MovieUN: A Dataset for Movie Understanding and Narrating

Qi Zhang*, Zihao Yue*, Anwen Hu, Ziheng Wang, Qin Jin†
School of Information, Renmin University of China
{zhangqi1996, yzihao, anwenhu, wzh2019201417, qjin}@ruc.edu.cn

Abstract

Automatic movie narration generation and narration grounding are very important to provide a true movie experience for the blind and visually impaired. To tell the movie story well, it is necessary to mention plot-related details (such as character names) and keep the narrations in a plot coherent. Taking these two points into consideration, we construct a Chinese large-scale video benchmark from 101 movies for Movie Understanding and Narrating (MovieUN) to support the Movie Clip Narrating (MCN) task and Temporal Narration Grounding (TNG) task. We split movies in MovieUN into movie clips according to plots, and pair them with corresponding narrations provided by the movie narrators. Ultimately, the TNG task involves 3,253 long video clips totaling 179 hours. The MCN task contains 33,060 video clips totaling 105 hours. We benchmark state-of-the-art video captioning models and temporal grounding models in MCN and TNG tasks, respectively. Furthermore, to accurately comprehend plots of different characters, we propose methods to incorporate portraits of actors as external knowledge in both tasks. The experiment results demonstrate the effectiveness of our proposed methods. The dataset and codes are released at https://github.com/yuezih/MovieUN.

1 Introduction

The estimated number of visually impaired people worldwide is about 285 million by 2020, according to reports (He et al., 2020). While regulations are in place to ensure increased access for these audiences to experience the culturally dominant movies and TV shows on popular media platforms, technologies that provide them with genuine experience are becoming increasingly important. Audio description (AD, also known as video description) is a form of such technology intended for visually impaired audiences to experience the movie or TV show by hearing what is happening on-screen. However, producing movie narration scripts is not trivial, often requiring a professional writer to oversee the original movie. The high cost of narration generation (Lakritz and Salway, 2006) greatly hinders the production of movies with AD and thus limits the opportunities for visually impaired users to experience movies.

To address this issue, attempts have been carried out to automate AD production. Datasets of movies with AD are constructed to support the research on automatic AD generation, including the MPII-MD dataset (Rohrbach et al., 2015) and M-VAD dataset (Torabi, 2015), with shot-level ADs or scripts aligned to the movie visual contents. Consequently, different solutions for automatic movie narrating have been proposed based on these datasets (Rohrbach et al., 2017).

However, these efforts mainly focus on generating a single sentence narration for a shot of a few seconds, which gaps with the actual movie narration scenario. Shot-level single-sentence narration generation has some obvious deficiencies. First, it does not consider whether the shot contains something worth narrating and just describes all shots indiscriminately. Second, it does not consider the context of the shot, and thus if simply splicing all the shots together to form the narration of the plot segment, there will be apparent redundancy and incoherence problems. We consider that a high-quality narration should be generated from a plot segment (which we define as a movie clip) rather than the smallest unit of shot in a movie. Therefore, in this paper, we focus on the movie clip narrating task. Moreover, these existing datasets are all in English. However, about one-fifth of the world’s population speaks Chinese as their mother tongue, of whom more than 17 million are visually impaired (Yu and Bu, 2021; Wang and Wu, 2021). Contrary to the huge demand, the accessibility of Chinese media content (Zhu et al., 2020) to visu-
秋雅正独自哭泣时，袁华从背后缓缓走来，他抬起头看着秋雅的背影，秋雅回过头看了一眼袁华后便背过身去，袁华气得一拳打在树上。

Xia Luo looked at Qiu Ya's back and kept staring at her. Ma Dongmei was so angry that she pushed Zhang Yang out of her seat and sat behind Xiu Luo, she stared at Xiu Luo, but Xiu Luo looked at Qiu Ya with deep affection.

Metadata

<table>
<thead>
<tr>
<th>Basic Info</th>
<th>Genres</th>
<th>Introduction</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title: Goodbye Mr. Loser</td>
<td>Comedy, Romance, Crossover</td>
<td>At the wedding of his first love Qiu Ya, Xia Luo pretended to be rich and made a fool of herself, and was poked and prodded by his wife Ma Dongmei.</td>
<td>Actor: 夏洛, Actress: 马丽, Actor: 袁华, Actor: 马冬梅</td>
</tr>
</tbody>
</table>

Narration

00:29:03-00:29:21: 袁华拿起秋雅手中的铅笔画了一道三八线，夏洛看袁华看得如此专注，坐在了夏洛的后面，他们盯着夏洛，

00:30:42-00:30:56: 袁华独自看时，夏洛从背后缓缓走来，他抬起头看着秋雅的背影，秋雅回过头看了一眼袁华后便背过身去，袁华气得一拳打在树上。

Figure 1: Samples of the annotation formats from the movie Goodbye Mr. Loser.

1. We crawl 101 movies with ADs in total. As the narrations are in audio format, we leverage the speech recognition tools to automatically transcribe the narration audio. We then design a manual correction procedure to filter the errors based on the automatic transcriptions. We crawl rich meta information relevant to the movie as well. Finally, MovieUN contains 101 movies with 33,060 clip-level narrations totaling 105 hours, with data samples as shown in Fig. 1. Aiming at assisting visually impaired audiences to experience a movie, we believe that two technologies are essential, namely automatic narration generation that generates descriptions of movie content, and automatic movie clip grounding that locates a clip in the movie based on user interest. Therefore, in this paper, we propose two tasks based on MovieUN, the Movie Clip Narrating (MCN) task and the Temporal Narration Grounding (TNG) task. We first benchmark the performance of existing methods on both tasks, and further propose our improved models via incorporating auxiliary external knowledge. In addition to MCN and TNG tasks, MovieUN can also potentially support other tasks such as Visual Question Answering.

