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Abstract

Financial risk prediction is an essential task for
risk management in capital markets. While tra-
ditional prediction models are built based on
the hard information of numerical data, recent
studies have shown that the soft information
of verbal cues in earnings conference calls is
significant for predicting market risk due to
its less constrained fashion and direct interac-
tion between managers and analysts. However,
most existing models mainly focus on extract-
ing useful semantic information from the tex-
tual conference call transcripts but ignore their
subtle yet important information of dialogue
structures. To bridge this gap, we develop a
graph attention network called DialogueGAT
for financial risk prediction by simultaneously
modeling the speakers and their utterances in
dialogues in conference calls. Different from
previous studies, we propose a new method for
constructing the graph of speakers and utter-
ances in a dialogue, and design contextual at-
tention at both speaker and utterance levels for
disentangling their effects on the downstream
prediction task. For model evaluation, we ex-
tend an existing dataset of conference call tran-
scripts by adding the dialogue structure and
speaker information. Empirical results on our
dataset of S&P1500 companies demonstrate the
superiority of our proposed model over com-
petitive baselines from the extant literature.

1 Introduction

Financial risk prediction is an essential task for risk
management in capital markets since risk is one of
the most important variables for making investment
decisions in tasks such as portfolio selection, asset
pricing, and so on (Poon and Granger, 2003). Due
to its importance in risk assessment, the accurate
prediction of financial risk is of great interest to
academic and industry stakeholders in artificial in-
telligence, economics, and finance (Kogan et al.,
2009).
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Traditionally, the risk prediction models are built
based on the hard information of numerical data
such as the historical stock return volatility (Ko-
gan et al., 2009). But recent studies have shown
that the soft information of textual data in related
corporate disclosures is incrementally informative
over the conventional numerical data for predicting
corporate risks (Matsumoto et al., 2011; Bao and
Datta, 2014). In this study, we focus on financial
risk prediction using a particular type of textual
corporate disclosures – the transcripts of earnings
conference calls. Earnings conference calls in con-
junction with earnings releases have become an
increasingly important form of voluntary corpo-
rate disclosure. In conference calls, managers (e.g.,
CEO, CFO, or other executives) can voluntarily
present information of firm performance during
the quarter, and interested participants such as an-
alysts and investors can also directly engage in
information disclosure in a follow-up Q&A ses-
sion. Due to its less constrained fashion relative
to the mandated corporate disclosures (e.g., annual
reports) and direct interaction between managers
and analysts, these conference calls have been rec-
ognized as significant information events to the
market (Matsumoto et al., 2011).

Recently, there have been some models that
make use of textual conference call transcripts for
predicting financial risk (Qin and Yang, 2019; Theil
et al., 2019). Unfortunately, except for very few
exceptions (Ye et al., 2020), most existing models
mainly focus on extracting useful semantic infor-
mation from the textual conference call transcripts
but ignore their subtle yet important information
of dialogue structures. Specifically, the earnings
conference calls will affect the risk perceptions
of market investors not only by what is said (i.e.,
utterance) but also by who said it (i.e., speaker).
For example, the managers inside the company
usually hold private information but might be re-
luctant to disclose the negative information, while
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the analysts outside the company usually ask harsh
questions that may be of interest to the investors.

To bridge the aforementioned gap, we develop a
graph attention network called DialogueGAT1 for
financial risk prediction by simultaneously model-
ing the speakers and their utterances in dialogues
in conference calls. Different from previous stud-
ies, we propose a new method for constructing the
graph of speakers and utterances in a dialogue, and
design contextual attention at both speaker and ut-
terance levels for disentangling their effects on the
downstream task of financial risk prediction. The
designed attention mechanisms also provide our
model with reasonable interpretation ability. To
evaluate model performance, we extend an exist-
ing dataset of quarterly conference call transcripts
(Li et al., 2020) by adding the dialogue structure
and speaker information. We measure the corpo-
rate financial risk by using stock return volatility -
one of the most commonly used measures in prior
research (Kogan et al., 2009). Empirical results
on our extended dataset of S&P1500 companies
demonstrate the superiority of our proposed model
over competitive baselines from the extant litera-
ture. Supplementary studies are also conducted to
examine the effectiveness of our model’s key com-
ponents, parameter sensitivity, and interpretability.

