
Findings of the Association for Computational Linguistics: ACL 2022, pages 322 - 342
May 22-27, 2022 c©2022 Association for Computational Linguistics

Towards Transparent Interactive Semantic Parsing
via Step-by-Step Correction

Lingbo Mo, Ashley Lewis, Huan Sun, Michael White
The Ohio State University

{mo.169,lewis.2799,sun.397,white.1240}@osu.edu

Abstract
Existing studies on semantic parsing focus on
mapping a natural-language utterance to a log-
ical form (LF) in one turn. However, because
natural language may contain ambiguity and
variability, this is a difficult challenge. In this
work, we investigate an interactive semantic
parsing framework that explains the predicted
LF step by step in natural language and enables
the user to make corrections through natural-
language feedback for individual steps. We
focus on question answering over knowledge
bases (KBQA) as an instantiation of our frame-
work, aiming to increase the transparency of
the parsing process and help the user trust
the final answer. We construct INSPIRED,
a crowdsourced dialogue dataset derived from
the COMPLEXWEBQUESTIONS dataset. Our
experiments show that this framework has the
potential to greatly improve overall parse accu-
racy. Furthermore, we develop a pipeline for
dialogue simulation to evaluate our framework
w.r.t. a variety of state-of-the-art KBQA models
without further crowdsourcing effort. The re-
sults demonstrate that our framework promises
to be effective across such models.1

1 Introduction

Semantic parsing aims to map natural language to
formal meaning representations, such as λ-DCS,
API calls, SQL and SPARQL queries. As seen in
previous work (Liang et al., 2013; Yih et al., 2014,
2015; Talmor and Berant, 2018b; Chen et al., 2019;
Lan and Jiang, 2020a; Gu et al., 2021), parsers still
face major challenges: (1) the accuracy of state-of-
the-art parsers is not high enough for real use, given
that natural language questions can be ambiguous
or highly variable with many possible paraphrases,
and (2) it is hard for users to understand the parsing
process and validate the results.

In response to the challenges above, recent
work (Li and Jagadish, 2014; He et al., 2016;

1Our INSPIRED dataset and code are available at
https://github.com/molingbo/INSPIRED.

 What is the official language of the country that contains Al Sharqia
Governorate?

 Not quite. Replace question 2 with "What is the official language
spoken in the above-named nation?"

Yep!

 Here's how I understood your question:
1. In what nation can you find the Al Sharqia Governorate?
 ANSWER: Egypt
2. What is the capital of the above-named nation?
 ANSWER: Cairo
 Is this what you were looking for?

 Sorry about that! How's this:
1. In what nation can you find the Al Sharqia Governorate?
 ANSWER: Egypt
2. What is the official language spoken in the above-named nation?
 ANSWER: Modern Standard Arabic
 Is this correct now?

User Agent

U1

A1

U2

U3

A2

Figure 1: Example dialogue from our dataset (dubbed
INSPIRED). The agent turns (Ai’s) illustrate our em-
phasis on transparency by explaining the predicted log-
ical form step by step in natural language, along with
intermediate answers, to the user for feedback.

Chaurasia and Mooney, 2017; Su et al., 2018; Gur
et al., 2018; Yao et al., 2019a; Elgohary et al., 2020)
explores interactive semantic parsing, involving hu-
man users to give feedback and boost system accu-
racy. For example, Su et al. (2018) show that fine-
grained user interaction greatly improves the us-
ability of natural language interfaces to Web APIs.
Yao et al. (2019a) allow their semantic parser to ask
users clarification questions when generating an If-
Then program. And recently, Elgohary et al. (2020)
crowdsources the SPLASH dataset for correcting
SQL queries using natural language feedback.

Compared with these approaches, we aim to en-
hance the transparency of the parsing process and
increase user confidence in the final answer. Figure
1 shows a desired dialogue between user and agent.
We design an interactive framework for semantic
parse correction that can explain the predicted com-
plex logical form (LF) in a step-by-step manner and
enable the user to make corrections to individual
steps in natural language. To demonstrate the ad-
vantages of our interactive framework, we propose

322

https://github.com/molingbo/INSPIRED

Initial Question

Base Parser Logical Form
Decomposition

Sub-Question
Generation

Parse
CorrectionFeedback

Initial Parse

Ø Sub-LF1
Ø Sub-LF2

Ø Sub-Q1 + Ans1 (Egypt)
Ø Sub-Q2 + Ans2 (Cairo)

Provide
Feedback

Ø Sub-Q1
Ø Sub-Q2*

Ø Sub-LF1
Ø Sub-LF2*

User

Yes

No

Replace question 2 with “What is the official language spoken in the above-named nation?”

Sub-Q1: In what nation can you find the AI Sharqia Governorate?
Sub-Q2: What is the capital of the above-named nation?Sub-Q2*: What is the official language spoken in the above-named nation?

User

Correct?

Done
Ø Sub-Q1 + Ans1 (Egypt)
Ø Sub-Q2* + Ans2*
(Modern Standard Arabic)

4

1 2

3

76

5

Initial Question: What is the official language of the country that contains Al Sharqia Governorate?
Gold Parse: ?c ns:location.country.administrative_divisions #entity1# . ?c ns:location.country.official_language ?x .

Initial Parse: ?c ns:location.country.administrative_divisions #entity1# . ?c ns:location.country.capital ?x .
Sub-LF1 Sub-LF2

Sub-LF1* Sub-LF2*

8

Figure 2: Illustration of our interactive semantic parsing framework for KBQA. The box on the top lists a running
example. The prefix of a SPARQL query (i.e., LF used for KBQA in this paper) in this example is omitted for
brevity. The figure on the bottom shows the entire workflow of our framework using the example above.

to instantiate it for complex question answering
over knowledge bases (KBQA), where interactive
semantic parsing has remained largely unexplored.

Figure 2 illustrates our framework with a con-
crete example: A base parser predicts an initial
parse, which we decompose into sub-LFs and
translate to natural-language questions (i.e., Sub-
Question Generation). This shows the steps of
answering the question, allowing the user to see
exactly how a final answer is found and be confi-
dent that it is correct or give feedback in natural
language to correct the steps. If any user feedback
is given, our framework uses it to correct errors in
the current parse (i.e., Parse Correction).

To build models for Sub-Question Generation
and Parse Correction, we construct a dataset
via crowdsourcing, based on the COMPLEXWE-
BQUESTIONS (CWQ) dataset (Talmor and Berant,
2018b), which is widely used for complex QA.
To make LFs understandable to crowdworkers, we
translate each sub-LF into a templated sub-question
using a rule-based method. During crowdsourc-
ing, workers paraphrase the templated question
into a natural one. We create a dialogue for each
complex question, an example of which is shown
in Figure 1. Our dataset, dubbed INSPIRED
(INteractive Semantic ParsIng for CorREction

with Decomposition), will facilitate further explo-
ration of interactive semantic parsing for KBQA.

Our main contributions are as follows: (1) We
design a more transparent interactive semantic pars-
ing framework that explains to a user how a com-
plex question is answered step by step and enables
them to make corrections in natural language and
trust the final answer. (2) To support research on in-
teractive semantic parsing for KBQA, we release a
high-quality dialogue dataset using our framework.
(3) We establish baseline models for two core sub-
tasks in this framework: Sub-Question Generation
and Parse Correction. (4) Although INSPIRED
is constructed using a selected base parser, we are
able to train models to simulate user feedback, al-
lowing us to study the promise of our framework
to correct errors made by other semantic parsers
without more annotation effort. With these con-
tributions, we hope to inspire many directions of
future work, which we discuss in the end.

2 Dataset Construction

In this section, we describe the workflow for dataset
construction following the design of our framework
(Figure 2). We prepare pairs of complex questions
and SPARQL parses predicted by a base semantic
parser (Section 2.1.1). Then, we decompose the

323

gold and predicted parses and determine correction
operations (Section 2.1.2). The sub-LFs are trans-
lated to questions using templates (Section 2.1.3)
and we employ crowdworkers to paraphrase these
questions using natural language (Section 2.2).

2.1 Dialogue Preparation for Crowdsourcing
2.1.1 Preparing Questions and SPARQL
We start with the COMPLEXWEBQUESTIONS 1.1
(CWQ) dataset (Talmor and Berant, 2018a,b),
which contains complex questions paired with gold
SPARQL queries for Freebase (Bollacker et al.,
2008). We adopt a transformer-based seq2seq
model (Vaswani et al., 2017) as the base seman-
tic parser to prepare a predicted SPARQL query for
each complex question (see the second and third
paragraphs in Section 4 for our rationale).

As a simplifying assumption, we take gold
named entities mentioned in a question as given.
Specifically, we replace named entities in a
SPARQL query with special tokens such as #enti-
tyX#, where X is a number corresponding to the
order in which the entity appears. After parsing,
we replace these tokens with the gold entities. The
challenge of addressing errors caused by named en-
tity recognition and linking in a real KBQA system
is left as an important piece of future work.

