@inproceedings{li-etal-2022-miner,
title = "{MINER}: Multi-Interest Matching Network for News Recommendation",
author = "Li, Jian and
Zhu, Jieming and
Bi, Qiwei and
Cai, Guohao and
Shang, Lifeng and
Dong, Zhenhua and
Jiang, Xin and
Liu, Qun",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.29",
doi = "10.18653/v1/2022.findings-acl.29",
pages = "343--352",
abstract = "Personalized news recommendation is an essential technique to help users find interested news. Accurately matching user{'}s interests and candidate news is the key to news recommendation. Most existing methods learn a single user embedding from user{'}s historical behaviors to represent the reading interest. However, user interest is usually diverse and may not be adequately modeled by a single user embedding. In this paper, we propose a poly attention scheme to learn multiple interest vectors for each user, which encodes the different aspects of user interest. We further propose a disagreement regularization to make the learned interests vectors more diverse. Moreover, we design a category-aware attention weighting strategy that incorporates the news category information as explicit interest signals into the attention mechanism. Extensive experiments on the MIND news recommendation benchmark demonstrate that our approach significantly outperforms existing state-of-the-art methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2022-miner">
<titleInfo>
<title>MINER: Multi-Interest Matching Network for News Recommendation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jieming</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiwei</namePart>
<namePart type="family">Bi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guohao</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lifeng</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenhua</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Personalized news recommendation is an essential technique to help users find interested news. Accurately matching user’s interests and candidate news is the key to news recommendation. Most existing methods learn a single user embedding from user’s historical behaviors to represent the reading interest. However, user interest is usually diverse and may not be adequately modeled by a single user embedding. In this paper, we propose a poly attention scheme to learn multiple interest vectors for each user, which encodes the different aspects of user interest. We further propose a disagreement regularization to make the learned interests vectors more diverse. Moreover, we design a category-aware attention weighting strategy that incorporates the news category information as explicit interest signals into the attention mechanism. Extensive experiments on the MIND news recommendation benchmark demonstrate that our approach significantly outperforms existing state-of-the-art methods.</abstract>
<identifier type="citekey">li-etal-2022-miner</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.29</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.29</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>343</start>
<end>352</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MINER: Multi-Interest Matching Network for News Recommendation
%A Li, Jian
%A Zhu, Jieming
%A Bi, Qiwei
%A Cai, Guohao
%A Shang, Lifeng
%A Dong, Zhenhua
%A Jiang, Xin
%A Liu, Qun
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F li-etal-2022-miner
%X Personalized news recommendation is an essential technique to help users find interested news. Accurately matching user’s interests and candidate news is the key to news recommendation. Most existing methods learn a single user embedding from user’s historical behaviors to represent the reading interest. However, user interest is usually diverse and may not be adequately modeled by a single user embedding. In this paper, we propose a poly attention scheme to learn multiple interest vectors for each user, which encodes the different aspects of user interest. We further propose a disagreement regularization to make the learned interests vectors more diverse. Moreover, we design a category-aware attention weighting strategy that incorporates the news category information as explicit interest signals into the attention mechanism. Extensive experiments on the MIND news recommendation benchmark demonstrate that our approach significantly outperforms existing state-of-the-art methods.
%R 10.18653/v1/2022.findings-acl.29
%U https://aclanthology.org/2022.findings-acl.29
%U https://doi.org/10.18653/v1/2022.findings-acl.29
%P 343-352
Markdown (Informal)
[MINER: Multi-Interest Matching Network for News Recommendation](https://aclanthology.org/2022.findings-acl.29) (Li et al., Findings 2022)
ACL
- Jian Li, Jieming Zhu, Qiwei Bi, Guohao Cai, Lifeng Shang, Zhenhua Dong, Xin Jiang, and Qun Liu. 2022. MINER: Multi-Interest Matching Network for News Recommendation. In Findings of the Association for Computational Linguistics: ACL 2022, pages 343–352, Dublin, Ireland. Association for Computational Linguistics.