

6CIL is the SOTA model in these datasets, whereas the
source code is not provided so far. Hence, we reproduce the
CIL model and report the performance in the test set.
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versarial perturbation for specific levels can im-
prove the performance greatly. Some general cases
also prove the effectiveness in Appendix B.

The baselines and HiCLRE’s overall PR-cureve
is illustrated in Figure 3. From the curve, we can
observe that (1) Our HiCLRE shows higher pre-
cision and recall results compared to other strong
baselines. (2) Although the curve initially fluctu-
ates quite a bit, both metrics of HiCLRE are basi-
cally stabilized at a relatively large gap during the
training process. We conjecture that the difference
of hierarchical context-aware representation is not
obvious at the beginning of the model’s training
and the stored representations for inertia weight
memory of specific levels do not exist in the first
training epoch. During the training process, the
mentioned above two learning problems tend to be
stable and the performance of these two metrics is
continuously performing better.
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Figure 3: PR-curves of HiCLRE and other baselines on
NYT10 dataset. (Best viewed in color)

Models NYT10-M KBP

AUC F1 P@M AUC F1 P@M

PCNN-A 41.9 32.0 68.6 15.4 31.5 32.8
DISTRE 35.7 31.4 65.1 22.1 37.5 46.4

CIL 56.0 34.3 75.9 29.5 41.6 47.3

HiCLRE 61.4 36.9 88.0 46.1 61.0 56.4

Table 2: Experiment results on human-annotated
datasets.

4.5 Evaluation on Human Annotated Dataset
Due to the inevitable annotated errors of distantly
supervision assumption, we further evaluate our
model on the human-annotated high-quality rela-
tion extraction datasets, including NYT10-M and
KBP. The performances of baselines and HiCLRE
are shown in Table 2. The result shows that Hi-

CLRE can significantly outperform the three strong
baselines especially the AUC metric reaches 46.1,
which improves about 50% (29.5 7→ 46.1) perfor-
mance than CIL (Chen et al., 2021a) on the KBP
dataset. This phenomenon implies that our model
possesses a steady generalization ability to other
analogous relation extraction datasets.

5 Detailed Analysis of HiCLRE

5.1 Ablation Study

To verify the effectiveness of various modules in
our HiCLRE model, we conduct ablation study
experiments on the NYT10 dataset. Specifically,
we remove the following argued contributions in
turn to evaluate the performance, including multi-
granularity recontextualization, three-level con-
trastive learning loss, and the data augmentation
strategies in each level. The final results are shown
in Table 3. From the results, we conclude that (1)
The context-aware representation interactions for
cross levels and the enhanced internal semantics
representations for specific level are essential, drop-
ping -1.8% and -2.7% point on the AUC metric
respectively. (2) We also find the sentence-level
data augmentation skills for our HiCLRE model
are the most important (e.g. -4.9% and -2.6% on
AUC) compared to the other two levels. The pos-
sible reason may be that the sentence granularity
is the fundamental input granularity for the DSRE
task including the term “bag” is also constructed by
choosing the sentences with identical entity pairs.

Methods AUC F1 P@M

HiCLRE 45.3 49.5 78.2

-Multi-Gra. Recon. 43.5 47.1 76.4
-Three-level CL Loss 42.6 47.9 70.8

-Bag Level -bag gradient 43.9 48.1 75.4
-bag memory 42.4 48.6 72.3

-Sentence Level -sen. gradient 40.4 48.9 73.9
-sen. memory 42.7 48.1 67.2

-Entity Level -en. gradient 43.0 48.4 70.1
-en. memory 43.1 46.7 73.2

Table 3: Ablation study of HiCLRE on NYT10. ”-“
means removing the module behind.

5.2 The Influence of Multi-Granularity
Recontextualization

Figure 4 shows the comparison of final stable
results and speed of convergence between the
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multi-granularity recontextualization and single-
granularity7 on the NYT10 dataset. we can observe
that (1) multi-granularity recontextualization con-
verges faster to not only stable but also better re-
sults. (2) When the final performance of the model
converge stably, our multi-granularity recontextual-
ization have less jitter amplitude making our model
more robust.

0 250 500 750 1000 1250 1500 1750 2000
Steps

0.0

0.1

0.2

0.3

0.4

0.5

F1
-s

co
re

Multi-Gra.
Single-Gra.

Figure 4: The comparison including convergence speed
(i.e. steps) and performance (i.e. F1-score) of training
process between our multi-granularity cross-level atten-
tion (Multi-Gra.) and single-granularity (Single-Gra.).
(Best viewed in color)

Figure 5 shows the two heat maps of the module
with and without attention calculations, proving our
multi-granularity recontextualization mechanism
is effective for denoising the redundant sentences.
For example, we take the sentence-level representa-
tions act as “V” value. Our multi-granularity recon-
textualization mechanism can achieve the higher
attention scores (e.g. S3 and S4) for the important
sentences in a bag, whereas the no recontextualiza-
tion models incorrectly assign the highest attention
score (e.g. S7) to the noisy sentences. This phe-
nomenon indicates that this mechanism has a better
ability to filter noisy sentences.