In order to reduce data collection cost, we select
a subset of questions in the training data of CWQ to
create dialogues in INSPIRED’s training set. We
conduct an analysis of repeated predicates and ques-
tion types, and ensure that each predicate occurs
at least three times in INSPIRED’s training set
when possible. We include every question where
the base parser makes an error and ensure coverage
of the four multi-hop reasoning types (Talmor and
Berant, 2018b). Different reasoning types require
different translation strategies in order to represent
their logical forms in English (see Section 2.1.3
and Appendix A.3). We create 10,374 dialogues in
total, based on 3,492 questions from the training
set, 3,441 from the validation set, and 3,441 from
the test set of CWQ. We omit a small set of ques-
tions from the original validation and test sets that
are consistently confusing to crowdworkers. Table
1 shows a breakdown of the CWQ question types
in the INSPIRED dataset, along with the average
number of corrections and sub-questions.

2.1.2 Logical Form Decomposition
An important goal of creating INSPIRED is to
make the process of question answering transparent

Number of Train Dev Test Overall

Complex Questions 3,492 3,441 3,441 10,374
- Composition 1,196 1,532 1,490 4,218
- Conjunction 1,796 1,503 1,553 4,852
- Comparative 253 217 207 677
- Superlative 247 189 191 627
Predicted Sub-Questions 1.7 2.0 1.9 1.9
Gold Sub-Questions 2.2 2.1 2.1 2.1
Range of the number of predicted sub-questions 0 - 5
Range of the number of gold sub-questions 2 - 4
Average number of edits 1.4
Dialogues with 0 edits 5,016

Table 1: Statistics for our INSPIRED dataset: the num-
ber of complex questions for each reasoning type, the
average number of sub-questions and edit operations in
a dialogue (excluding those that do not have edits).

to the user. Each dialogue features a decomposi-
tion process by which our framework transforms
the complex question into an initial parse, breaks it
into sub-LFs, retrieves answers, and presents this
whole process to the user for correction. The over-
arching strategy of the decomposition process is
to identify the predicates that express distinct com-
ponents in the LF of the complex question, which
correspond to individual sub-questions. Typically,
these components appear as a triple in the logi-
cal form such as Sub-LF1 in Figure 2, which is
comprised of a head entity, a predicate, and a tail
entity. Logical forms in CWQ typically contain
two or three of these components. There can be
multiple predicates that group together to express
one component, for example those connected by a
CVT2 (Compound Value Type) node, in which case
the two predicates and their two entities will form
one component. Within these, there can be filters
and/or restrictions, which provide additional infor-
mation about entities of the main predicate and are
typically merged to the corresponding component.
Details about how we deal with these logical form
components are in Appendix A.3.1 and more con-
crete examples about decomposition are shown in
Table 12.

Using this strategy, we decompose both the
parser’s predicted SPARQL query and the gold one
into sub-LFs, and compare those sub-LFs to deter-
mine the sequence of operations needed to trans-
form the predicted parse into the gold parse, includ-
ing inserting, deleting, or replacing a sub-LF, which
is to be paraphrased by crowdworkers (Section 2.2)
based on our templated sub-question. These op-
erations determine the “correction” steps in each

2CVT is a Type within Freebase which is used to represent
data where each entry consists of multiple fields.

324

dialogue, where the agent asks the user if any cor-
rections are needed (Figure 1, turn A1), and the
user either confirms that the initial parse is correct
or provides corrections (turn U2). Though any new
sub-questions that are introduced use natural and
varied language, the correction operations are given
using templates (i.e., replace question #X with Y,
delete question #X, insert question Y). More details
about how dialogues are formed around complex
questions can be found in Appendix A.1.

2.1.3 Explaining SPARQL

We develop a strategy for how to represent the sub-
SPARQL queries in a form that crowdworkers can
understand after decomposition, for which we cre-
ate a template corpus and a rule-based translation
method to do so. The corpus consists of 772 dif-
ferent predicates that appear in the CWQ dataset
and translations of each into a basic template that
conveys the content. More details about the trans-
lation of LFs with different reasoning types into
sub-questions are found in Appendix A.2 and A.3.

2.2 Crowdsourcing

To make queries understandable for an average
user, as in Figure 1, we translate the decomposed
LFs into English questions using templates as men-
tioned in Section 2.1.3. To obtain natural sounding
questions, we conduct crowdsourcing on Amazon
Mechanical Turk (AMT), in which crowdworkers
are employed to rephrase sub-questions from the
clunky, templated form into more concise and natu-
ral English in the context of a dialogue. The task is
conducted using ParlAI (Miller et al., 2017), which
allows us to set up a versatile dialogue interface.

In each dialogue, every turn of the interlocutors
has prescribed content. A total of 14 crowdwork-
ers are employed to express the content in natural
language and complete a maximum of 1,800 dia-
logues. Because the crowdsourcing task for this
dataset requires extensive, detailed instructions, we
design the task quite carefully with multiple stages
of checkpoints to ensure quality of data collection.
An overview of these phases can be seen in Table 2
and other details are presented in Appendix A.4.
We recruit and retain a small set of exemplary work-
ers for this task (see item 4 in General Principles
in Table 2). This phased strategy, while requiring
more effort, proves to be effective in ensuring over-
all data quality which will be shown in Section 3.

Phased Crowdsourcing Protocol
Phase 1: Tutorial
1. Worker reads examples and explanations of the task.
2. Worker receives specific instructions for how to rephrase questions of
different types.
Phase II: Qualification Quiz
1. Worker completes an 8-question multiple choice quiz. Quiz questions
are based on the tutorial content.
2. Worker must achieve at least 7 out of 8 to pass. They may take the quiz
more than once, but there is a ten minute wait period between attempts.
Phase III: Trial Period
1. Worker completes 10 predetermined tasks which were chosen as
representative examples for all the tasks.
2. Tasks are manually graded. If the work is overall good, the worker receives
specific feedback on anything that was done incorrectly.
3. If quality is not good, worker is eliminated.
4. Workers get paid the regular rate for each task and upon completing the 10
tasks, receive a bonus for the time spent on the tutorial and qualification quiz.
Phase IV: Batches of Tasks
1. Worker is given access to a batch of 100 tasks, which are spot-checked for
quality. A bonus is given as the worker passes each set of 100 tasks.
2. If quality is good, workers are given a second batch of 100 questions, also
spot checked.
3. Batch size increases based on worker quality and speed.
4. Worker completes up to 1800 tasks.
General Principles
1. Prompt feedback, payment, and release of new batches
2. Provide a link to the tutorial so that it can be accessed at any time.
3. Higher than average payment.
4. Keep pool of workers small for better communication and quality control.
5. Verify that workers are native English speakers.

Table 2: The phased crowdsourcing protocol for our
Amazon Mechanical Turk task.

3 Dataset Analysis

In this section, we conduct a thorough quality anal-
ysis of INSPIRED dataset and highlight aspects
that contribute to overall quality, including para-
phrasing characteristics and contextual awareness.

Overall Data Quality. In each dialogue, the
crowdworker is required to rephrase the original
complex question and each templated sub-question.
Overall, we believe the quality of the data to be
high for a few reasons. In the collection process,
our crowdworkers read a detailed tutorial, pass
two qualification tasks, and have their work spot-
checked at each stage of collection. Because we
keep our pool of workers small, we are able to main-
tain frequent communication with them throughout
the process, giving feedback in an ongoing fashion.

Furthermore, we use a semi-automatic data
cleaning method to identify inaccurate paraphrases
for manual repair, resulting in edits to 325 sub-
questions in total. Based on our observation on a
held-out subset of the data, we estimate that only
3.1% of all sub-questions still have inaccuracies,
after cleaning. More details are in Appendix B.1.

Paraphrasing Characteristics. Table 3 shows
the difference between the vocabularies (unique
words) of all the templates in INSPIRED and the
rephrased versions of sub-questions, which are cal-
culated using GEM evaluation scripts (Gehrmann
et al., 2021). Further, the mean length of the tem-
plated questions is 17.3 words, while the mean

325

Template Corpus Rephrased Corpus
Avg Length 17.3 10.7
Unigrams 8,465 9,864
Bigrams 21,072 44,085
Trigrams 31,838 81,479

Table 3: Comparison of average length (in words) of
templated and rephrased questions as well as the size of
vocabulary for 1-, 2-, and 3-grams across all templates
and rephrased questions, demonstrating the increased
diversity of rephrased questions.

length of the rephrased questions is 10.7 words.
These comparisons demonstrate that the rephrased
questions show much more diversity in phrasings
and lexical choices, but are also more concise.
More GEM metrics can be seen in Appendix B.2.

In order to better understand how crowdworkers
rephrased templates, 100 randomly selected sub-
questions are studied in terms of lexical relation-
ships between the template and rephrased versions.
We find that they are using synonmy, hypernymy
and hyponymy in rephrasings of the templates, in
addition to changing word order. This analysis can
be found in Appendix B.3.

Contextual Awareness. Additionally, crowd-
workers are encouraged to incorporate contextual
information of a given sub-question into their
rephrasings, thus improving the contextual richness
of the dataset. In order to demonstrate contextual
awareness, Table 4 shows the average ROUGE-1
and ROUGE-2 scores of all sub-questions in their
actual contexts (the complex question and any pre-
ceding sub-questions), in comparison to the same
sub-questions in a randomly assigned context that
utilizes the same sub-logical form. Entities are
masked with #entity# tokens to prevent the actual
context from being advantaged by overlap in entity
names. The higher scores for the actual context
indicate that the wording of sub-questions reflect
the context from which they are derived.

