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Abstract
We proposes a novel algorithm, ANTHRO, that
inductively extracts over 600K human-written
text perturbations in the wild and leverages
them for realistic adversarial attack. Unlike
existing character-based attacks which often
deductively hypothesize a set of manipula-
tion strategies, our work is grounded on ac-
tual observations from real-world texts. We
find that adversarial texts generated by AN-
THRO achieve the best trade-off between (1)
attack success rate, (2) semantic preservation
of the original text, and (3) stealthiness–i.e.
indistinguishable from human writings hence
harder to be flagged as suspicious. Specifi-
cally, our attacks accomplished around 83%
and 91% attack success rates on BERT and
RoBERTa, respectively. Moreover, it outper-
formed the TextBugger baseline with an in-
crease of 50% and 40% in terms of seman-
tic preservation and stealthiness when evalu-
ated by both layperson and professional hu-
man workers. ANTHRO can further enhance
a BERT classifier’s performance in under-
standing different variations of human-written
toxic texts via adversarial training when com-
pared to the Perspective API. Source code will
be published at github.com/lethaiq/
perturbations-in-the-wild.

1 Introduction

Machine learning (ML) models trained to opti-
mize only the prediction performance are often
vulnerable to adversarial attacks (Papernot et al.,
2016; Wang et al., 2019). In the text domain, espe-
cially, a character-based adversarial attacker aims
to fool a target ML model by generating an adver-
sarial text x∗ from an original text x by manipu-
lating characters of different words in x, such that
some properties of x are preserved (Li et al., 2018;
Eger et al., 2019; Gao et al., 2018). We character-
ize strong and practical adversarial attacks as three
criteria: (1) attack performance, as measured by
the ability to flip a target model’s predictions, (2)

Figure 1: ANTHRO (Bottom) extracts and uses human-
written perturbations for adversarial attacks instead of
proposing a specific set of manipulation rules (Top).

semantic preservation, as measured by the ability
to preserve the meaning of an original text, and (3)
stealthiness, as measured by how unlikely it is de-
tected as machine-manipulation and removed by
defense systems or human examiners (Figure 1).
While the first two criteria are natural derivation
from adversarial literature (Papernot et al., 2016),
stealthiness is also important to be a practical at-
tack under a mass-manipulation scenario. In fact,
adversarial text generation remains a challenging
task under practical settings.

Previously proposed character-based attacks fol-
low a deductive approach where the researchers
hypothesize a set of text manipulation strategies
that exploit some vulnerabilities of textual ML
models (Figure 1). Although these deductively de-
rived techniques can demonstrate superior attack
performance, there is no guarantee that they also
perform well with regard to semantic preservation
and stealthiness. We first analyze why enforc-
ing these properties are challenging especially for
character-based attacks.

To preserve the semantic meanings, an attacker
can minimize the distance between representative
vectors learned from a large pre-trained model–
e.g., Universal Sentence Encoder (Cer et al., 2018)
of the two sentences. However, this is only appli-
cable in word- or sentence-based attacks, not in
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character-based attacks. It is because character-
based manipulated tokens are more prone to be-
come out-of-distribution–e.g., morons→mor0ns,
from what is observed in a typical training cor-
pus where the correct use of English is often as-
sumed. In fact, existing character-based attacks
such as TextBugger (Li et al., 2018), VIPER (Eger
et al., 2019) and DeepWordBug (Gao et al., 2018)
generally assume that the meaning of the original
sentence is preserved without further evaluations.

In addition, a robust ML pipeline is often
equipped to detect and remove potential ad-
versarial perturbations either via automatic soft-
ware (Jayanthi et al., 2020; Pruthi et al., 2019),
trapdoors (Le et al., 2021) or human-in-the-
loop (Le et al., 2020). Such detection is feasible es-
pecially when the perturbed texts are curated using
a set of fixed rules that can be easily re-purposed
for defense. Thus, attackers such as VIPER and
DeepWordBug, which map each Latin-based char-
acter to either non-English accents (e.g., ė, ā, d̃),
or homoglyphs (characters of similar shape), fall
into this category and can be easily detected un-
der simple normalization techniques (Sec. 4.1).
TextBugger circumvents this weakness by utilizing
a set of more general character-editing strategies–
e.g., replacing and swapping nearby characters to
synthesize human-written typos and misspellings.
Although texts perturbed by such strategies be-
come less likely to be detected, many of them
may distort the meaning of the original text (e.g.,
“garbage"→“gabrage", “dumb"→“dub") and can
be easily flagged as machine-generated by human
examiners. Therefore, we argue that generating
perturbations that both preserve original mean-
ings and are indistinguishable from human-written
texts be a critically important yet challenging task.

To overcome these challenges, we introduce
ANTHRO, a novel algorithm that inductively finds
and extracts text perturbations in the wild. As
shown in Figure 1, our method relies on human-
written sentences in the Web in their raw form. We
then use them to develop a character-based adver-
sarial attack that is not only effective and realis-
tic but is also helpful in training ML models that
are more robust against a wide variety of human-
written perturbations. Distinguished from previ-
ous research, our work considers both spellings
and phonetic features (how a word sounds), to
characterize text perturbations. Furthermore, we
conducted user studies to quantitatively evaluate

semantic preservation and stealthiness of adversar-
ial texts. Our contributions are as follows.

• ANTHRO extracts over 600K case-sensitive
character-based “real" perturbations from
human-written texts.