The remainder of the paper is organized as fol-
lows. First, we review the related works on fi-
nancial risk prediction and dialogue-based graph
neural networks. Then, we define the problem and
elaborate on our proposed model. After that, we
present and analyze the experimental results. Fi-
nally, we conclude the paper.

2 Related Work

This study mainly relates to two areas: (1) text-
based financial risk prediction and (2) graph neural
network for modeling dialogues.

Financial risk prediction is an essential task in
capital markets. The early risk prediction models
are built based on the hard information of numer-
ical data, but recent studies have shown that the
soft information of textual data is incrementally
informative over the conventional numerical data
for predicting corporate risks (Kogan et al., 2009).
Two types of textual corporate disclosures are com-
monly used for financial risk prediction, includ-
ing the annual reports (Bao and Datta, 2014) and

1The code is available at https://github.com/sangyx/
DialogueGAT.

earnings conference call transcripts (Matsumoto
et al., 2011). Compared with mandated corporate
disclosure such as annual reports, voluntary con-
ference calls have been recognized as significant
information events to the market due to their less
constrained fashion and direct interaction between
managers and analysts (Matsumoto et al., 2011). In
this line of research, most existing models cast the
risk prediction task as a standard text regression
problem without considering the dialogue struc-
tures of conference calls (Qin and Yang, 2019;
Theil et al., 2019; Li et al., 2020). The only ex-
ception is a recent model called MRQA (Ye et al.,
2020), which proposes a multi-round Q&A atten-
tion network for considering the dialogue form. It
is worth mentioning that this model ignores the
speaker information when modeling the dialogue.
We will use the MRQA model as a baseline in our
experiment.

Our work is also related to recent studies using
GNN (Graph Neural Network) for modeling dia-
logues. GNN is a type of neural network which
directly operates on the graph structure, and it has
achieved great success in many natural language
processing tasks (Scarselli et al., 2008). Recently,
some GNN models have been proposed for mod-
eling dialogues, and the main challenge is how
to construct a graph of utterances from dialogue
in an effective manner (Hu et al., 2019; Banerjee
and Khapra, 2019). In this line of research, Dia-
logueGCN is a state-of-the-art model for dialogue-
based emotion recognition without using external
knowledge (Ghosal et al., 2019). This model is
closely related to our model because we are one
of the few dialogue-based GNN models that con-
sider not only utterances but also speakers when
constructing the dialogue graph. We will use the
DialogueGCN model as a baseline in our experi-
ment.

3 Methodology

In this section, we formulate our problem of finance
risk prediction and then present our proposed Dia-
logueGAT model.

3.1 Problem Definition

To measure the corporate financial risk, we use the
stock return volatility, which is a commonly used
measure in prior research (Kogan et al., 2009). This
volatility measure reflects the degree of variation of
stock prices, and higher volatility indicates that the
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firm’s stock is riskier. Formally, the stock return
volatility v[t,t+τ ] over the time period from the day
t to the day t+ τ is defined as:

v[t,t+τ ] =

√√√√
τ∑

i=0

(rt+i − r̄)2 /τ (1)

where rt is the dividend-adjusted return of a spe-
cific stock on the day t and r̄ is the mean of
dividend-adjusted returns over the time period from
day t to day t+ τ . The dividend-adjusted return is
defined as rt = Pt

Pt−1
− 1, where Pt is the dividend-

adjusted closing price on the day t. We set the time
window size τ to 3, 7, and 15 days based on the
PEAD (Post-Earnings-Announcement Drift) the-
ory in accounting literature (Bernard and Thomas,
1989) – the stock’s cumulative abnormal returns
tend to drift for several weeks following the earn-
ings announcement. We conjecture that the return
volatility with a smaller window size τ is more
difficult to predict because the mean reversion the-
ory in finance posits that the stock prices are more
volatile in the short run and will eventually revert
to the long-term average.