In general, it is natural for human users to con-
sider the context when making utterances in a dia-
logue. From the perspective of model development,
providing contextual information enriches the in-
put by providing relevant information that may not
be present in a given sub-question or sub-LF. We
provide concrete examples and analysis to show
the effect of context dependency in Table 16 in
Appendix B.4. Moreover, experiments considering
different contexts in Section 4 further validate the
impact of context dependence on parse correction
and sub-question generation performance.

ROUGE-1 ROUGE-2

Random Context 22.8 3.4
Actual Context 27.7 6.2

Table 4: Comparison of the n-gram overlap between
the paraphrase and the context for a sub-LF vs. other
randomly chosen context for the same sub-LF.

Models EM F1

*Transformer (Vaswani et al., 2017) 52.3 58.6
BART-large (Lewis et al., 2020) 60.9 65.8
QGG (Lan and Jiang, 2020b) - 49.0

Table 5: Performance of different semantic parsers on
CWQ test set.4 The asterisk (*) denotes the initial se-
mantic parser we choose for constructing INSPIRED.

4 Experiments

In this section, we explore several base semantic
parsers and show how we choose one as the initial
parser to construct INSPIRED. Then, we conduct
extensive experiments on those two core sub-tasks
(i.e., sub-question generation and parse correction)
in our framework. Finally, in order to study the
promise of our framework for other parsers (be-
yond the one used to construct INSPIRED) with-
out introducing extra crowdsourcing effort, we sim-
ulate dialogues based on our trained models for
sub-question generation and parse correction. We
train all models on 4 GTX 1080 Ti 11 GB GPUs.

Firstly, we explore Transformer (Vaswani et al.,
2017), BART-large (Lewis et al., 2020) and
QGG (Lan and Jiang, 2020b) as base parsers. In
the official leaderboard3 of CWQ, QGG is the best-
performing method in the line of query graph gen-
eration approaches. Models like NSM+h (He et al.,
2021) and PullNet (Sun et al., 2019) directly output
final answers without LFs, which cannot be made
more transparent or interactive with our framework.
CBR-KBQA (Das et al., 2021) is the SOTA model
on this dataset as of the submission time, but as its
code is not available, we choose Transformer and
BART-large as the two candidate parsers. We input
the complex question to these two seq2seq models
and output the LF. Since entities are masked in the
LFs for these models, we provide QGG with gold
entities for fair comparison. We report their LF
exact match (EM) and F1 scores in Table 5.

We finally select Transformer as the initial parser

3https://www.tau-nlp.org/
compwebq-leaderboard

4Since INSPIRED excluded a small set of questions from
CWQ, for fair comparison, scores here are calculated using
questions in CWQ test set which are included in INSPIRED.

326

https://www.tau-nlp.org/compwebq-leaderboard
https://www.tau-nlp.org/compwebq-leaderboard

because it is neither state-of-the-art nor has overly
poor performance. As the intention is to create
a dataset that represents a wide range of parsing
errors and correction strategies, a “middle-of-the-
road” parser is best for achieving good coverage
but also being of decent quality. We report the
characteristics of errors made by Transformer in
Appendix B.5. We will explore the other two
models in Table 5 through simulation (Section 4.3).

In the following two sections, we explore
two sub-tasks under our framework. We treat
both of them as seq2seq tasks, then present
and evaluate several baseline models includ-
ing Seq2Seq (Sutskever et al., 2014), Trans-
former (Vaswani et al., 2017), BART-base and
BART-large (Lewis et al., 2020) for each task, in
which we use INSPIRED for training and test-
ing. After that, we conduct error analysis for both
sub-tasks by examining 100 examples respectively.
Details of the analysis are in Appendix C.

4.1 Parse Correction with NL Feedback

Given a sub-question q, the parse correction task
is to convert it into a new sub-LF p. By pars-
ing the templates used by correction operations
as mentioned in Section 2.1.2, we extract the oper-
ation (i.e., replace, delete, or insert a sub-question)
and apply it to the appropriate step. Then, sub-
LFs are compiled accordingly to form a correction
parse P for the entire question. We predict the
sub-LF based on q without considering contexts,
and present the results of several baselines in Ta-
ble 6. We report both the turn-level accuracy—the
accuracy of sub-LFs in correction turns—and the
dialog-level accuracy—the end-to-end accuracy of
the entire LFs after correction—on our test set.

Since models like BART adopt a subword tok-
enization scheme, the validness of predicates gen-
erated by concatenating subwords can not always
be guaranteed. We use beam search of size 10
to generate LFs as candidates, filtering those with
invalid predicates and excluding erroneous predic-
tions previously made by the parser. We addition-
ally compare with a baseline named 2nd-Beam,
which applies beam search on the base parser to ob-
tain two initial parses and uses the second for parse
correction. It has some performance gains over the
setting without correction, but is much lower than
those settings with human feedback. Results in
Table 6 further suggest: (1) incorporating human
feedback can substantially improve the parse ac-

Correction Models Turn-level EM Dialog-level EM

w/o Correction - 52.3
2nd-Beam - 55.8

Seq2Seq(LSTM) 78.9 65.0
Transformer 81.2 68.0
BART-base 82.3 70.3
BART-large 82.9 71.3

Table 6: Turn-level and Dialogue-level accuracy of dif-
ferent models after incorporating feedback (where ap-
plicable).

Context Dialog-level
EM

Turn-1
(3441)

Turn-2
(3441)

Turn-3
(345)

Turn-4
(56)

w/o Correction 52.3 - - - -

BART-large
w/o Context 71.3 84.6 81.5 85.5 53.6
+ hq 72.2 84.7 82.2 89.3 100.0
+ hlf 72.0 84.3 82.1 89.3 100.0
+ hq & hlf 73.5 86.4 83.2 91.0 100.0

Table 7: Parse correction performance when consider-
ing different contexts. hlf and hq denote the dialogue
history of sub-LFs and sub-questions respectively.

curacy and (2) using BART-large with pretraining
as the correction model achieves the best perfor-
mance, achieving 19.0 points higher than the initial
parser in terms of the dialog-level EM score.

Then, using BART-large as the correction model,
we further study the correction process by concate-
nating different contexts to the input, including the
history of sub-questions hq and sub-LFs hlf . We
report both the accuracy for each turn of correction
and the end-to-end accuracy. As shown in Table 7,
we find that: (1) Adding contexts into the input
can further improve the correction accuracy. (2) As
the number of turns goes up, context contributes
more to the correction process, which indicates
that including the full dialogue history in the in-
put leads to the best results. (3) The BART-large
model with inputs that leverage hq and hlf achieves
the best performance, with a 21.2 increase under
dialog-level EM compared to the initial parser.

4.2 Sub-Question Generation

Sub-question generation aims to translate a sub-LF
p into a natural sub-question q. Table 8 lists gen-
eration performance from five baselines without
considering contexts. We explore an off-the-shelf
paraphrasing model,5 which takes corresponding
templated sub-question qt as the input and outputs
q. It is fine-tuned on BART-large using three para-
phrasing datasets including Quora,6 PAWS (Zhang
et al., 2019) and MSR paraphrase corpus (Dolan

5https://huggingface.co/eugenesiow/bart-paraphrase
6https://www.kaggle.com/c/quora-question-pairs

327

Generation Models BLEU-2 BLEU-4 BERTScore

BART-paraphrase 10.6 2.7 88.0

Seq2Seq(LSTM) 17.8 6.4 90.8
Seq2Seq(LSTM)t 18.7 6.7 91.3

Transformer 21.1 8.4 91.7
Transformert 23.4 9.1 92.6

BART-base 30.7 15.0 93.8
BART-baset 32.0 15.9 94.1

BART-large 31.5 15.4 94.0
BART-larget 32.4 16.2 94.2

Table 8: Question generation performance of different
models. t denotes that the input incorporates templated
sub-question, as well as the current sub-logical form.

Context BLEU-2 BLEU-4 BERTScore

BART-larget
w/o Context 32.4 16.2 94.2
+ hqt 33.3 16.5 94.6
+ Q 33.4 16.6 94.6
+ Q & hqt 34.1 17.1 94.8

Table 9: Comparison of question generation perfor-
mance when considering different contexts in the input.

and Brockett, 2005). The low scores demonstrate
that sub-question generation is more challenging
than a simple paraphrasing task. For the other mod-
els, we explore two scenarios with different inputs:
(1) sub-LF p only and (2) a concatenation of p
and qt. We report BLEU scores based on n-grams
overlap and BERTScores measuring semantic simi-
larity. The results in Table 8 suggest that: (1) Using
BART-large as the generation model achieves the
best performance and (2) incorporating the tem-
plated sub-questions into the model input can im-
prove performance on all baselines, which makes
sense because some tokens in qt can be directly
copied into the output question.

Furthermore, we use the best-performing model
(i.e. BART-large with both p and qt as the input) in
Table 8 as the basic setting to explore the modeling
of different contexts including the complex ques-
tion Q and the history of templated sub-questions
hqt . As shown in Table 9, we find that (1) adding
context into the model’s input can obtain higher
metric scores, which suggests that context can help
in a dialogue. (2) Those settings that incorporate
the original complex question Q generally perform
better than the others, since the complex question
contains the semantics of the sub-question to be
generated. (3) BART-large with the input con-
taining both Q and the history of templated sub-
questions achieves the best performance. We also
tried incorporating the history of sub-LFs hlf , but
it does not help further improve the performance.