• ANTHRO facilitates black-box adversarial at-
tacks with an average of 82.7% and 90.7% attack
success rates on BERT and RoBERTa, and drops
the Perspective API’s precision to only 12%.

• ANTHRO outperforms the TextBugger baseline
by over 50% in semantic preservation and 40%
in stealthiness in human subject studies.

• ANTHRO combined with adversarial training
also enables BERT classifier to achieve 3%–14%
improvement in precision over Perspective API
in understanding human-written perturbations.

2 Perturbations in the Wild

2.1 Machine v.s. Human Perturbations
Perturbations that are neither natural-looking
nor resembling human-written texts are more
likely to be detected by defense systems (thus
not a practical attack from adversaries’ perspec-
tive). However, some existing character-based
perturbation strategies, including TextBugger,
VIPER and DeepWordBug, follow a deductive
approach and their generated texts often do not
resemble human-written texts. Qualitatively,
however, we find that humans express much
more diverse and creative (Tagg, 2011) per-
turbations (Figure B.1, Appendix) than ones
generated by such deductive approaches. For
example, humans frequently (1) capitalize and
change the parts of a word to emphasize distorted
meanings (e.g.,“democrats“→“democRATs",
“republicans"→“republiCUNTs"), (2) hyphenate
a word (e.g., “depression"→“de-pres-sion"),
(3) use emoticons to emphasize meaning (e.g.,
“shit"→“sh t"), (4) repeat particular characters
(e.g., “dirty"→“diiirty", “porn"→“pooorn"),
or (5) insert phonetically similar characters
(e.g., “nigger"→“nighger"). Human-written
perturbations do not manifest any fixed rules
and often require some context understanding.
Moreover, one can generate a new meaningful
perturbation simply by repeating a character–e.g.,
“porn"→“pooorn". Thus, it is challenging to
systematically generate all such perturbations, if
not impossible. Moreover, it is very difficult for
spell-checkers, which usually rely on a fixed set
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Attacker Reddit Comts. News Comts.
#texts, #tokens »5B, N/A (34M, 11M)

TextBugger 51.6% (126/244) 7.10% (11K/152K)
VIPER 3.2% (1/31) 0.13% (25/19K)
DeepWordBug 0% (0/31) 0.27% (51/19K)

ANTHRO 82.4% (266/323) 55.7% (16K/29K)

Table 1: Percentage of offensive perturbed words gen-
erated by different attacks that can be observed in real
human-written comments on Reddit and online news.

of common spelling mistakes and an edit-distance
threshold, to correct and detect all human-written
perturbations.

We later show that human examiners rely on
personal exposure from Reddit or YouTube com-
ments to decide if a word choice looks natural
(Sec. 4.2). Quantitatively, we discover that not
all the perturbations generated by deductive meth-
ods are observed on the Web (Table 1). To analyze
this, we first use each attack to generate all pos-
sible perturbations of either (1) a list of over 3K
unique offensive words or (2) a set of the top 5
offensive words (“c*nt”, “b*tch”, “m*therf***er”,
“bast*rd”, “d*ck”). Then, we calculate how many
of the perturbed words are present in a dataset
of over 34M online news comments or are used
by at least 50 unique commentators on Reddit,
respectively. Even though TextBugger was well-
known to simulate human-written typos as adver-
sarial texts, merely 51.6% and 7.1% of its perturba-
tions are observed on Reddit and online news com-
ments, implying TextBugger’s generated adversar-
ial texts being “unnatural" and “easily-detectable"
by human-in-the-loop defense systems.

2.2 The SMS Property: Similar Sound,
Similar Meaning, Different Spelling

The existence of a non-arbitrary relationship be-
tween sounds and meanings has been proven by
a life-long research establishment (Köhler, 1967;
Jared and Seidenberg, 1991; Gough et al., 1972).
In fact, Blasi et al. (2016) analyzed over 6K lan-
guages and discovered a high correlation between
a word’s sound and meaning both inter- and intra-
cultures. Aryani et al. (2020) found that how a
word sounds links to an individual’s emotion. This
motivates us to hypothesize that words spelled dif-
ferently yet have the same meanings such as text
perturbations will also have similar sounds.

Figure B.1 (Appendix) displays several pertur-
bations that are found from real-life texts. Even

though these perturbations are spelled differently
from the original word, they all preserve similar
meanings when perceived by humans. Such se-
mantic preservation is feasible because humans
perceive these variations phonetically similar to
the respective original words (Van Orden, 1987).
For example, both “republican" and “republikan"
sound similar when read by humans. There-
fore, given the surrounding context of a perturbed
sentence–e.g., “President Trump is a republikan”,
and the phonetic similarity of “republican” and
“republikan”, end-users are more likely to interpret
the perturbed sentence as “President Trump is a re-
publican”. We call these characteristics of text per-
turbations the SMS property: “similar Sound, sim-
ilar Meaning, different Spellings”. Noticeably, the
SMS characterization includes a subset of “visu-
ally similar" property of perturbations as studied
in previous adversarial attacks such as TextBug-
ger (e.g., “hello” sounds similar with “he11o”),
VIPER and DeepWordBug. However, two words
that look very similar sometimes carry different
meanings–e.g., “garbage”→“gabrage”. Moreover,
our characterization is also distinguished from ho-
mophones (e.g., “to” and “two”) which describe
words with similar sound yet different meaning.