We formulate our financial risk prediction prob-
lem as a supervised regression task and propose to
leverage the dialogue structures of earnings confer-
ence calls for improving the prediction of stock re-
turn volatility. More specifically, given a dialogue
with M speakers and N utterances in a firm’s con-
ference call held on the day t, we aim to predict the
firm’s future stock return volatility over the period
from the trading day t to t+ τ . We use both presen-
tations by managers and Q&A between managers
and analysts for constructing the dialogues. Each
dialogue of a conference call is a list of pairs of
speakers and utterances that are sorted in the tem-
poral order of dialogue. It is worth noting that each
utterance consists of all the sentences uttered by a
speaker in each dialogue round.

3.2 Proposed Model
We develop a model called DialogueGAT (Dia-
logue Graph Attention Network) for jointly model-
ing the dialogue structure of utterances and speak-
ers in order to improve the prediction of financial
risk. As shown in Figure 1, the architecture of our
proposed model is composed of four main modules:
(1) an utterance encoder which uses the TextCNN
(Text Convolutional Neural Network) for learning
the representation of utterances, (2) a graph en-
coder that uses the GAT (Graph Attention Network)

for jointly learning the better representation of ut-
terances and speakers in our constructed graph, (3)
two contextual attention layers which aggregate the
embedding vectors of utterances and speakers in a
conference call, and (4) an output layer which fuses
different types of information for the downstream
task of financial risk prediction. Next, we describe
these modules in detail.

3.2.1 Utterance Encoder
We employ the TextCNN for learning the embed-
ding vector ui ∈ Rd for utterance i. The input word
tokens are first represented using the pre-trained
300-dimensional GloVe embedding vectors2, and
then fed into the TextCNN with default parameter
settings as in (Kim, 2014). A max-overtime pool-
ing operation is applied over the feature maps, and
the pooled features are concatenated to obtain the
embedding vector ui of the utterance i.

3.2.2 Graph Encoder
The core component of our model is a graph en-
coder for jointly learning the representation of ut-
terances and speakers. In this module, we propose
a new simple yet effective method for constructing
the graph of utterances and speakers for each di-
alogue. Specifically, we treat both utterances and
speakers as graph nodes and generate the edges
between nodes in the following two ways: (1) each
utterance node is connected to its previous and next
utterance nodes for capturing the local context, and
(2) each utterance node is connected to its speaker
node for capturing the speaker context. This way,
we construct an undirected dialogue graph shown
in the GAT module in Figure 1. We also provide a
more detailed illustration of our dialogue graph in
Figure A1 in Appendix. It is worth mentioning that
we keep our model implementation parsimonious
and effective by converting our original heteroge-
neous graph to a homogeneous graph.

Once the dialogue graph is constructed, we uti-
lize the GAT model (Veličković et al., 2018) for
jointly learning the representation of utterance and
speaker nodes. We initialize the utterance node i

by using its embedding vector u(0)i obtained from
the TextCNN in utterance encoder (note: the super-
script indicates the layer). To capture the speaker
information within and across conference calls, we
assign a trainable speaker embedding vector pj to

2The pre-trained GloVe model used in this study is avail-
able at https://nlp.stanford.edu/data/glove.840B.3
00d.zip.
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Figure 1: The architecture of our proposed DialogueGAT model.

each speaker j and perform orthogonal initializa-
tion for these vectors. Each speaker embedding
vector will be dynamically updated every time the
corresponding speaker (either manager or analyst)
attends a conference call. The node embedding
vector x(l+1)

i at the layer l + 1 is updated by using
an attention mechanism to aggregate the one-hop
neighborhood from the layer l:

x
(l+1)
i =

∑

j∈N (i)

αi,jWxx
(l)
j (2)

where x is either the utterance node u or the speaker
node p, N (i) is the set of one-hop neighbors of
node i, and Wx ∈ Rd×d is a trainable transfor-
mation matrix. αij is the pairwise attention score
between the nodes i and j which is calculated as:

eij = LeakyReLU(Wa(Wfxi ⊕Wfxj))

αij =
exp(eij)∑

o∈N (i) exp(eio)

(3)

where ⊕ denotes concatenation.
By defining a multi-layer (i.e., k-layer) GAT

model, we are able to aggregate the multi-hop
neighborhoods for learning node embedding vec-
tors. We also attempt to avoid overfitting by adding
a dropout layer between GAT layers.