BART-large QGG

EM 60.9 -
EM* 75.1 -

F1 65.8 49.0
F1* 75.7 56.5

Attempt EM F1

BART-large
1 75.1 75.7
2 78.7 79.9
3 79.0 80.1

Table 10: The left table shows the performance of two
types of semantic parsers after correction through simu-
lation process, BART-large and QGG. * denotes results
after correction. The right table shows BART-large’s
performance after multiple attempts of correction.

Because automatic metrics like BLEU scores do
not necessarily paint a full picture of the model
performance, we manually check 100 generated
questions. They are indeed of high quality and
semantically similar to the human-written ones;
see details in the second part of Appendix C.

4.3 Simulation

In this section, we demonstrate that our framework
can pair with other KBQA parsers and use sim-
ulated user feedback to correct their errors. To
simulate a dialogue, we develop a pipeline: (1) Au-
tomatically translate a parser’s predicted LFs into
natural questions using the sub-question generation
model equipped with the best-performing setting
in Table 9. (2) Use oracle error detection and train
a generator to simulate a human user’s corrections
for these dialogues. This generator is a BART-large
model that leverages the complex question and tem-
plated sub-questions as input to generate human
feedback. (3) Correct erroneous parses using the
previously trained parse correction model under
the best-performing setting in Table 7.

We conduct simulation experiments on BART-
large (Lewis et al., 2020) and QGG (Lan and Jiang,
2020b) respectively from two mainstream method-
ologies for KBQA as mentioned. We report both
F1 and EM for BART-large before and after the
correction process using the simulation pipeline.
For QGG, since its generated query graphs do not
take exactly the same format as SPARQL queries,
we report F1 score only. As shown in the left part
of Table 10, BART-large achieves a 14.2 EM and
9.9 F1 score gain after correction. Meanwhile, the
correction process brings 7.5 F1 score improve-
ment for QGG. The results show that INSPIRED
can help train effective sub-question generation and
parse correction models, which makes our frame-
work applicable to KBQA parsers beyond the one
used for constructing INSPIRED. Simulating user
feedback makes it easy and far less costly to under-
stand the potential of any base parser (as long as it

328

outputs LFs) under our framework.
Moreover, we expand the simulation experiment

to include multiple attempts of correction to simu-
late situations in which the model does not repair
the parse correctly on the first attempt. We use the
same human feedback generator to decode several
of the highest scoring sequences as candidates for
different attempts at correction. We evaluate this
strategy after a maximum of three attempts.

Given that sequences decoded by plain beam
search (Sutskever et al., 2014) often differ only
slightly from each other, we adopt diverse beam
search (Vijayakumar et al., 2018) instead to decode
more diverse feedback. As shown in the right part
of Table 10, F1 scores are up to 80.1 after three
attempts of correction. We expect CBR-KBQA
(the SOTA model mentioned earlier) to do even bet-
ter given the advantages it has over plain seq2seq
models. For example, their retrieval module can
alleviate errors caused by sparse predicates. We
envision the combination of our framework and
theirs as interesting future work.

5 Related Work

Conversational Semantic Parsing. Conversa-
tional semantic parsing (CSP) is the task of con-
verting a sequence of natural language utterances
into LFs through conversational interactions. It has
been studied in task-oriented dialogues, question
answering and text-to-SQL. In task-oriented sys-
tems, datasets like MWoZ (Budzianowski et al.,
2018; Eric et al., 2020) and SMCalFlow (Andreas
et al., 2020) help users with a specific task (e.g.,
booking a hotel). CSQA (Saha et al., 2018) and
CoQA (Reddy et al., 2019) are built for conversa-
tional systems to answer inter-related, simple ques-
tions. Meanwhile, ATIS (Hemphill et al., 1990;
Dahl et al., 1994), SPARC (Yu et al., 2019) and
CoSQL (Yu et al., 2020) are constructed for con-
versational text-to-SQL tasks. Our work shares a
similar objective, i.e., how to represent natural lan-
guage utterances while considering the multi-turn
dynamics of the dialogue. We differ from them in
that our task aims at soliciting and applying human
feedback to correct generated initial parses.
Interactive Semantic Parsing. Multiple works
have studied involving human feedback in the pars-
ing process. Gur et al. (2018) ask multiple choice
questions about a limited set of predefined errors.
Yao et al. (2019b) ask yes/no questions about the
presence of SQL components when generating one

component at a time. Elgohary et al. (2020) intro-
duce SPLASH, a dataset for correcting parses in
text-to-SQL with free-form natural language feed-
back. They observe that most mistakes made by
neural text-to-SQL parsers are minor, which corre-
spond to editing a schema item (table or column
name), a SQL keyword, etc. They can thus be
resolved by simply editing a single token or two.
Corrections in SPLASH are given in one turn and
applied to the entire initial parse. Elgohary et al.
(2021) convert feedback in SPLASH into a canoni-
cal form of edits that are deterministically applied.

In contrast, we find that parse errors in KBQA
are more challenging to resolve. KB relations like
‘location.country.capital’ need to be correctly iden-
tified among thousands of candidates, while the
table schema in Elgohary et al. (2020) usually con-
tains only a few table/column names. To make er-
ror correction easier in this setting, we break down
the parse into a sequence of sub-components and
enable the user to provide step-by-step feedback,
thereby simplifying the task of parse correction and
increasing the likelihood of an accurate parse.
Question Decomposition. Question decomposi-
tion has been successfully used in complex QA.
Iyyer et al. (2016) propose to answer questions
based on tables by decomposing them into inter-
related simple questions. Talmor and Berant
(2018b) and Min et al. (2019) train a model directly
to produce sub-questions using question spans. Re-
cent works (Wang et al., 2020b; Wolfson et al.,
2020) introduce explicit annotation for the decom-
position of multi-hop questions into a series of
atomic operations. Wolfson et al. (2020) construct
the BREAK dataset and propose QDMR, where
questions are decomposed into a series of simpler
atomic textual steps. QDMR is an intermediate
representation of natural language and LFs, and is
not executable on knowledge bases. In our work,
we decompose the LF of the complex question into
sub-components, which can be directly executed
on the KB to retrieve answers. Moreover, we use
decomposition to correct the initial parse at a finer-
grained level.

6 Discussion and Future Work

We are planning to conduct a user study to validate
our framework’s viability for real use. In this study,
human users will utilize the framework to correct
parsing errors and query a knowledge base for an-
swers in real time. As shown in Figure 3, users

329

Figure 3: User study interface. In addition to inserting/deleting/replacing sub-questions, we provide a new operation
‘edit’ to support minor changes, where the original sub-question is auto-filled into the response box after the user
makes the selection. In this example, the user only needs to change capital into official language.

can specify edit operations in a couple clicks, then
type in the response box to insert, replace or edit a
sub-question. Note that we add a new ‘edit’ opera-
tion to make it easier for users to enter replacement
sub-questions that require only small edits.

While we acknowledge that in a spoken dialogue
system, pure natural language feedback may be
the most natural, such a system may also suffer
from errors caused by automatic speech recogni-
tion (ASR) (Wang et al., 2020a; Chang et al., 2021).
By contrast, our interface design allows the user
to partially specify feedback operations through
mouse clicks, which can help mitigate this issue.
To evaluate the system, we will use parse accuracy
after correction to verify the usefulness of human
feedback. We will also use survey questions to mea-
sure the subjective quality of the generated explana-
tions, intermediate and final answers, accessibility
of the system, etc.

In this work, the INSPIRED dataset and experi-
ments provide a foundation for many directions of
future work. For example, this could take the shape
of gains in parse accuracy as well as improvements
to the correction strategy through decomposition.
The simulation pipeline provided can also be used
for further experimentation. Other complementary
work could include handling errors introduced by
named entity recognition and linking. Lastly, ap-

plying our framework to other query languages like
SQL could be an exciting direction.

7 Conclusion

We have proposed an interactive semantic parsing
framework and instantiated it with KBQA in this
work. Using this framework, we crowdsourced
a novel dataset, dubbed INSPIRED, and experi-
mentally showed that it can greatly increase the
parse accuracy of an initial parser. Moreover, we
designed a simulation pipeline to explore the po-
tential of our framework for a variety of semantic
parsers, without further annotation effort. The per-
formance improvement shows interactive semantic
parsing is promising for further improving KBQA
in general.

8 Ethical Considerations

IRB Approval. Prior to collection of the IN-
SPIRED dataset, we obtain IRB (Institutional Re-
view Board) approval at our institution. This data
collection is considered Exempt Research, mean-
ing that our human subjects are presented with no
greater than minimal risk by their participation.
Participants’ personal information is not collected,
aside from minimal demographic information in-
cluding their native language, which is used to en-
sure native-speaker level proficiency in the dataset.