3 A Realistic Adversarial Attack

Given the above analysis, we now derive our pro-
posed ANTHRO adversarial attack. We first share
how to systematically encode the sound–i.e., pho-
netic feature, of any given words and use it to
search for their human-written perturbations that
satisfy the SMS property. Then, we introduce an
iterative algorithm that utilizes the extracted per-
turbations to attack textual ML models.

3.1 Mining Perturbations in the Wild

Sound Encoding with SOUNDEX++. To capture
the sound of a word, we adopt and extend the
case-insensitive SOUNDEX algorithm. SOUNDEX

helps index a word based on how it sounds rather
than how it is spelled (Stephenson, 1980). Given
a word, SOUNDEX first keeps the 1st character.
Then, it removes all vowels and matches the re-
maining characters one by one to a digit following
a set of predefined rules–e.g., “B”, “F”→1, “D”,
“T”→3 (Stephenson, 1980). For example, “Smith”
and “Smyth” are both encoded as S530.

As the SOUNDEX system was designed mainly
for encoding surnames, it does not necessarily
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Word SOUNDEX SOUNDEX++ (Ours)

porn P650 P650 (k=0), PO650 (k=1)
p0rn P065(7) (same as above)

lesbian L215 L245 (k=0), LE245 (k=1)
lesbbi@n L21@(7) (same as above)
losbian L215(7) L245 (k=0), LO245 (k=1)
(7): Incorrect encoding

Table 2: SOUNDEX++ can capture visually similar
characters and is more accurate in differentiating be-
tween desired (blue) and undesired (red) perturbations.

Key TH000 DE5263 AR000 DI630 NO300

Value the democrats are dirty not
(Set) demokRATs arre dirrrty

ANTHRO(democrats,k=1,d=1)→{democrats, demokRATs}
ANTHRO(dirty,k=1,d=2)→{dirty, dirrrty}

Table 3: Examples of hash table H1(k=1) curated
from sentences “the demokRATs are dirrrty" and “the
democrats arre not dirty" and its utilization.

work for texts in the wild. For example, it can-
not recognize visually-similar perturbations such
as “l"→“1", “a"→“@" and “O"→“0". Moreover,
it always fixes the 1st character as part of the fi-
nal encodes. This rule is too rigid and can result
in words that are entirely different yet encoded the
same (Table 2). To solve these issues, we propose
a new SOUNDEX++ algorithm. SOUNDEX++ is
equipped to both recognize visually-similar char-
acters and encode the sound of a word at dif-
ferent hierarchical levels k (Table 2). Particu-
larly, at level k=0, SOUNDEX++ works similar to
SOUNDEX by fixing the first character. At level
k≥1, SOUNDEX++ instead fixes the first k+1
characters and encodes the rest.

Levenshtein Distance d and Phonetic Level
k as a Semantic Preservation Proxy. Since
SOUNDEX++ is not designed to capture a word’s
semantic meaning, we utilize both phonetic param-
eter k and Levenshtein distance d (Levenshtein
et al., 1966) as a heuristic approximation to mea-
sure the semantic preservation between two words.
Intuitively, the higher the phonetic level (k≥1)
at which two words share the same SOUNDEX++
code and the smaller the Levenshtein distance d
to transform one word to another, the more likely
human associate them with the meaning. In other
words, k and d are hyper-parameters that help
control the trade-off between precision and recall
when retrieving perturbations of a given word such

Figure 2: Trade-off between precision and recall of ex-
tracted perturbations for the word “president" w.r.t dif-
ferent k and d values. Higher k and lower d associate
with better preservation of the original meaning.

that they satisfy the SMS property (Figure 2). We
will later carry out a human study to evaluate how
well our extracted perturbations can preserve the
semantic meanings in practice.

Mining from the Wild. To mine all human-
written perturbations, we first collect a large cor-
pus D of over 18M sentences written by netizens
from 9 different datasets (Table A.1 in Appendix).
We select these datasets because they include of-
fensive texts such as hate speech, sensitive search
queries, etc., and hence very likely to include text
perturbations. Next, for each phonetic level k≤K,
we curate different hash tables {H}K0 that maps a
unique SOUNDEX++ code c to a set of its match-
ing unique case-sensitive tokens that share the
same encoding c as follows:

Hk : c 7→ {wj |S(wi, k) = S(wj , k) = c

∀wi, wj ∈ D, wi 6= wj},
(1)

where S(w,k) returns the SOUNDEX++ code of
token w at phonetic level k, K is the largest pho-
netic level we want to encode. With {H}K0 , k and
d, we can now search for the set of perturbations
Gd

k(w
∗) of a specific target token w∗ as follows:

Gd
k(w

∗)←{wj |wj∈Hk[S(w
∗, k)],

Lev(w∗, wj)≤d}
(2)

where Lev(w∗, wj) returns the Levenshtein dis-
tance between w∗ and wj . Noticeably, we only ex-
tract {H}K0 once from D via Eq. (1), then we can
use Eq. (2) to retrieve all perturbations for a given
word during deployment. We name this method of
mining and retrieving human-written text pertur-
bations in the wild as ANTHRO, aka human-like
perturbations:

ANTHRO : w∗,k,d, {H}K0 7−→ Gd
k(w

∗) (3)
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Algorithm 1 ANTHRO Attack Algorithm

1: Input: {H}K0 , k, d
2: Input: target classifier f , original sentence x
3: Output: perturbed sentence x∗