3.2.3 Utterance Attention and Speaker
Attention

We design two contextual attention layers (i.e., ut-
terance attention and speaker attention) for sepa-
rately aggregating the node embedding vectors of
utterances and speakers in a conference call. In this
way, we can disentangle the effects of utterances
and speakers on the downstream task of financial
risk prediction. Specifically, we calculate the atten-
tion score βi for each utterance node embedding in
the vector set {u(k)0 , u

(k)
1 , · · · , u(k)N } obtained from

the graph encoder as follows:

hi = tanh
(
Wuu

(k)
i + bu

)
(4)

βi =
exp

(
h⊤i ucontext

)
∑N

j=0 exp
(
h⊤j ucontext

) (5)

where hi is the hidden representation of u(k)i by
using a dense layer, and ucontext is a context vector
which is randomly initialized and jointly learned
during the training process. The global utterance
vector gutterance ∈ Rd of a conference call is then
calculated as the following weighted sum:

gutterance =
N∑

i=0

βiu
(k)
i (6)
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The global speaker embedding vector gspeaker ∈
Rd of a conference call is calculated in the same
way as gutterance by using the speaker attention.

3.2.4 Output Layer
The last component of our model is an output layer
that combines different types of feature represen-
tations for predicting stock return volatility. In
addition to utterance and speaker embedding vec-
tors, we also allow the inclusion of past stock return
volatility vpast as input because it is a strong predic-
tor, as shown in prior research (Kogan et al., 2009).
As shown in Figure 1, we align the dimensions
of different feature vectors via a fully-connected
neural network layer. The aligned feature vectors
gutterance, gspeaker, gvpast ∈ Rd are concatenated
together and then fed into a fully-connected layer
for predicting the stock return volatility:

ŷ = Wg(gutterance ⊕ gspeaker ⊕ gvpast) + bg (7)

4 Experimentation

In this section, we conduct empirical studies to
evaluate model performance. We first describe our
dataset and baselines and then present and analyze
the experimental results.

4.1 Dataset
Although there are some recent datasets of earn-
ings conference calls (Qin and Yang, 2019; Li et al.,
2020), none of them has the speaker information
required for speaker-aware dialogue models. To
tackle this problem, we extend the most comprehen-
sive MAEC (Multimodal Aligned Earnings Confer-
ence Call) dataset3 (Li et al., 2020) by adding the
dialogue structure and speaker information. Like
the MAEC dataset, our extended dataset consists
of conference call transcripts of S&P1500 compa-
nies from February 25, 2015 to June 21, 2018. We
parse the dialogue structure of each conference call
transcript, and add the speaker information of man-
agers and analysts collected from the SeekingAl-
pha website (https://seekingalpha.com). Fol-
lowing (Li et al., 2020), we preserve the temporal
order of conference calls and split the dataset into
training/validation/testing sets in the ratio of 7:1:2
on a yearly basis (the years 2017 and 2018 are
merged). Table 1 summarizes the descriptive statis-
tics of our dataset. It is worth mentioning that our

3The dataset is available at https://github.com/Ear
nings-Call-Dataset/MAEC-A-Multimodal-Aligned-Ear
nings-Conference-Call-Dataset-for-Financial-Risk
-Prediction.

dataset contains more sentences than the MAEC
dataset because the latter drops some sentences
when aligning the textual and audio data. We drop
28 conference call samples that lack speaker infor-
mation.

4.2 Baselines

We compare our model with the following compet-
itive baseline models from the extant literature on
financial risk prediction using conference calls (Ye
et al., 2020; Yang et al., 2021). We noticed that
some baselines ignore the historical stock return
volatility vpast – a strong predictor of financial risk
(Kogan et al., 2009). Hence, to compare models
on an equal footing, we use the historical stock
return volatility vpast as an additional feature for
all models. Specifically, we use a fully-connected
layer to expand the dimension of vpast and concate-
nate it with the output vector of baselines for the
downstream prediction.

(1) vpast & SVRvpast . These are the two sim-
ple yet competitive baselines without using textual
data of conference call transcripts (Kogan et al.,
2009). vpast directly uses the historical stock re-
turn volatility vpast in the past τ days to predict the
return volatility in the future τ days. SVRvpast is
the SVR model with linear kernel using vpast as
the only feature variable.