330

No identifying information is included. Further, all
participants are required to read and agree to an
informed consent form before proceeding with the
task. AMT automatically anonymizes crowdwork-
ers’ identities as well.
Compensation to Crowdworkers. In order to en-
sure both quality data collection and fair treatment
of our crowdworkers, we carefully review our pay-
ment plan for the AMT task. After a pilot study
we gauge the average amount of time we expect
a task to require and adjust the payment amount
per task according to the minimum wage amount
in our state, resulting in a 70 cent payment per task.
Further, we ensure compensation for the time spent
on the tutorial and qualification task by awarding
$10 bonuses after completion of their first 10 tasks.
They also receive $10 bonuses upon every 100
tasks they complete. In total, the cost of creating
the INSPIRED dataset is approximately $13,300.

Acknowledgments

We thank the Clippers and Pragmatics groups at
OSU for helpful discussion. We also thank Yu Su,
Xiang Deng, Luke Song and Vardaan Pahuja for
their valuable feedback. This research was partially
supported by a collaborative open science research
agreement between Facebook and The Ohio State
University. MW has been a paid consultant for
Facebook during the period of research. HS was
partly supported by NSF IIS-1815674 and NSF
CAREER #1942980.

References
Jacob Andreas, John Bufe, David Burkett, Charles Chen,

Josh Clausman, Jean Crawford, Kate Crim, Jordan
DeLoach, Leah Dorner, Jason Eisner, et al. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Gabor Angeli, Percy Liang, and Dan Klein. 2010. A
simple domain-independent probabilistic approach to
generation. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Process-
ing, pages 502–512.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-

madan, and Milica Gasic. 2018. Multiwoz-a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026.

Feng-Ju Chang, Martin Radfar, Athanasios Mouchtaris,
and Maurizio Omologo. 2021. Multi-Channel Trans-
former Transducer for Speech Recognition. In Proc.
Interspeech 2021, pages 296–300.

Shobhit Chaurasia and Raymond Mooney. 2017. Dialog
for language to code. In Proceedings of the Eighth
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 175–
180.

Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jij-
nasa Nayak, and Lun-Wei Ku. 2019. Uhop: An
unrestricted-hop relation extraction framework for
knowledge-based question answering. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 345–356.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew McCallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 9594–9611, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Ahmed Elgohary, Ahmed Hassan Awadallah, et al. 2020.
Speak to your parser: Interactive text-to-sql with nat-
ural language feedback. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2065–2077.

Ahmed Elgohary, Christopher Meek, Matthew
Richardson, Adam Fourney, Gonzalo Ramos,
and Ahmed Hassan Awadallah. 2021. NL-EDIT:
Correcting semantic parse errors through natural
language interaction. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5599–5610, Online.
Association for Computational Linguistics.

331

https://doi.org/10.21437/Interspeech.2021-655
https://doi.org/10.21437/Interspeech.2021-655
https://www.aclweb.org/anthology/H94-1010
https://www.aclweb.org/anthology/H94-1010
https://aclanthology.org/2021.emnlp-main.755
https://aclanthology.org/2021.emnlp-main.755
https://aclanthology.org/2021.emnlp-main.755
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj
Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. Mul-
tiwoz 2.1: A consolidated multi-domain dialogue
dataset with state corrections and state tracking base-
lines. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 422–428.

Sebastian Gehrmann, Tosin P Adewumi, Karmanya
Aggarwal, Pawan Sasanka Ammanamanchi, Aremu
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi
Chandu, Miruna-Adriana Clinciu, Dipanjan Das,
Kaustubh D Dhole, et al. 2021. The gem bench-
mark: Natural language generation, its evaluation
and metrics.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid:
three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, pages 3477–3488.

Izzeddin Gur, Semih Yavuz, Yu Su, and Xifeng Yan.
2018. Dialsql: Dialogue based structured query gen-
eration. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1339–1349.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. In Proceedings of the 14th ACM
International Conference on Web Search and Data
Mining, pages 553–561.

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-loop parsing. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2337–2342.

Charles T Hemphill, John J Godfrey, and George R
Doddington. 1990. The atis spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2016.
Answering complicated question intents expressed
in decomposed question sequences. arXiv preprint
arXiv:1611.01242.

Ravikumar Kondadadi, Blake Howald, and Frank
Schilder. 2013. A statistical nlg framework for ag-
gregated planning and realization. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1406–1415.

K. Kukich. 1983. Design of a knowledge-based report
generator. In ACL.

Yunshi Lan and Jing Jiang. 2020a. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 969–974.

Yunshi Lan and Jing Jiang. 2020b. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics (ACL).

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Fei Li and HV Jagadish. 2014. Constructing an in-
teractive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73–84.

Percy Liang, Michael I Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446.

Kathleen R McKeown. 1985. Discourse strategies for
generating natural-language text. Artificial intelli-
gence, 27(1):1–41.

Susan W McRoy, Songsak Channarukul, and Syed S
Ali. 2000. Yag: A template-based generator for real-
time systems. In INLG’2000 Proceedings of the First
International Conference on Natural Language Gen-
eration, pages 264–267.

Alexander Miller, Will Feng, Dhruv Batra, Antoine Bor-
des, Adam Fisch, Jiasen Lu, Devi Parikh, and Jason
Weston. 2017. Parlai: A dialog research software
platform. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 79–84.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Multi-hop reading compre-
hension through question decomposition and rescor-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
6097–6109.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Amrita Saha, Vardaan Pahuja, Mitesh M Khapra,
Karthik Sankaranarayanan, and Sarath Chandar.
2018. Complex sequential question answering: To-
wards learning to converse over linked question an-
swer pairs with a knowledge graph. In Thirty-Second
AAAI Conference on Artificial Intelligence.

332

Yu Su, Ahmed Hassan Awadallah, Miaosen Wang, and
Ryen W White. 2018. Natural language interfaces
with fine-grained user interaction: A case study on
web apis. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, pages 855–864.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2380–2390.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112.

Alon Talmor and Jonathan Berant. 2018a. Reparti-
tioning of the complexwebquestions dataset. arXiv
preprint arXiv:1807.09623.

Alon Talmor and Jonathan Berant. 2018b. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2018. Diverse beam
search: Decoding diverse solutions from neural se-
quence models.

Haoyu Wang, Shuyan Dong, Yue Liu, James Logan,
Ashish Kumar Agrawal, and Yang Liu. 2020a. Asr
error correction with augmented transformer for en-
tity retrieval.

Ran Wang, Kun Tao, Dingjie Song, Zhilong Zhang,
Xiao Ma, Xi’ao Su, and Xinyu Dai. 2020b. R3: A
reading comprehension benchmark requiring reason-
ing processes. arXiv preprint arXiv:2004.01251.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-
ner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question understand-
ing benchmark. Transactions of the Association for
Computational Linguistics, 8:183–198.

Ziyu Yao, Xiujun Li, Jianfeng Gao, Brian Sadler, and
Huan Sun. 2019a. Interactive semantic parsing for if-
then recipes via hierarchical reinforcement learning.
In Proceedings of the AAAI Conference on Artificial
Intelligence.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019b.
Model-based interactive semantic parsing: A unified
framework and a text-to-sql case study. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5447–5458.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321–1331.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation question
answering. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 643–648.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze Shi,
Zihan Li, et al. 2020. Cosql: A conversational text-
to-sql challenge towards cross-domain natural lan-
guage interfaces to databases. In 2019 Conference on
Empirical Methods in Natural Language Processing
and 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, pages
1962–1979. Association for Computational Linguis-
tics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene Li,
Bo Pang, Tao Chen, et al. 2019. Sparc: Cross-domain
semantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4511–4523.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
Paws: Paraphrase adversaries from word scrambling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1298–1308.

333

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Question
What is the official language of the country

that contains Al Sharqia Governorate?
SPARQL Query

<sparql-header-1> ?c ns:location.country.
administrative_divisions #entity1# . ?c

ns:location.country.official_language ?x .
Answer

Modern Standard Arabic

Table 11: Example question from the CWQ dataset. The
entity “Al Sharqia Governorate” is replaced with “#en-
tity1#”. Entities are delexicalized in order to increase
generalizability across questions in training.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE International Conference on
Computer Vision (ICCV).

A Dataset Creation Details

The creation of the INSPIRED dataset requires
careful selection of questions, design of a decom-
positional approach, and a translation strategy be-
tween logical forms and human-readable language.
Further, we carefully design a crowdsourcing task
to gather more natural-sounding questions to en-
hance the quality and versatility of our framework.

A.1 Forming Dialogues from CWQ
We utilize the COMPLEXWEBQUESTIONS 1.1
(CWQ) dataset (Talmor and Berant, 2018a,b), as
this is a common dataset used for complex question-
answering over knowledge bases. This dataset
is formed by combining questions from the WE-
BQUESTIONSSP dataset (Yih et al., 2016) to form
multi-hop complex questions, meaning that they re-
quire more than one step to answer. Each question
has an associated SPARQL query that functions as
a meaning representation of the question. Table
11 shows an example of a complex question, its
associated SPARQL query, and its answer.

We envision that a human user will ask a com-
plex question, the system will predict a SPARQL
query for that question, decompose it into pieces,
translate those pieces into English to show to the
user to solicit feedback. The system will then use
that feedback to correct the initial parse, if neces-
sary. Figure 1 shows illustrations of this process.