4: Initialize: x∗ ← x
5: for word xi in x do: si←Score(xi, f)
6: Worder←Sort(x1, x2, ..xm) according to si
7: for xi inWorder do:
8: P←ANTHRO(xi,k,d, {H}K0 ) // Eq.(3)
9: x∗← replace xi ∈ x with the best w ∈ P

10: if f(x∗) 6=f(x) then return x∗

11: return None

ANTHRO Attack. To utilize ANTHRO for adver-
sarial attack on model f(x), we propose the AN-
THRO attack algorithm (Alg. 1). We use the
same iterative mechanism (Ln.9–13) that is com-
mon among other black-box attacks. This process
replaces the most vulnerable word in sentence x,
which is evaluated with the support of Score)(·)
function (Ln. 5), with the perturbation that best
drops the prediction probability f(x) on the cor-
rect label. Unlike the other methods, ANTHRO in-
clusively draws from perturbations extracted from
human-written texts captured in {H}K0 (Ln. 10).
We adopt the Score(·) from TextBugger.

4 Evaluation

We evaluate ANTHRO by: (1) attack perfor-
mance, (2) semantic preservation, and (3) human-
likeness–i.e., how likely an attack message is spot-
ted as machine-generated by human examiners.

4.1 Attack Performance

Setup. We use BERT (case-insensitive) (Jin
et al., 2019) and RoBERTa (case-sensitive) (Liu
et al., 2019) as target classifiers to attack. We
evaluate on three public tasks, namely detect-
ing toxic comments ((TC) dataset, Kaggle 2018),
hate speech ((HS) dataset (Davidson et al.)), and
online cyberbullying texts ((CB) dataset (Wul-
czyn et al., 2017a)). We split each dataset to
train, validation and test set with the 8:1:1 ratio.
Then, we use the train set to fine-tune BERT and
RoBERTa with a maximum of 3 epochs and se-
lect the best checkpoint using the validation set.
BERT and RoBERTa achieve around 0.85–0.97
in F1 score on the test sets (Table A.2 in Ap-
pendix). We evaluate with targeted attack (change
positive→negative label) since it is more practi-

cal. We randomly sample 200 examples from each
test set and use them as initial sentences to attack.
We repeat the process 3 times with unique random
seeds and report the results. We use the attack
success rate (Atk%) metric–i.e., the number of ex-
amples whose labels are flipped by an attacker
over the total number of texts that are correctly
predicted pre-attack. We use the 3rd party open-
source OpenAttack (Zeng et al., 2021) framework
to run all evaluations.

Baselines. We compare ANTHRO with three
baselines, namely TextBugger (Li et al., 2018),
VIPER (Eger et al., 2019) and DeepWordBug (Gao
et al., 2018). These attackers utilize different
character-based manipulations to craft their adver-
sarial texts as described in Sec. 1. From the anal-
ysis in Sec. 3.1 and Figure 2, we set k←1 and
d←1 for ANTHRO to achieve a balanced trade-off
between precision and recall on the SMS property.
We examine all attackers under several combina-
tions of different normalization layers. They are
(1) Accents normalization (A) and (2) Homoglyph
normalization 1 (H), which converts non-English
accents and homoglyphs to their corresponding
ascii characters, (3) Perturbation normalization
(P), which normalizes potential character-based
perturbations using the SOTA misspelling correc-
tion model Neuspell (Jayanthi et al., 2020). These
normalizers are selected as counteracts against the
perturbation strategies employed by VIPER (uses
non-English accents), DeepWordBug (uses homo-
glyphs) and TextBugger, ANTHRO (based on mis-
spelling and typos), respectively.

Results. Overall, both ANTHRO and TextBugger
perform the best. Being case-sensitive, ANTHRO

performs significantly better on RoBERTa and is
competitive on BERT when compared to TextBug-
ger (Table 4). This happens because RoBERTa
is case-sensitive (unlike the base-uncased-bert
BERT model we used) and only ANTHRO is case-
sensitive out of all attack baselines. For exam-
ple, the perturbation “democrats"→“democRATs"
is considered as a perturbation for RoBERTa but
not for other case-insensitive models. This gives
ANTHRO an advantage in practice because many
popular commercial API services (e.g., the pop-
ular Perspective API, the sentiment analysis and
text categorization API from Google) are case-
sensitive–i.e., “democrats" 6=“democRATs". (See
more at Table 8).
1 https://github.com/codebox/homoglyph
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Attacker Normalizer
BERT (case-insensitive) RoBERTa (case-sensitive)

TC HS CB TC HS CB

TextBugger - 0.76±0.02 0.94±0.01 0.78±0.03 0.77±0.06 0.87±0.01 0.72±0.01
DeepWordBug - 0.56±0.04 0.68±0.01 0.50±0.02 0.52±0.01 0.42±0.04 0.38±0.04
VIPER - 0.08±0.03 0.01±0.01 0.13±0.02 1.00±0.00 1.00±0.00 0.99±0.01
ANTHRO - 0.72±0.02 0.82±0.01 0.71±0.02 0.84±0.00 0.93±0.01 0.78±0.01

TextBugger A - - - 0.72±0.02 0.92±0.00 0.74±0.02
DeepWordBug A - - - 0.43±0.02 0.59±0.03 0.43±0.01
VIPER A - - - 0.09±0.01 0.05±0.01 0.17±0.02
ANTHRO A - - - 0.77±0.02 0.94±0.02 0.84±0.02