(2) HAN. This baseline uses the HAN (Hierarchi-
cal Attention Networks) model (Yang et al., 2016)
to exploit the textual data of conference calls for
financial risk prediction. This model considers the
hierarchical structure of documents and has two
levels of attention mechanisms at both word and
sentence levels. But this model does not consider
the dialogue structure of conference call transcripts.

(3) ProFET. This is a competitive model for Pre-
dicting the Risk of Firms from Event Transcripts
(PRoFE) (Theil et al., 2019). It combines the BiL-
STM and an attention module to predict the stock
return volatility by using both financial and textual
features of earnings conference calls.

(4) BERT & XLNet. BERT (Bidirectional En-
coder Representations from Transformers) (Devlin
et al., 2019) and XLNet (Yang et al., 2019) are
the two widely used pre-trained language models
which have achieved the start-of-the-art results on
many downstream prediction tasks. We use the
pre-trained bert-base-cased and xlnet-base-cased
models to encode textual utterances in conference
calls. For the BERT model, the hidden state of the
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Table 1: Descriptive statistics of our extended dataset.

Year 2015 2016 2017 - 2018
#Companies 523 897 736
#Speakers 5,840 8,768 7,006
#Utterances 59,549 108,714 79,253
#Sentences 102,142 184,936 145,206
Training set (#Samples) 25/02/2015 - 22/10/2015 (531) 05/01/2016 - 03/08/2016 (968) 17/01/2017 - 07/11/2017 (890)
Validation set (#Samples) 22/10/2015 - 29/10/2015 (75) 03/08/2016 - 12/08/2016 (138) 07/11/2017 - 15/02/2018 (127)
Testing set (#Samples) 29/10/2015 - 17/12/2015 (153) 15/08/2016 - 15/11/2016 (278) 15/02/2018 - 21/06/2018 (255)

Table 2: Model performance in terms of MSE by varying the window size τ .

Year 2015 2016 2017-2018
Methods τ = 3 τ = 7 τ = 15 τ = 3 τ = 7 τ = 15 τ = 3 τ = 7 τ = 15
vpast 1.0905 0.5441 0.2744 1.3542 0.7300 0.4465 1.1739 0.5681 0.2723
SVRvpast 0.6576 0.4393 0.2503 0.6440 0.3810 0.2714 0.5643 0.3634 0.2273
HAN 0.5421 0.4259 0.2516 0.5272 0.3390 0.2501 0.5186 0.3554 0.2231
ProFET 0.5902 0.4297 0.2471 0.5737 0.3717 0.2502 0.5341 0.3605 0.2270
BERT 0.5628 0.4214 0.2653 0.5256 0.3429 0.2472 0.5411 0.3596 0.3032
XLNET 0.5537 0.4167 0.2723 0.5385 0.3368 0.2560 0.5396 0.3798 0.2652
DialogueGCN 0.5376 0.4138 0.2462 0.5209 0.3343 0.2472 0.5019 0.3494 0.2204
MRQA 0.5174 0.4126 0.2407 0.5162 0.3314 0.2286 0.4966 0.3443 0.2240
DialogueGAT 0.4530 0.3236 0.1898 0.4549 0.2884 0.1810 0.4090 0.2886 0.2036

last layer on the [CLS] token is used to represent
each utterance. For the XLNET model, we use the
last token hidden state to represent each utterance.
We represent each document of the conference call
by averaging all the utterance feature vectors and
then use the SVR model to predict the stock return
volatility.

(5) DialogueGCN. This is a competitive model
for emotion recognition in dialogues without us-
ing external knowledge (e.g., large BERT-like pre-
trained models) (Ghosal et al., 2019)4. It constructs
a graph of utterances in dialogue and uses the GCN
(Graph Convolutional Network) for modeling the
conversational context. Although this model is orig-
inally designed for emotion recognition, it can be
directly used to leverage the dialogue structure of
conference calls for our task of financial risk pre-
diction. Unlike our method, the DialogueGCN only
constructs the graph of utterance nodes and indi-
rectly leverages the speaker information by linking
together the utterance nodes of different speakers
within a conference dialogue.