5.3 The Influence of Gradient-based Data
Augmentation

To further prove our data augmentation skill of
contrastive learning is effective, we choose the
other three strategies (i.e. randomly deleting a word,
twice dropout, and randomly noise) to perform the
evolution process of representation learning space.

Following the previous works (Wang and Isola,
2020), we treat the pseudo sample as the positive

7The single-granularity means just facility original repre-
sentation of each level without combining the multi-headed
attention mechanism.
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S3: In 1998, Steve Jobs asked Cook to join Apple. 
S4: Under Cook’s leadership, Apple has increased its donations to charity. 
S7: The cook should put the apple into microwave on High for 2 minutes.
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Figure 5: The heat maps of our multi-headed attention
mechanism (ours) and no attention mechanism (right)
among cross levels. (Best viewed in color)

instance and a randomly chosen instance from the
batch as the negative instance to calculate align-
ment and uniformity. Then, we plot the transforma-
tion of the align-uniform points in Figure 6. The
lower alignment and uniformity results indicate
the better context-aware representations of the con-
trastive learning process. Compared to the other
positive sample generation skills, our dynamic gra-
dient adversarial perturbation module reduces the
alignment and uniformity metrics steadily to the
lower value and faster speed.
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Figure 6: Results comparison of HiCLRE and other data
augmentation skills in terms of alignment and unifor-
mity. The arrows indicate the training direction. (Best
viewed in color).

.

6 Conclusion

In this paper, we propose HiCLRE, a hierarchi-
cal contrastive learning framework for distantly
supervised relation extraction. Multi-Granularity
Recontextualization module of HiCLRE utilizes
a multi-head self-attention mechanism to transmit
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the information across three levels. Dynamic Gradi-
ent Adversarial Perturbation module combines the
gradient perturbation with inertia memory infor-
mation to construct better pseudo positive samples
for contrastive learning. Experiments show the ef-
fectiveness of HiCLRE against the strong baseline
models in various DSRE datasets.
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A Datasets Statistics

Dataset # Rel. # Train # Test Test Type

NYT10 58 522,611 172,448 DS
GDS 5 18,328 5,663 Partly MA

NYT10-M 25 417,893 11,085 MA
KBP 12 87,940 288 MA

Table 4: Statistics of four datasets. Rel.: relation, DS:
distantly supervised and MA: manually annotated.

B Case Study

We enumerate several representative examples in
Figure 7 to further explore why our model can
work in the distantly supervised scenario. In the
left part of the figure, there are two bags containing
the different entity pairs (i.e. ⟨“Bill Gates”, “Mi-
crosoft” ⟩ and ⟨“Robert Walter”, “Cardinal Health”
⟩). Previous works ignore the consideration of the
representation interaction in a specific levels and
cross levels, which may be hard to predict simi-
lar or difficult instances. For example, sentences
of bag B1 are always classified into the relation
“major_shareholders_of ”. Although these two rela-
tions (i.e. “major_shareholders_of ” and “/person/-
company”) are pretty similar to each other, none of
the four sentences’ semantics in B1 represent the
meaning of “major_shareholders_of ”. In particu-
lar, after the context-aware representations interac-
tion via cross levels and specific levels, HiCLRE
can correctly predict the bag to the ground-truth
label; likewise, the bag B2 is in the same situation.

In the right part of the figure, we demonstrate
an example of that HiCLRE can pull the correlated
instance closely and push the uncorrelated instance
away. We reduce the dimension of bag examples’
representations by t-SNE (van der Maaten and Hin-
ton, 2008) and show the example results in the
coordinate system. R∗ is the target instance to be
classified, the symbol “+” represents the degree of
relevance and “−” represents the degree of irrele-
vance. HiCLRE can pull the related sample R+ to
R+++ (i.e. closer to R∗), while pushing the uncor-
related sample R− to R−− (farther from R∗). This
phenomenon is own to the design of gradient-based
perturbation, which gives significant enhancement
to interactions in a specific level.

C The influence of important hyper
parameters

We experiment with our model on the NYT10
dataset with four important hyper-parameters, and
discover a suitable parameters’ combination to
reach better performance.
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Bag Sentence
Wrong

Prediction
HiCLRE(ours) 

Prediction

B1

• If Bill Gates had to worry about health insurance would he have 
started Microsoft ?

• Bill Gates will be involved , Mr. Trump said , with a new Microsoft
product .

• Microsoft will invest $ 1.7 billion in India over the next four years, its 
chairman , Bill Gates , said Wednesday .

• Three decades after he started Microsoft with the dream of placing a 
personal computer in every home and business , Bill Gates said that he 
would leave his day-to-day role there in two years .

/business
/company_
shareholder
/major_shar
eholders_of

/business
/person
/company

B2

• Robert Walter retired from Cardinal Health in June 2008.
• Robert Walter is setting down his memories of Cardinal Health's life.
• Cardinal Health reported $151000 in personal aircraft use last year for 

Robert Walter.

/business
/company
/founders

/business
/person
/company

+ positive

- negative

R*
R+++

R+

R-

R- -

R++

Figure 7: Examples of cases in our experiments. The left table means the comparison of predicted labels. The right
figure shows the Dynamic Gradient Adversarial Perturbation module’s working process.(Best viewed in color).

.

Figure 8: The influence of four important hyper-parameters on the NYT10 dataset. (Best viewed in color).
.
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