TextBugger A+H 0.78±0.03 0.85±0.00 0.79±0.00 0.74±0.02 0.93±0.01 0.77±0.03
DeepWordBug A+H 0.04±0.00 0.06±0.02 0.01±0.01 0.03±0.01 0.01±0.01 0.06±0.02
VIPER A+H 0.07±0.00 0.01±0.01 0.10±0.00 0.13±0.02 0.07±0.01 0.17±0.01
ANTHRO A+H 0.76±0.02 0.77±0.03 0.73±0.05 0.82±0.02 0.97±0.00 0.82±0.02

TextBugger A+H+P 0.73±0.02 0.64±0.06 0.70±0.04 0.68±0.06 0.57±0.03 0.66±0.04
DeepWordBug A+H+P 0.02±0.01 0.04±0.02 0.01±0.01 0.02±0.01 0.01±0.01 0.02±0.01
VIPER A+H+P 0.12±0.01 0.04±0.01 0.17±0.03 0.11±0.02 0.05±0.01 0.18±0.01
ANTHRO A+H+P 0.65±0.04 0.64±0.01 0.60±0.05 0.80±0.02 0.91±0.03 0.82±0.02
(-) BERT already has the accents normalization (A normalizer) by default, (Red): Poor performance (Atk%<0.15)

Table 4: Averaged attack success rate (Atk%↑) of different attack methods

VIPER achieves a near perfect score on
RoBERTa, yet it is ineffective on BERT because
RoBERTa uses the accent Ġ as a part of its byte-
level BPE encoding (Liu et al., 2019) while BERT
by default removes all such accents. Since VIPER
exclusively utilizes accents, its attacks can be eas-
ily corrected by the accents normalizer (Table 4).
Similarly, DeepWordBug perturbs texts with ho-
moglyph characters, most of which can also be
normalized using a 3rd party homoglyph detector
(Table 4).

In contrast, even under all normalizers–i.e.,
A+H+P, TextBugger and ANTHRO still achieves
66.3% and 73.7% in Atk% on average across all
evaluations. Although Neuspell (Jayanthi et al.,
2020) drops TextBugger’s Atk% 14.7% across
all runs, it can only reduce the Atk% of AN-
THRO a mere 7.5% on average. This is because
TextBugger and Neuspell or other dictionary-based
typo correctors rely on fixed deductive rules–e.g.,
swapped, replaced by neighbor letters, for attack
and defense. However, ANTHRO utilizes human-
written perturbations which are greatly varied,
hence less likely to be systematically detected. We
further discuss the limitation of misspelling correc-
tors such as NeuSpell in Sec. 7.

4.2 Human Evaluation

Since ANTHRO and TextBugger are the top two
effective attacks, this section will focus on eval-
uating their ability in semantic preservation and
human-likeness. Given an original sentence x and

Figure 3: Semantic preservation and human-likeness

its adversarial text x∗ generated by either one of
the attacks, we design a human study to directly
compare ANTHRO with TextBugger. Specifically,
two alternative hypotheses for our validation are
(1) HSemantics: x∗ generated by ANTHRO pre-
serves the original meanings of x better than that
generated by TextBugger and (2)HHuman: x∗ gen-
erated by ANTHRO is more likely to be perceived
as a human-written text (and not machine) than
that generated by TextBugger.

Human Study Design. We use the two attack-
ers to generate adversarial texts targeting BERT
model on 200 examples sampled from the TC
dataset’s test set. We then gather examples that
are successfully attacked by both ANTHRO and
TextBugger. Next, we present a pair of texts, one
generated by ANTHRO and one by TextBugger, to-
gether with the original sentence to human sub-
jects. We then ask them to select (1) which text
better preserves the meaning of the original sen-
tence (Figure B.2 in Appendix) and (2) which text
is more likely to be written by human (Figure B.3

2958



Attacker Normalizer
BERT (case-insensitive) RoBERTa (case-sensitive)

Toxic Comments HateSpeech Cyberbullying Toxic Comments HateSpeech Cyberbullying

TextBugger - 0.76±0.02 0.94±0.01 0.78±0.03 0.77±0.06 0.87±0.01 0.72±0.01
ANTHROβ - 0.82±0.01 0.97±0.01 0.88±0.04 0.91±0.02 0.97±0.01 0.89±0.02

TextBugger A+H+P 0.73±0.02 0.64±0.06 0.70±0.04 0.68±0.06 0.57±0.03 0.66±0.04
ANTHROβ A+H+P 0.85±0.04 0.79±0.02 0.84±0.03 0.88±0.04 0.93±0.01 0.91±0.01

Table 5: Averaged attack success rate (Atk%↑) of ANTHROβ and TextBugger

Reason Favorable Unfavorable
For ANTHRO For TextBugger

Genuine Typos stuupid, but, Faoggt sutpid, burt, Foggat
Intelligible faiilure faioure
Sound Preserv. shytty, crp shtty, crsp
Meaning Preserv. ga-y, ashole, dummb bay, alshose, dub
High Search Results sodmized, kiills Smdooized, klils
Personal Exposure ign0rant, gaarbage ignorajt, garage
Word Selection morons→mor0ns edited→ewited

Table 6: Top reasons in favoring ANTHRO’s perturba-
tions as more likely to be written by human.