In order to model this type of dialogue, we uti-
lize a transformer-based seq2seq model (Vaswani

et al., 2017) to predict a SPARQL query for each
complex question and decompose the predicted and
gold query into pieces, then use these pieces as ed-
itable chunks which can be deleted, replaced, or
inserted to transform the predicted query into the
gold. This process is the framework around which
each dialogue is constructed. We translate each
step from SPARQL into English to be comprehen-
sible to a human user, thus resulting in dialogues
like the one shown in Figure 1, all stemming from
questions that occur in the CWQ dataset. Note that
the parser used for this purpose is not state-of-the-
art, as part of the goal is to have a broad coverage
of error types for correction.

A.2 Translation of SPARQL Using Templates

As this dataset leverages SPARQL queries, we
then develop a strategy for how to represent these
queries in a more comprehensible form that humans
can understand. Thus we create a template corpus
and develop a rule-based translation method to do
so. The corpus consists of 772 different predicates
that appear in the CWQ dataset and translations of
each into a basic template that conveys the content.
The strategy of using templates to make content
more human-friendly has a long history, both uti-
lizing handcrafted templates (Kukich, 1983; McK-
eown, 1985; McRoy et al., 2000) and rule-based
template formation (Angeli et al., 2010; Kondadadi
et al., 2013). We use a blend of both approaches
to create templates to represent logical forms in a
way that is understandable to our crowdworkers.
As can be seen in Table 11, SPARQL queries con-
tain predicates that appear in the form of triples
with each component separated by periods, such
as location.country.administrative_divisions and
location.country.official_language. These triples
consist of a domain (location), a type (coun-
try) that represents a class within the domain,
and a property (administrative_divisions and offi-
cial_language) that specify more granular infor-
mation. These predicates represent content in-
formation about the question and can appear in
multiple, different questions. For example, the lo-
cation.country.administrative_divisions predicate
maps to the template the country/countries that con-
tain(s) <PH>, where <PH> (“placeholder”) gets
replaced with a specific entity.

In the parsing process, we delexicalize these spe-
cific entities in order to make questions more gen-
eralizable and reduce noise during training. For

334

Composition

Question
What is the mascot of the team that has
Nicholas S. Zeppos as its leader?

SPARQL

<sparql-header-1> ?c ns:organization.
organization.leadership ?k . ?k
ns:organization.leadership.person
#entity1# . ?c ns:education.educational
_institution.mascot ?x .

Templates
1. the organization whose leadership
includes a person named <PH>
2. the educational institution with
the mascot <PH>

Translation
1. What is/are the organization whose
leadership includes a person named
Nicholas S. Zeppos?
2. That entity is/are the educational
institution with the mascot what?

Conjunction

Question
What country with the capital of
Hagåtña is where Sam Shepard lives?

SPARQL

<sparql-header-2> #entity1#
ns:people.person.places_lived ?y . ?y
ns:people.place_lived.location ?x . ?x
ns:location.country.capital #entity2# .

Templates 1. the person(s) who lived in <PH>
2. the location with the capital city
named <PH>

Translation
1. Sam Shepard is/are the person(s)
who lived in what?
2.Of which, what is/are the location
with the capital city named Hagåtña?

Comparative

Question
What country is in the Caribbean with a
country calling code higher than 590?

SPARQL

<sparql-header-2> #entity1#
ns:location.location.contains ?x . ?x
ns:common.topic.notable_types #entity2#
. ?x ns:location.country.calling_code
?num . filter (xsd:integer (?num) > 590) .

Templates 1. the location(s) containing <PH> (<RSTR>)
2. the country/countries whose calling
code is/are <PH>

Translation
1. Caribbean is/are the location(s)
containing what (country)?
2. Of which, what is/are the country/
countries whose calling code is/are
greater than 590?

Superlative

Question
Which pro athlete started his career earliest
and was drafted by the Cleveland Browns?

SPARQL

<sparql-header-2> #entity1#ns:sports.
professional_sports_team.draft_picks
?y . ?y ns:sports.sports_league_draft_pick.
player ?x . ?x ns:sports.pro_athlete.
career_start ?num . } order by ?num limit 1

Templates 1. the team(s) that drafted the athlete(s) <PH>
2. the pro athlete(s) who started their career(s) in
<NUM>

Translation
1. Cleveland Browns is/are the team(s) that
drafted the athlete(s) what?
2. These entities are the pro athlete(s) who
started their career(s) in what?
3. Of these, which is the entity associated
with the earliest date?

Table 12: Question types from the CWQ dataset and the
translation process to templated sub-questions.

example, in the SPARQL query in Table 11, the
replacement token #entity1# appears, which we
replace with Al Sharqia Governorate when the tem-
plate is invoked.

The remaining components of the SPARQL
query specify the question type and any additional
components, which we leverage to transform the
template into a full sentence. The components will
be discussed more fully in A.3. Thus, this par-
ticular SPARQL query translates to the following
sub-questions:

1. What is/are the country/countries that con-
tain(s) [Al Sharqia Governorate]?

ANSWER: Egypt

2. That entity is/are the country/countries whose
official language is what?

ANSWER: Modern Standard Arabic

A.3 Question Types

Each of the questions in CWQ can be categorized
into one of four major reasoning types: compo-
sition, conjunction, comparative, and superlative
(Talmor and Berant, 2018b). Each type can be
identified by the SPARQL query and translated ac-
cordingly. Table 12 shows the translation process
of the four types with examples of each. The gen-
eral strategy is to append content to the beginning
of the template and replace the <PH> token to form
a complete question and express the appropriate
question type. As seen in Table 12, this is quite
straightforward for composition- and conjunction-
type questions.

Composition questions are composed of two
simple questions, where the answer to the first is
used to form the second question. As an exam-
ple, in order to answer the question What is the
mascot of the team that has Nicholas S. Zeppos as
its leader?, one must first answer In which orga-
nization is Nicholas S. Zeppos a leader? to have
all the content necessary to answer What is the
mascot of that organization?. To translate these
question types to templated sub-questions, we sim-
ply append What is/are before the first template
and insert the named entity where the <PH> token
appears in the template. Then, That entity is/are
is appended to the beginning of the second tem-
plate and what replaces the placeholder. Note that
these positions can be reversed depending on what
content is provided in the question. For example,

335

a question could be either of the two options, de-
pending on the goal of the target question:

1. What is/are the organization whose leader-
ship includes a person named Nicholas S.
Zeppos?

2. Vanderbilt University is/are the organization
whose leadership includes a person named
what?

Conjunction questions follow a very similar
process, though because their goal is to find the
intersection of two categories, the first question
returns a list of answers. To account for this, we
simply append Of which to the second question
before following the same set of rules as the com-
position questions.

Comparative questions generally have a com-
parative operator (<, >) and a number contained in
their SPARQL query, which we translate simply to
less than X or greater than X, as appropriate. Note
that the comparative example in Table 12 contains
a “restriction predicate”, marked by the <RSTR>
token. This will be discussed in Section A.3.1.

Superlative questions require a slightly more
complicated strategy. The first sub-question of a su-
perlative type question always generates a list of an-
swer options, while the second sub-question must
pair those answer options with numerical informa-
tion, such as dates or integers. Then, these numbers
are ordered, either from smallest-to-largest or vice
versa, and the first is returned as the final answer.
To account for this, we append These entities are to
front of the second template, to make it clear that
multiple entities are involved, and return a paired
list of entities and their corresponding values as an
answer. Then we append a third sub-question that
specifies how the questions are sorted and returns
a single answer.

A.3.1 Logical Form Features
Within the four main types of questions (compo-
sition, conjunction, comparative, and superlative),
there are a variety of features that appear. These
features include filters, restriction predicates, and
union predicates.

Filters act to restrict a list of entities in some
fashion by assigning numerical boundaries. An
example of this can be seen in Table 12 in the
comparative question’s SPARQL query, starting
with the word filter. This sequence limits the list

of entities by ones whose calling codes are larger
than 590.

Restriction predicates can appear as auxil-
iary pieces to regular predicates and typically
provide categorical information about an en-
tity. For example, in Table 12, the comparative-
type question What country is in the Caribbean
with a country calling code higher than 590?
has two entities in its SPARQL query, though
Caribbean is the only entity that seems to ap-
pear in the original question. The two main
predicates are location.location.contains and lo-
cation.country.calling_code, but a third predicate,
common.topic.notable_types appears in between
them. This predicate acts as a restriction upon the
first main predicate; in this case #entity2# corre-
sponds to country and restricts the locations that
can appear as answers to the category of countries.

Because restriction predicates are not stand-
alone pieces that could be translated into their own
sub-questions, we develop a strategy for incorpo-
rating them into the templates of the predicates
they restrict. First, we create a corpus of “mini-
templates” that correspond to all the restriction
predicates that could appear. Much of the time,
these mini-templates simply place the entity (like
country in the previous example) into parentheses,
though in some cases they situate the entity into a
prepositional phrase.

Meanwhile, the main template corpus has to-
kens in place to define where the mini-template
should be placed in the main template. One can
see in the comparative example of Table 12 that
there is an <RSTR> token in the template of the
first sub-question. Every main template that can
appear with a restriction predicate has this token
in its template; though it needs not always appear
with one. Consequently, if the restriction token
does not get replaced, it simply gets deleted. If
the location.location.contains predicate appeared
without a restriction predicate, it would simply read
Caribbean is/are the location(s) containing what?