(6) MRQA. To our knowledge, the MRQA
(Multi-Round Q&A) is the state-of-the-art
attention-based model for financial risk prediction
using conference calls (Ye et al., 2020). Unlike
our model, this model does not use speaker
information but exploits the dialogue information
of the multi-round Q&A structure. Specifically,
the MRQA uses the BiLSTM to encode textual

4https://github.com/declare-lab/conv-emotion

features of conference calls and designs two
modules for modeling the dialogue structure,
including an RSS (Reinforced Sentence Selector)
module for selecting important sentences in
the Q&A segments, and an RBAN (Reinforced
Bidirectional Attention Network) module for
exploring the interaction between questions and
answers.

4.3 Model Evaluation

Next, we present and analyze our experimental
results.

4.3.1 Experimental Settings
To measure the model performance for predicting
stock return volatility, we use the evaluation metric
MSE (Mean Squared Error), which is commonly
used in prior research (Kogan et al., 2009). We
split the data sample as aforementioned and train
all the models on a single Nvidia RTX 2080 Ti
GPU. We use the MSE (with L2 regularization) as
a loss function for training and use the Adam algo-
rithm (Kingma and Ba, 2014) for optimizing the
loss. We tune the hyper-parameters of all models
by performing a grid search on the validation set.
The tuned parameters of our DialogueGAT model
are as follows: the learning rate is 1e-5, the L2
penalty is 1e-6, the batch size is 4, the head of GAT
is 5, the number of layers of GAT is 5, the dimen-
sion of feature vectors d is 300, and the dropout
rate is 0.1. We train our model for a maximum of
100 epochs and stop training if the validation loss
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does not decrease for 5 consecutive epochs.

4.3.2 Performance Comparison

The main results of our performance comparison
are shown in Table 2. To compare all models on an
equal footing, we include the historical stock return
volatility vpast as a feature variable for all models.
We summarize our main findings as follows.

First, our proposed DialogueGAT performs best
among all models for predicting the future stock
return volatility for the three window sizes τ =
3, 7, 15 in all testing years. Paired two-tailed t-tests
show that our DialogueGAT significantly outper-
forms: (1) vpast(τ = 3,7), SVRvpast(τ = 3), HAN(τ
= 3), ProFET(τ = 3,15), BERT(τ = 3), XLNET(τ =
3,15), MRQA(τ = 15) at the 1% significance level;
(2) SVRvpast(τ = 7), HAN(τ = 15), ProFET(τ = 7),
BERT(τ = 7,15), XLNET(τ = 7), DialogueGCN(τ
= 3,15), MRQA(τ = 3) at the 5% significance level;
(3) vpast(τ = 15), HAN(τ = 7), DialogueGCN(τ =
7), MRQA(τ = 7) at the 10% significance level.
This demonstrates the effectiveness of our Dia-
logueGAT model for financial risk prediction.

Second, we observe that the models using both
numerical historical stock return volatility and tex-
tual conference call transcripts (i.e., HAN, Pro-
FET, BERT, and XLNET) outperform the models
that only use the numerical historical stock return
volatility (i.e., vpast and SVRvpast). This implies
that the textual information of conference calls is
incrementally useful for financial risk prediction,
which is consistent with prior research (Li et al.,
2020).

Last and most importantly, we find that the mod-
els that further consider the dialogue structure (i.e.,
DialogueGCN, MRQA, and our DialogueGAT) per-
form better than the models that only exploit the se-
mantic information of textual conference call tran-
scripts (i.e., HAN, ProFET, BERT, and XLNET).
This implies that the dialogue structure contains in-
cremental information that is useful for improving
financial risk prediction. Our DialogueGAT model
performs best among all models that consider di-
alogue structure, demonstrating its effectiveness
for modeling dialogues and the predictive power of
speaker information.

4.4 Supplementary Analysis

We further conduct supplementary analysis to ex-
amine the effects of our model’s key components,
parameter sensitivity, and model interpretability.

4.4.1 Ablation Study
To examine the effects of our model’s key compo-
nents, we conduct the ablation study by evaluating
the following variants of our DialogueGAT model:
(1) w/o vpast: DialogueGAT model without using
the feature of historical stock return volatility vpast.
(2) w/o speaker: DialogueGAT model without us-
ing the speaker-related modules in Figure 1. (3)
random speaker embedding: DialogueGAT model
which removes the trainable speaker embedding
matrix and uses a random vector to initialize the
embedding of the speaker node. (4) position embed-
ding: DialogueGAT model which adds a trainable
position embedding to each utterance node embed-
ding as in (Vaswani et al., 2017) for examining the
usefulness of sequential information of utterances.