Figure 4: Trade-off among evaluation metrics

in Appendix). To reduce noise and bias, we also
provide a “Cannot decide" option when quality of
both texts are equally good or bad, and present the
two questions in two separate tasks. Since the def-
inition of semantic preservation can be subjective,
we recruit human subjects as both (1) Amazon
Mechanical Turk (MTurk) workers and (2) profes-
sional data annotators at a company with extended
experience in annotating texts in domain such as
toxic and hate speech. Our human subject study
with MTurk workers was IRB-approved. We re-
fer the readers to Sec. B.3 (Appendix) for more
details on MTurks and study designs.

Quantitative Results. It is statistically significant
(p-value≤0.05) to reject the null hypotheses of
both HSemantics and HHuman (Table A.3). Over-
all, adversarial texts generated by perturbations
mined in the wild are much better at preserving the
original semantics and also at resembling human-
written texts than those generated by TextBugger
(Figure 3, Left).

Qualitative Analysis. Table 6 summarizes the top
reasons why they favor ANTHRO over TextBug-
ger in terms of human-likeness. ANTHRO’s per-
turbations are perceived similar to genuine typos
and more intelligible. They also better preserve
both meanings and sounds. Moreover, some an-
notators also rely on personal exposure on Reddit,
YouTube comments, or the frequency of word use
via the search function on Reddit to decide if a
word-choice is human-written.

5 ANTHROβ Attack

ANTHROβ . We examine if perturbations induc-
tively extracted from the wild help improve the de-
ductive TextBugger attack. Hence, we introduce
ANTHROβ , which considers the perturbation can-
didates from both ANTHRO and TextBugger in Ln.
10 of Alg. 1. Alg. 1 still selects the perturbation
that best flip the target model’s prediction.

Attack Performance. Even though ANTHRO

comes second after TextBugger when attacking
BERT model, Table 5 shows that when com-
bined with TextBugger–i.e., ANTHROβ , it consis-
tently achieves superior performance with an aver-
age of 82.7% and 90.7% in Atk% on BERT and
RoBERTa even under all normalizers (A+H+P).

Semantic Preservation and Human-Likeness.
ANTHROβ improves TextBugger’s Atk%, seman-
tic preservation and human-likeness score with
an increase of over 8%, 32% and 42% (from
0.5 threshold) on average (Table 5, 3, Right), re-
spectively. The presence of only a few human-
like perturbations generated by ANTHRO is suffi-
cient to signal whether or not the whole sentence
is written by humans, while only one unreason-
able perturbation generated by TextBugger can ad-
versely affect its meaning. This explains the per-
formance drop in terms of semantic preservation
but not in human-likeness when indirectly compar-
ing ANTHROβ with ANTHRO. Overall, ANTHROβ

also has the best trade-off between Atk% and hu-
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Model ANTHRO ANTHROβ

TC↓ HS↓ CB↓ TC↓ HS↓ CB↓
BERT 0.72 0.82 0.71 0.82 0.97 0.88
BERT+A+H+P 0.65 0.65 0.60 0.85 0.79 0.84

ADV.TRAIN 0.41 0.30 0.35 0.72 0.72 0.67
SOUNDCNN 0.14 0.02 0.15 0.86 0.84 0.92

Table 7: Averaged Atk% of ANTHRO and ANTHROβ

against different defense models.

man evaluation–i.e., positioning at top right cor-
ners in Figure 4, with a noticeable superior Atk%.

6 Defend ANTHRO, ANTHROβ Attack

We suggest two countermeasures against ANTHRO

attack. They are (i) Sound-Invariant Model
(SOUNDCNN): When the defender do not have
access to {H}K0 learned by the attacker, the de-
fender trains a generic model that encodes not the
spellings but the phonetic features of a text for
prediction. Here we train a CNN model (Kim,
2014) on top of a embeddings layer for discrete
SOUNDEX++ encodings of each token in a sen-
tence; (ii) Adversarial Training (ADV.TRAIN):
To overcome the lack of access to {H}K0 , the de-
fender extracts his/her perturbations in the wild
from a separate corpus D∗ where D∗∩D=∅ and
uses them to augment the training examples–
i.e., via self-attack with ratio 1:1, to fine-tune a
more robust BERT model. We use D∗ as a cor-
pus of 34M general comments from online news.
We compare the two defenses against BERT and
BERT combined with 3 layers of normalization
A+H+P. BERT is selected as it is better than
RoBERTa at defending against ANTHRO (Table 4).

Results. Table 7 shows that both SOUNDCNN
and ADV.TRAIN are robust against ANTHRO at-
tack, while ADV.TRAIN performs best when de-
fending ANTHROβ . Since SOUNDCNN is strictly
based on phonetic features, it is vulnerable against
ANTHROβ whenever TextBugger’s perturbations
are selected. Table 7 also underscores that
ANTHROβ is a strong and practical attack, defense
against which is thus an important future direction.