Union predicates are a bit of a misnomer, as
they are actually a group of predicates that function
as though they are a single predicate, and thus cor-
respond to a single template. In Table 13, one can
see that the SPARQL query is quite long, with all
of the content in bold corresponding to the first sub-
question and the remainder corresponding to the
second. Within this first sub-LF, there are several
predicates that are joined together by } union {. Col-

336

Composition

Question
Who is both a member of the Kennedy
family and the Order of the British Empire?

SPARQL

filter (?x != #entity1#) { # parents #entity2# ns:
people.person.parents ?x . } union { # children
#entity3# ns:people.person.children ?x .
} union { # siblings #entity4# ns:people.person.
sibling_s ?y . ?y ns:people.sibling_relationship.
sibling ?x . } union { #spouse #entity5# ns:
people.person.spouse_s ?y . ?y ns:people.
marriage.spouse ?x . ?y ns:people.marriage.
type_of_union #entity6# . filter (not exists { ?y
ns:people.marriage.to []}) }
?x ns:royalty.chivalric_order_member.belongs_
to_order ?c . ?c ns:royalty.chivalric_order_
membership.order #entity7# .

Templates 1. the family of <PH>
2. the member(s) of the order of <PH>

Translation 1. Who is/was the family of John F. Kennedy?
2. Of which, what is/are the member(s) of the
order of Order of the British Empire?

Table 13: Example of a question whose SPARQL query
includes a union predicate.

lectively, these templates encompass the concept of
family by defining all the various relationship roles
that are involved in that concept. Theoretically,
we could enumerate all of these in template form,
separated by or (the brother of John F. Kennedy
or the mother of John F. Kennedy or the child of
John F. Kennedy...) but this seems to be an unnec-
essarily complicated and inconcise way of repre-
senting these. Instead, we enumerate the various
types of union predicates that could appear and
create a small corpus of templates that express the
overall concept represented by each collection of
predicates, thus crowdworkers will see questions
with this feature in the same format as a regular
question.

A.4 Crowdsourced Data Collection

As mentioned in Section 2.2, the crowdsourcing
task for this dataset is primarily a paraphrasing task
in which crowdworkers work through a structured
dialogue, rephrasing templated sub-questions at
each step.

Each task takes the form of a dialogue involving
three entities: the “user”, which is an automated di-
alogue partner, an automated “director” that guides
the dialogue and provides detailed instructions, and
the “agent”, which is the role performed by the
crowdworker. Upon entering a task, the worker is
shown the “target question”, or the original ques-
tion from CWQ, and asked if the question was
sensible to them. If so, they are asked to rephrase
it using different language. If not, they proceed

with the dialogue in the hopes that the decomposi-
tion process will make the meaning of the question
clear. In these cases, the crowdworker is asked
to rephrase the target question at the end of the
dialogue. This process is included to encourage
better understanding of the target question and to
help us recognize confusing questions in the orig-
inal dataset and replace them with higher-quality
questions when appropriate.

Next, the target question is automatically de-
composed into templated sub-questions which are
displayed to the worker, who rephrases them into
English. These rephrased questions are sent to the
automated user, who provides corrections as neces-
sary. The worker rephrases any new questions and
the edits are automatically made. At the end of the
dialogue, the worker is asked for any feedback re-
garding the dialogue. This feedback is later used to
make corrections and flag any problems that might
have arisen. Screenshots of the dialogue interface
can be seen in Figure 4.

B Dataset Analysis

B.1 Cleaning the Dataset

As mentioned in Section 3, we employ a semi-
automatic data cleaning method to reduce the er-
ror rate in the INSPIRED dataset. Because data
cleaning can be an expensive and time-consuming
process, the goal is to develop a method that would
reduce the number of items in the dataset that need
to be manually reviewed. Thus we use an auto-
matic method to identify a small subset of the entire
dataset that contain as many errors as possible to
then manually review. To this end, we utilize a pre-
trained sequence-to-sequence model that employs
the idea of cycle consistency (Zhu et al., 2017), to
identify poor paraphrases by retrieving meaning
representations (MRs) from questions rephrased
by the workers. Then these MRs are used to com-
pare against the original MRs and evaluated for
similarity.

In order to evaluate the effectiveness of the strat-
egy, a random 5% subset of the entire dataset is se-
lected for annotation, using a binary classification
of whether or not the rephrased question was an
accurate paraphrase of the original templated ques-
tion (and by extension, its original logical form).
This annotation effort revealed that 4.4% of the
rephrased questions contain errors, which we ex-
pect is representative of the entire dataset.

We then fine-tune Hugging Face’s implementa-

337

Figure 4: Data collection interface on AMT, using the ParlAI framework (Miller et al., 2017).

tion of T5 in a seq2seq model to generate MRs, in
this case templated sub-questions, to compare to
the original MRs (Wolf et al., 2020; Raffel et al.,
2020). These pairs of MRs then need to be sorted
in a ranked list that filters paraphrases that are more
likely to contain errors to the top of the list. This
allows us to use a precision at K measure, which,
given a rank K, the precision is calculated over the
set of retrieved items with a rank of K or less. For
the annotated test set, K equals 75, the number
of observed errors. After ranking the list, we can
evaluate the quality of the method by checking the
top K data points and checking to find how many
errors appear in that set, compared to a random
baseline of 4.4% (the observed error rate), or about
3 errors.

We employ two ranking methods to sort the pairs.
First, we calculate the negative log-likelihood of
the target MRs relative to the model and then do
the same for the generated MRs.

S(y) = −
∑
yi∈Y

log p(yi|y<i, x; θ) (1)

y = ⟨y1, ..., y|y|⟩
y<i = ⟨y1, ..., yi−1⟩

S(y) refers to the score of a given output se-
quence y, which is the sum of the negative log-
likelihood of each yi given the sequence of y tokens
that come before. θ refers to the model parameters.

Once the negative log-likelihoods are determined
for each candidate y, the best candidate is deter-
mined based on the lowest score.

y∗ = argmin(S(y|x)) (2)

Here, y∗ refers to the best generated output se-
quence, and x is a given input sequence. A score
for output sequence y∗ is determined, as well as a
score for the target sequence t.

D = |S(y∗)− S(t)| (3)

338

While these two scores are comparable to each
other, they are not comparable across other item
pairs. In order to assign a ranking for every item in
the dataset, we calculate the difference D between
the negative log-likelihoods of the target MR and
generated MR for each question in the dataset and
sort them based on the largest difference score, as
shown in Equation 3.

Second, we calculate an edit distance score be-
tween the target MR and generated MR and sort
based on the largest score. If the model has pre-
dicted an MR that is substantially far from the tar-
get MR in its phrasing, it likely has a different
meaning.

Using the first ranking method, 17.3% of the
errors are recovered, while the second recovers 32%
of the errors. However, because the two ranking
methods appear to be identifying different errors
with little overlap, both are used to identify the final
set of questions for manual review, drawing from
the methods equally.

Then the method is applied to the entire IN-
SPIRED dataset, using cross-validation with a se-
ries of 90% training, 10% testing splits to generate
MRs for every rephrased question. Then, because
the annotated dataset has a 4.4% error rate which
we expect to be representative of all the data, the
top-ranked 4.4% of data is selected for manual
review. This review results in 17.7% of items being
revised, meaning that authors change the rephras-
ing to more accurately reflect the original meaning.

B.2 GEM Metrics

Template Corpus Rephrased Corpus
Unigrams
Vocab Size 8,465 9,864

Distinct 0.012 0.022
Unique 1,003 1,258

Entropy 6.532 8.090
Bigrams
Vocab Size 21,072 44,085

Distinct 0.031 0.109
Unique 2,949 8,723

Entropy 8.976 12.484
Cond Entropy 2.295 3.918

Trigrams
Vocab Size 31,838 81,479

Distinct 0.050 0.224
Unique 5,332 20,971

Entropy 10.291 14.529
Cond Entropy 1.250 1.986

Table 14: GEM n-gram metrics for the template corpus
and rephrased question corpus.

Lexical Relationship Percentage(%)

Lexical Match 58

Synonymy 31
Hypernymy 5
Hyponymy 20

Table 15: Lexical analysis of 100 randomly sampled sub-
questions and their templates. Note that Lexical Match
refers to the percentage of words in all sub-questions
that appear in their corresponding templated question.

Table 14 shows the N-gram statistics of all the
templates in the dataset (template corpus) and all
the rephrased questions (rephrased corpus). These
metrics are calculated using the GEM evaluation
scripts (Gehrmann et al., 2021). In this table, Vo-
cab Size refers to the total number of distinct N-
grams, while Distinct refers to the ratio of distinct
N-grams divided by the total number of N-grams
in the dataset. Unique specifies the number of
N-grams that occur only once in the dataset, En-
tropy is the Shannon entropy over N-grams, and
Cond(itional) Entropy is the entropy conditioned
on N−1-grams.