The results of our ablation study are shown in
Table 3. It is worth noting that we only present the
results in 2015 due to space limitation, but untabu-
lated results show that the results remain in other
testing years. We have the following observations
from Table 3:

(1) The inclusion of vpast feature can improve
our model performance, and its importance in-
creases as the window size τ gets larger than 7.

(2) Our proposed speaker-related modules play
a vital role in our DialogueGAT model since their
performance will drop significantly if those mod-
ules are removed or replaced. Specifically, we can
observe that the performance of the variant model
random speaker embedding performs much worse
than our full DialogueGAT model when the train-
able speaker embedding vectors are replaced with
the random embedding vectors. Moreover, the per-
formance of the variant model w/o speaker will
further drop because this variant not only removes
the speaker information, but also destroys the struc-
ture of dialogue graph by removing all speaker
nodes.

(3) The sequential information of utterances in
conference calls is unnecessary and even harmful to
model performance. This observation is consistent
with the finding in a recent study (Yang et al., 2021).
Hence, we do not use the position embedding in
our full DialogueGAT model.

4.4.2 Parameter Sensitivity
We examine whether our model is sensitive to the
parameters of our key module – the Graph En-
coder in Figure 1. There are two important pa-
rameters in this module: (1) the number of heads
n_heads in multi-head attention, and (2) the num-
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Table 3: The performance of variants of our Dialogue-
GAT model.

Variants of DialogueGAT τ = 3 τ = 7 τ = 15
w/o vpast 0.4711 0.3338 0.2276
w/o speaker 0.5493 0.4288 0.2473
random speaker embedding 0.5036 0.3590 0.2430
position embedding 0.4894 0.3569 0.2238
DialogueGAT (full model) 0.4530 0.3236 0.1898

ber of GAT layers n_layers. Here, the parameter
n_layers indicates that each node in the dialogue
graph can aggregate the information from its n-hop
neighbors. We measure the model performance of
our DialogueGAT by varying these two parameters
while fixing all the other parameters, and the results
in 2015 are shown in Figure 2. As can be seen,
our model will perform better as the parameter
n_heads or n_layers takes a larger value but tend
to perform worse when n_layers and n_heads
are larger than 5 because of the over-fitting and
over-smoothing issue (Li et al., 2018). In addi-
tion, when each node in the dialogue graph can
aggregate the information from its 5-hop neighbors
(i.e., n_layers = 5), our designed dialogue graph
guarantees that all utterance nodes can obtain the
local context information of their preceding and
following speaker nodes.

(a) n_heads

(b) n_layers

Figure 2: The performance of our DialogueGAT model
in 2015 by varying the parameters n_heads and n_layers.

4.4.3 Model Interpretability
Since model interpretability is important in finance
and economics, we follow (Wiegreffe and Pinter,
2019) to validate the usefulness of our model’s
contextual attention layer for model interpretability.
Table A1 in Appendix shows the diagnosing results.
We also conduct a case study using AMD’s 2015
Q2 earnings conference call5. We plot the attention
scores of utterances and speakers when predicting
the stock return volatility in the next three days
in Figure 3. Since AMD’s financial performance
in 2015 Q2 was below the market expectation, its
stock price dropped significantly after the release
of the earnings conference call. We observe that
our model could provide reasonable interpretation
ability by its attention mechanisms. As shown in
Figure 3 (a), the utterances by managers in the pre-
sentation segment are generally more important
than those in the Q&A segment of earnings confer-
ence call except for certain uninformative messages
(e.g., the fourth blue bar in the figure corresponds to
the manager’s utterance “Thank you, Devinder. Op-
erator, if you could poll the audience for questions,
please.”). This is perhaps because the managers
inside the company usually hold more private infor-
mation unknown to the outside market participants,
and their presentation of the company’s potential
performance is more informative to the market. As
shown in Figure 3 (b), managers and analysts who
ask difficult questions that may interest public in-
vestors are usually more important than the other
analysts. For example, the analysts Sanjay Chaura-
sia and Matthew D. Ramsay have high attention
scores because they dig into the details of the chal-
lenges and risks faced by the company. To answer
their difficult questions instantly, the manager also
provided very informative discussions that may not
be disclosed in formal disclosures such as annual
and quarterly reports.