7 Discussion and Analysis

Evaluation with Perspective API. We evaluate if
ANTHRO and ANTHROβ can successfully attack
the popular Perspective API 2, which has been
2 https://www.perspectiveapi.com/

Figure 5: (Left) Precision on human-written perturbed
texts synthesized by ANTHRO and (Right) Robustness
evaluation of Perspective API under different attacks

Task Sentiment Analysis Categorization

ANTHRO 0.80 0.93
ANTHROβ 0.86 1.00

Table 8: Averaged Atk% of ANTHRO and ANTHROβ

in fooling Google Cloud3’s sentiment analysis API and
text categorization API.

adopted in various publishers–e.g., NYTimes, and
platforms–e.g., Disqus, Reddit, to detect toxicity.
We evaluate on 200 toxic texts randomly sampled
from the TC dataset. Figure 5 (Left) shows that the
API provides superior performance compared to
a self fine-tuned BERT classifier, yet its precision
deteriorates quickly from 0.95 to only 0.9 and 0.82
when 25%–50% of a sentence are randomly per-
turbed using human-written perturbations. How-
ever, the ADV.TRAIN (Sec. 6) model achieves
fairly consistent precision in the same setting. This
shows that ANTHRO is not only a powerful and re-
alistic attack, but also can help develop more ro-
bust text classifiers in practice. The API is also
vulnerable against both direct (Alg. 1) and transfer
ANTHRO attacks through an intermediate BERT
classifier, with its precision dropped to only 0.12
when evaluated against ANTHROβ .

Generalization beyond Offensive Texts. Al-
though ANTHRO extracts perturbations from abu-
sive data, the majority of them are non-abusive
texts. Thus, ANTHRO learns perturbations for
non-abusive English words–e.g., hilarious->Hi-
Larious, shot->sht. We also make no assump-
tion on the task domains that ANTHRO can at-
tack. Evidently, ANTHRO and ANTHROβ achieves
80%, 86% Atk% and 90%, 100% Atk% on fooling
the sentiment analysis and text categorization API
from Google Cloud (Table 8)

Computational Complexity. The one-time ex-
traction of {H}K0 via Eq. (1) has O(|D|L)
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where |D|, L is the # of tokens and the length
of longest token in D (hash-map operations cost
O(1)). Given a word w and k,d, ANTHRO re-
trieves a list of perturbation candidates via Eq. (2)
with O(|w|max(Hk)) where |w| is the length of
w and max(Hk) is the size of the largest set of to-
kens sharing the same SOUNDEX++ encoding in
Hk. Since max(Hk) is constant, the upper-bound
then becomes O(|w|).

Limitation of Misspelling Correctors. Similar
to other spell-checkers such as pyspellchecker and
symspell, the SOTA NeuSpell depends on a fixed
dictionary of common misspellings, or synthetic
misspellings generated by random permutation of
characters (Jayanthi et al., 2020). These check-
ers often assume perturbations are within an edit-
distance threshold from the original words. This
makes them exclusive since one can easily gen-
erate new perturbations by repeating a specific
character–e.g., “porn"→“pooorn". Also, due to
the iterative attack mechanism (Alg. 1) where
each token in a sentence is replaced by many can-
didates until the correct label’s prediction proba-
bility drops, ANTHRO only needs a single good
perturbation that is not detected by NeuSpell for
a successful replacement. Thus, by formulating
perturbations by not only their spellings but also
their sounds, ANTHRO is able to mine perturba-
tions that can circumvent NeuSpell.

Limitation of ANTHRO. The perturbation candi-
date retrieval operation (Eq. (2)) has a higher com-
putational complexity than that of other methods–
i.e., O(|w|) v.s. O(1) where |w| is the length
of an input token w (Please refer to Sec. 7 in
the Appendix for detailed computational complex-
ity). This can prolong the running time, especially
when attacking long documents. However, we
can overcome this by storing all the perturbations
(given k,d) of the top frequently used offensive
and non-offensive English words. We can then
expect the operation to have an average complex-
ity close to O(1). The current SOUNDEX++ algo-
rithm is designed for English texts and might not
be applicable in other languages. Thus, we plan to
extend ANTHRO to a multilingual setting.

8 Conclusion

We propose ANTHRO, a character-based attack al-
gorithm that extracts human-written perturbations
in the wild and then utilizes them for adversarial

text generation. Our approach yields the best trade-
off between attack performance, semantic preser-
vation and stealthiness under both empirical ex-
periments and human studies. A BERT classifier
trained with examples augmented by ANTHRO can
also better understand human-written texts.

Broad Impact

To the best of our knowledge, ANTHRO is the first
work that extracts noisy human-written texts, or
text perturbations, online. We further iterate what
reviewer pvcD has observed: ANTHRO moves
“away from deductively-derived attacks to data-
driven inspired attacks". This novel direction is
beneficial not only to the adversarial NLP commu-
nity but also in other NLP tasks that require the un-
derstanding of realistic noisy user-generated texts
online. Specifically, Sec. 6 and Figure 5 shows
that our work enables the training of a BERT
model that can understand noisy human-written
texts better than the popular Perspective API. By
extending this to other NLP tasks such as QA
and NLI, our work hopes to enable current NLP
software to perform well in real life settings, es-
pecially on social platforms where user-generated
texts are not always in perfect English. Our work
also opens a new direction in the use of languages
online and how netizens utilize different forms of
perturbations for avoiding censorship in this new
age of AI.