B.3 Lexical Analysis
In order to better understand the methods by which
crowdworkers rephrased templates, 100 randomly
selected sub-questions are studied in terms of the
lexical relationships between the template and
rephrased versions. Table 15 shows the results of
this analysis. “Lexical match” refers to the average
proportion of words in the rephrased version that
also appear in the template, relative to the total num-
ber of words in the rephrased version. Synonymy,
hypernymy, and hyponymy refer to the number of
questions in the 100 selected items that contain
an instance of one of these lexical relations. It is
clear, therefore, that crowdworkers are using these
strategies in their rephrasings of the templates, in
addition to simply changing word order. On aver-
age, a bit less than half the words in a rephrased
question are newly introduced by the crowdworker,
and 56% of the time they are using synonmy, hy-
pernymy, hyponymy, or some combination of these
to rephrase the templated question.

B.4 Contextual Awareness
In a given dialogue, we provide answers to the
sub-questions when possible, making the dialogue
context-rich and providing the user with as much

339

Sub-question predicate Actual Context Random Context

film.film_subject.films

Complex Question: Who was the wife of the subject of
the film #entity#?

Sub-Questions:
*1. Who was the subject of the movie #entity#?
2. Who was that person married to?

Complex Question: Where did the topic of the film #entity#
pass away at?

Sub-Questions:
*1. Who was the main focus in the movie called #entity#?
2. Where did this individual die?

influence.influence_node.
influenced_by

Complex Question: Which peer of #entity# inspired
the work of #entity#?

Sub-Questions:
*1. Who inspired the work of #entity#?
2. Of the above named people, which had a peer

relationship with #entity#?

Complex Question: What person who influenced #entity# ’s
work was born on #entity#?

Sub-Questions:
*1. #entity# inspired which people’s work?
2. Which of these people were born on #entity#?

Table 16: Examples of sub-questions in their actual context vs. a random context that utilizes the same predicate
in its logical form. The sub-question was substituted for the one that used the same logical form (marked with *)
in the random context when calculating ROUGE scores. Lexical overlap of the sub-question with each context is
represented by bold text. Entities have been replaced with #entity# tokens in order to avoid disadvantaging the
random context due to overlap in named entities.

information as possible to help them understand
the decomposition process of their original query.

This context-awareness can also be seen in the
sub-question paraphrases. Our crowdworkers are
encouraged to paraphrase questions in a manner
that accounts for the overall context of the ques-
tion, particularly with regard to named entities. For
example, when a second sub-question references
the answer of the first sub-question, we ask the
Turkers to reference that entity without naming it
explicitly, but also using a more specific phrase
than entity. An example of this can be seen in Fig-
ure 1, where instead of directly incorporating the
answer of the first question (Egypt) into the sec-
ond question, they reference it using the phrase the
above-named nation. The goal of this strategy is to
create a dataset of dialogues that are context-aware
and grounded, on which generation models can be
trained to mirror this behavior. By using less spe-
cific phrases than entity names, our model is better
able to generalize across examples during training.

However, one can envision that in a real-use situ-
ation, it might be more natural for a user to simply
use Egypt instead of the above-named nation when
correcting sub-question 2. While our current frame-
work is not able to accommodate this behavior, a
simple data augmentation procedure in which re-
ferring expressions are replaced with the named
entities should allow our system to accommodate
this. We leave this data augmentation for future
work, but plan to implement it upon conducting a
study with real users.

In order to demonstrate contextual awareness,
Table 4 in Section 3 shows the average ROUGE-
1 and ROUGE-2 scores of all sub-questions in
their actual contexts compared with the same sub-

Conjunction Composition Comparative Superlative Total
Delete 49 94 9 3 155
Insert 1835 765 208 208 3016

Replace 2207 1757 341 393 4698
No Action 2172 2240 301 310 5023

Table 17: Distribution of error types within the sub-
questions of the four main question types.

questions in a randomly assigned context that uti-
lizes the same sub-logical form. The higher scores
for the actual context indicate that the wording of
sub-questions reflect the context from which they
are derived. Moreover, Table 16 shows examples
of sub-question with these context comparisons.

B.5 Error Characteristics of Initial Parser
It is important to note that our initial parser is pur-
posefully not state-of-the-art, as we want to have a
wide distribution of errors around which we could
create dialogues. (See Section 4 for details about
the initial parser.) Similar to other interactive se-
mantic parsing work, we envision that the user will
provide corrections to the sub-questions, though
we at this stage require the user to use the three
operations of deleting, replacing, or inserting a
whole sub-question. Table 17 shows the distribu-
tion of sub-questions whose original complex ques-
tion is of each of the four main types. Within these
types, the distribution of edit operations per sub-
question is shown. Though many of sub-questions
do not need any edits, the replace operation is most
frequent of edit operations, appearing in roughly
36.5% of each type, while insert is roughly 23.3%
and delete is around 1.2%, with no action making
up the remaining 39%. These distributions indicate
the parser is more likely to predict something incor-
rect or leave out a sub-question, rather than predict

340

Sub-Q:
What tourist attractions are by the grand canyon?
Gold Sub-LF:
#entity1# ns:travel.tourist_attraction.near_travel_destination ?x .
Generated Sub-LF:
#entity1# ns:travel.travel_destination.tourist_attractions ?x .
Sub-Q:
What is that country’s national anthem?
Gold Sub-LF:
?c ns:location.country.national_anthem ?y . ?y
ns:government.national_anthem_of_a_country.anthem ?x .
Generated Sub-LF:
?c ns:location.country.national_anthem ?x .

Table 18: Two error cases about wrongly generated
predicates in an analysis of 100 generated sub logical
forms. ?y in the logical form is an example of CVT
node which connects two predicates that operate as a
single, compound predicate.

Human-Written Which of the above named people did the voice of toki?

Machine-Generated Which of these people played the role of toki?

Error Explanation Generated question does not specify that
the role was a voice acting one.

Human-Written What famous person has addison’s disease?

Machine-Generated who has suffer from addison’s disease?

Error Explanation Grammatical error
Human-Written What district does that politician represent?

Machine-Generated What district does that person represent?

Error Explanation Generated question is slightly less specific

Table 19: Three instances of errors in an analysis of 100
generated sub-questions compared to human-written
versions.

a sub-question that is not present in the gold.

C Sub-Task Error Analyses

Parse Correction. We sample 100 erroneous pre-
dictions of BART-large under the best-performing
setting in Table 7. In this analysis, it becomes clear
that longer, more complicated logical forms are
more likely to be mispredicted. Only 21 of the er-
rors involve single predicates, while 54 erroneous
parses occur with CVT (Compound Value Type)
predicates, which are essentially two predicates
combined together via CVT nodes (for example
?y in Table 18) that function as a single predicate.
13 errors occur on restriction predicates, which
co-occur with single or CVT predicates to further
limit the entity type. For example, predicates of the
location domain might occur with a restriction that
limits that predicate to locations of the type country.
The remaining 12 errors all occur due to only par-
tially generating a long logical form that contains
filters. Details regarding restriction predicates and
filters can be found in A.3.1.
Sub-Question Generation. We conduct an anal-

Better Model Neither Model 1 Model 2

Number 74 20 6

EXAMPLES

Human-
Written

who were walt
disney’s kids?

kevin hart went to
what schools?

what is the name of
the currency used in
that country?

Model 1
(w/context)

who are the children
of walt disney?

what schools did
kevin hart go to?

what kind of currency
do they use?

Model 2
(w/o context)

what are the names
of walt disney’s
children?

what did kevin
hart go to?

what is the currency
used in that country?

Table 20: Comparison of 100 generated sub-questions
from models with and without context in their inputs.
The bolded text in columns 2 and 3 highlight what en-
hanced the quality of the generation in comparison to
its counterpart. Model 1 refers to the model that used
the complex question and previous templated questions
as context (row 4 in Table 9) and Model 2 refers to the
model that did not use context at all (row 1 in Table 9).

ysis on 100 randomly selected pairs of human-
written question and machine-generated question
that correspond to the same logical form. We
first examine questions from the best-performing
model in Table 9 according to BLEU scores and
BERTScores, which use the current sub-logical
form, the current templated sub-question, the com-
plex question and the history of templated sub-
questions from previous steps as context. Ques-
tions in which the machine-generated and human-
written versions exactly match each other were
excluded. This analysis reveals that only three
generated questions (3%) are of perceptibly worse
quality than the human-written questions, as can
be seen in Table 19. Further, there are four cases in
which the human-written questions contain gram-
matical errors, whereas the machine-generated
ones do not. An analysis of all generated questions
which do not exactly match their human-written
counterpart reveals that 64% of the generated ques-
tions are shorter in terms of number of words.

Because BLEU scores do not necessarily paint
a full picture of the model performance, we then
examine the generated responses from the model
that produced the lowest BLEU scores, which is
the model with no context. By examining the same
100 samples as in the previous analysis, we note
twenty cases in which the best-performing model
that leverages context better reflects that context in
its rephrasing than the model that does not leverage
context. There are, however, 6 cases in which the
model without context does this better and in the
remaining cases there is no discernible difference
between the quality of the generations from the two
models. Table 20 shows examples of each of these
cases, for illustration.

341

While these results are based our observations
and certainly require further future investigation
and human annotation by people other than the
authors, these preliminary results show that the
generated questions can be more concise and of
comparable quality.

342