5 Conclusion

In this paper, we develop a model called Dialogue-
GAT for financial risk prediction by jointly model-
ing the utterances and speakers in earnings confer-
ence calls. We make a methodological contribution
by proposing a new method for constructing the di-
alogue graph of utterances and speakers and design-
ing two contextual attention mechanisms for both

5The transcript of this conference call is available at
https://seekingalpha.com/article/3332615-advance
d-micro-devices-amd-lisa-t-su-on-q2-2015-resul
ts-earnings-call-transcript.
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(a) Utterance Attention

(b) Speaker Attention

Figure 3: Attention scores of utterances and speakers generated by our DialogueGAT model in AMD’s 2015 Q2
conference call.

utterance and speaker. Our proposed method is gen-
eral enough to be applied for other dialogue-based
prediction tasks such as emotion recognition and
sentiment analysis. We also add to the literature
by introducing an extended dataset of conference
call transcripts with dialogue structure and speaker
information. Empirical results on our extended
dataset demonstrate the superiority of our proposed
model over competitive baselines from the extant
literature. We also conduct supplementary analysis
for examining the effects of our model’s key com-
ponents, parameter sensitivity, and interpretability.

6 Limitations

This paper is not without limitations. First, we
measure the model performance using only the
performance metric MSE. Although this metric
is widely used for regression models, more per-
formance metrics could be reported for a more
thorough evaluation. Second, to compare mod-
els on an equal footing, we follow our baselines
(e.g., DialogueGCN and MRQA) by only using the
pre-trained GloVe model to encode textual utter-
ances. However, it would be interesting to examine
whether using more powerful BERT-like models
could improve the prediction performance. Third,
we run baseline models using their default hyper-
parameters due to computational constraints.
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Appendix

Illustration of Dialogue Graph

Figure A1 presents a more detailed illustration of
our constructed dialogue graph. We construct the
dialogue graph for each earnings conference call
as described in Section 3.2.2. Specifically, we con-
nect each utterance node to its previous and next
utterance nodes and its speaker node. If a speaker
attends multiple conferences, the speaker’s embed-
ding vector (e.g., speaker 1 in the figure) will be
shared for capturing the speaker information across
different earnings conference calls.

Model Interpretability

Although there is a debate on whether attention can
be used to explain the model, the attention mecha-
nism is commonly used as a tool for understanding
the model predictions in recent studies (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019; Serrano
and Smith, 2019). We validate the usefulness of
our model’s contextual attention layer for model
interpretability by following the experiment pro-
posed by (Wiegreffe and Pinter, 2019). Specifically,
we diagnose the attention distributions by guiding
simpler models in order to examine the prediction
power of attention distributions.

To create a diagnostic model, we first remove
the components of our model (i.e., Graph Encoder,
Speaker Attention, and Utterance Attention) to cre-
ate a “clean” setting, where the trained parts of the

model have no access to neighboring speakers or ut-
terances. Then, we use the following three methods
to generate guide weights to get a global feature
vector on utterance embedding vectors obtained
from TextCNN and speaker embedding vectors ob-
tained from the pre-trained speaker embedding. We
impose the guide weights by following the setting
in (Wiegreffe and Pinter, 2019):

(1) Uniform – we use simple arithmetic mean to
get the global feature vector, which represents the
situation without attention;

(2) Trained MLP – we use an MLP to learn its
own attention parameters;

(3) Base – we take the weights learned by the
base DialogueGAT’s attention layer.

Table A1: Diagnosing attention distributions by guiding
simpler models.

Guide weights τ = 3 τ = 7 τ = 15

Uniform 0.5791 0.4347 0.2562
Trained MLP 0.5568 0.4263 0.2501

Base 0.5392 0.4160 0.2482

The diagnosing results are shown in Table A1.
As can be seen, the pre-trained scores from our
attention model perform better than other guide
weights, which means that they are helpful and
consistent for model explainability.

Figure A1: An illustration of our constructed dialogue graph.
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