@inproceedings{fourrier-sagot-2022-probing,
title = "Probing Multilingual Cognate Prediction Models",
author = "Fourrier, Cl{\'e}mentine and
Sagot, Beno{\^\i}t",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.299",
doi = "10.18653/v1/2022.findings-acl.299",
pages = "3786--3801",
abstract = "Character-based neural machine translation models have become the reference models for cognate prediction, a historical linguistics task. So far, all linguistic interpretations about latent information captured by such models have been based on external analysis (accuracy, raw results, errors). In this paper, we investigate what probing can tell us about both models and previous interpretations, and learn that though our models store linguistic and diachronic information, they do not achieve it in previously assumed ways.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fourrier-sagot-2022-probing">
<titleInfo>
<title>Probing Multilingual Cognate Prediction Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Clémentine</namePart>
<namePart type="family">Fourrier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benoît</namePart>
<namePart type="family">Sagot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Character-based neural machine translation models have become the reference models for cognate prediction, a historical linguistics task. So far, all linguistic interpretations about latent information captured by such models have been based on external analysis (accuracy, raw results, errors). In this paper, we investigate what probing can tell us about both models and previous interpretations, and learn that though our models store linguistic and diachronic information, they do not achieve it in previously assumed ways.</abstract>
<identifier type="citekey">fourrier-sagot-2022-probing</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.299</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.299</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>3786</start>
<end>3801</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Probing Multilingual Cognate Prediction Models
%A Fourrier, Clémentine
%A Sagot, Benoît
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F fourrier-sagot-2022-probing
%X Character-based neural machine translation models have become the reference models for cognate prediction, a historical linguistics task. So far, all linguistic interpretations about latent information captured by such models have been based on external analysis (accuracy, raw results, errors). In this paper, we investigate what probing can tell us about both models and previous interpretations, and learn that though our models store linguistic and diachronic information, they do not achieve it in previously assumed ways.
%R 10.18653/v1/2022.findings-acl.299
%U https://aclanthology.org/2022.findings-acl.299
%U https://doi.org/10.18653/v1/2022.findings-acl.299
%P 3786-3801
Markdown (Informal)
[Probing Multilingual Cognate Prediction Models](https://aclanthology.org/2022.findings-acl.299) (Fourrier & Sagot, Findings 2022)
ACL
- Clémentine Fourrier and Benoît Sagot. 2022. Probing Multilingual Cognate Prediction Models. In Findings of the Association for Computational Linguistics: ACL 2022, pages 3786–3801, Dublin, Ireland. Association for Computational Linguistics.