Ethical Consideration

Similar to previous works in adversarial NLP lit-
erature, there are risks that our proposed approach
may be unintentionally utilized by malicious ac-
tors to attack textual ML systems. To mitigate this,
we will not publicly release the full perturbation
dictionary that we have extracted and reported in
the paper. Instead, we will provide access to our
private API on a case-by-case basis with proper
security measures. Moreover, we also suggest and
discuss two potential approaches that can defend
against our proposed attacks (Sec. 6). We believe
that the benefits of our work overweight its poten-
tial risks. All public secondary datasets used in
this paper were either open-sourced or released by
the original authors.
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Dataset #Texts #Tokens

List of Bad Words 4 1.9K 1.9K
Rumours (Twitter) (Kochkina et al., 2018) 99K 159K
Hate Memes (Twitter) (Gomez et al., 2020) 150K 328K
Personal Atks (Wiki.) (Wulczyn et al., 2017b) 116K 454K
Toxic Comments (Wiki.) (Kaggle, 2019) 2M 1.6M
Malignant Texts (Reddit) (Kaggle, 2021)5 313K 857K
Hateful Comments (Reddit) (Kaggle, 2021)6 1.7M 1M

Sensitive Query (Search Engine, Private) 1.2M 314K
Hateful Comments (Online News, Private) 12.7M 7M

Total texts used to extract ANTHRO 18.3M -

Table A.1: Real-life datasets that are used to ex-
tract adversarial texts in the wild, number of total ex-
amples (#Texts) and unique tokens (#Tokens) (case-
insensitive)

A Supplementary Materials

A.1 Additional Results and Figures

Below are list of supplementary materials:

• Table A.1: list of datasets we used to curate
the corpusD, from which human-written per-
turbations are extracted (Sec. 3.1). All the
datasets are publicly available, except from
the two private datasets Sensitive Query and
Hateful Comments.

• Table A.2: list of datasets we used to evaluate
the attack performance of all attackers (Sec.
4.1) and the prediction performance of BERT
and RoBERTa on the respective test sets. All
datasets are publicly available.

• Table A.3: Statistical analysis of the human
study results (Sec. 4.2).

• Figure B.1: Word-cloud of extracted human-
written perturbations by ANTHRO for some
of popular English words.

• Figure B.2, B.3: Interfaces of the human
study described in Sec. 4.2.

A.2 Infrastructure and Software

B Implementation Details

B.1 Attackers

We evaluate all the attack baselines using the open-
source OpenAttack framework (Zeng et al., 2021).
We keep all the default parameters for all the attack
methods.

Dataset #Total BERT RoBERTa

CB (Wulczyn et al., 2017a) 449K 0.84 0.84
TC (Kaggle, 2018) 160K 0.85 0.85
HS (Davidson et al.) 25K 0.91 0.97

Table A.2: Evaluation datasets Cyberbullying (CB),
Toxic Comments (TC) and Hate Speech (HS) and pre-
diction performance in F1 score on their test sets of
BERT and RoBERTa.

Alternative Hypothesis Mean t-stats p-value df

—– AMT Workers as Subjects —–

HSemantics : ANTHRO > TB 0.82 5.66 4.1e-7** 48
HSemantics : ANTHROβ > TB 0.64 1.95 2.9e-2* 46
HHuman : ANTHRO > TB 0.71 3.14 1.5e-3** 47
HHuman : ANTHROβ > TB 0.70 3.00 2.2e-3** 46

—– Professional Annotators as Subjects —–

HSemantics : ANTHRO > TB 0.75 3.79 2.4e-4** 44
HSemantics : ANTHROβ > TB 0.68 2.49 8.6e-3** 41
HHuman : ANTHRO > TB 0.70 3.06 1.82e-3** 50
HHuman : ANTHROβ > TB 0.73 3.53 4.6e-4** 48

Statistical significant **(p-value≤0.01) *(p-value≤0.05)

Table A.3: It is statistically significant (p-value≤0.01)
that adversarial texts generated by ANTHRO are bet-
ter than those generated by TextBugger (TB) at both
preserving the semantics of the original sentences
(HSemantics)) and at being perceived as human-written
texts (HHuman).

B.2 Defenders
For the (1) Accents normalization, we adopt the ac-
cents removal code from the Hugging Face repos-
itory 7. For (2) Homoglyph normalization, we
adopt a 3rd party python Homoglyph library8. For
(3) Perturbation normalization, we use the state-
of-the-art misspelling-based perturbation correc-
tion Neuspell model (Jayanthi et al., 2020) 9. For
Perspective API, we directly use the publicly avail-
able API provided by Jigsaw and Google 10.

B.3 Details of Human Study and Experiment
Controls

To ensure a high quality response from MTurks,
we require a minimum attentions span of 30 sec-
onds for each question. We recruit MTurk workers
who are 18 years or older residing in North Amer-
ica. MTurk workers are recruited using the follow-
ing qualifications provided by AMT, namely (1)
recognized as “master” workers by AMT system,
7 https://huggingface.co
8 https://github.com/codebox/homoglyph
9 https://github.com/neuspell/neuspell
10 https://www.perspectiveapi.com/
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(2) have done at least 5K HITs and (3) have histori-
cal HITs approval rate of at least 98%. These qual-
ifications are also more conservative than previous
human studies we found in previous literature. We
pay each worker on average around $10 an hour or
higher (federal minimum wage was $7.25 in 2021
when we carried out our study). To limit abusive
behaviors, we impose a minimum attention span
of 30 seconds for the workers to complete each
task.

2964



Figure B.1: Word-clouds of perturbations in the wild extracted by ANTHRO for the word “amazon”, “republicans”,
“democrats” and “president”.

Figure B.2: User-study design for semantic preservation comparison between ANTHRO, ANTHROβ v.s. TextBug-
ger

Figure B.3: User-study design for human-likeness comparison between ANTHRO, ANTHROβ v.s. TextBugger
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