The main contributions of this paper are as follows: (1) We propose a new movie narration dataset, MovieUN, which provides a large number of aligned narrations in Chinese. (2) We propose two primary tasks, MCN and TNG, to support the research on clip-level movie understanding and narrating. (3) We benchmark state-of-the-art models on MovieUN and propose improved models enhanced by external knowledge for MCN and TNG, respectively. We expect our proposed MovieUN and the benchmark tasks can contribute to the final realization of the narrating and understanding of a whole movie.

2 Related Works

Datasets.

Existing datasets to support the automatic narration generation task include M-VAD (Torabi, 2015) and MPII-MD (Rohrbach et al., 2015). M-VAD, which is collected based on an automatic AD segmentation and alignment method, contains 47k videos from 92 DVDs, with an average length of 6.2s, each with an aligned narration. MPII-MD contains 68k videos from 94 movies with an average length of 3.9s, about half of which come with paired scripts and the other half with paired ADs. In addition to movies, TV shows
are also good data sources for automatic narration generation. Lei et al. propose TV Show Caption (TVC), a variant of TV Show Retrieval (TVR) (Lei et al., 2020). It contains 11k short videos averaging 9.1s in length, and 26k captions describing the visual content, dialogues and subtitles. All the existing datasets are in English.

Video Captioning. Video captioning (VC), as a classic vision and language task, has received much research attention in recent years. Early works identify visual objects from videos and generated descriptions using pre-designed templates (Kojima et al., 2002; Guadarrama et al., 2013). With the advancement of deep learning, efficient video feature aggregation and high-quality description generation have been made possible (Pasunuru and Bansal, 2017). Compared to the traditional video captioning task, dense video captioning is more challenging as it requires generating descriptions of multiple sentences for multiple events in a long video. The two-stage generation approach, which firstly performs proposal detection on the video and then generates descriptions for each proposal separately, has been the dominant approach (Krishna et al., 2017; Park et al., 2019; Senina, 2014; Xiong, 2018). Recently, some works avoid event detection and generate paragraph descriptions directly based on the video (Song et al., 2021), obtaining competitive performance compared to previous works. Inspired by the one-stage paragraph generation work, we propose our knowledge-enhanced movie narration generation model. Identity-aware video description that distinguishes different persons is more practical in real applications. Park et al. (Park et al., 2020) attempts to achieve role-aware movie narrating by distinguishing different people using labels such as PERSON1, PERSON2, etc. However, it fails to generate concrete role names and falls short in terms of practicality.

Temporal Sentence Grounding. The temporal sentence grounding task aims to localize the moment in a video based on a natural language sentence (Gao et al., 2017). A two-step pipeline has been the mainstream approach, which first produces a large number of moment candidates via sliding windows, then performs final localization based on the similarity between each candidate and the query sentence. The following works try to improve the grounding performance by enhancing interaction between video and query modalities (Liu et al., 2021; Li et al., 2022) or introducing novel detection heads (Lei et al., 2021; Zhang et al., 2020). Specifically, for interaction methods, Liu et al. (2021) adopt an Iterative Alignment Network (IA-Net) to iteratively interact inter- and intra-modal features within multiple steps. Li et al. (2022) explicitly decompose video and query into multiple structured hierarchies and learns fine-grained semantic alignment among them. For detection heads, Zhang et al. (2020) proposes a two-dimensional map, one dimension indicates the starting time of a moment, and the other indicates the end time, to model the temporal relations. Lei et al. (2021) adopt a transformer encoder-decoder model to directly generate moment proposals, which uses a detr-based (Carion et al., 2020) detection head.

Table 1: MovieUN dataset overall statistics.

<table>
<thead>
<tr>
<th>Movies</th>
<th>Texts/Avg. text len.</th>
<th>Clips/Avg. len(s.)</th>
<th>Long clips/Avg. len(s.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>33,060/45.3</td>
<td>33,060/11.4</td>
<td>3,253/197.6</td>
</tr>
</tbody>
</table>

3 MovieUN Dataset

3.1 Data Collection

Movie Acquisition. As far as we know, there are only a handful of platforms that provide accessible movies in Chinese. Compared with the platforms such as Netflix or Apple TV, each of which provides thousands of accessible media resources, the Chinese platforms only offer a small number of movies with AD. The barrier-free channel of Xigua Video is one such platform that provides over 100 accessible movies online, and new movies are still being released that can support further expansion of our dataset. From Xiya Video, we collect all 101 movies available to date and crawl as much meta information as possible for each movie, including title, introduction, genres, directors, actors, etc. We emphasize actors in particular, including actor names, role names, actor portraits, role rankings, and other information about important roles. We expect such information can benefit the movie narrating task and potential general movie understanding tasks.

Movie Narration Extraction. As the movie narration or AD is only available in the audio format from the platform, we therefore leverage the automatic speech recognition tools to transcribe the audio description. We extract the audio track from
the movie and utilize the Automatic Speech Recognition (ASR) service provided by iFlyTek\(^2\), which detects the speech in the audio and transcribes it into text. In addition, the service supports identifying different speakers, which helps discriminate the narrator from the actors. However, the ASR service is not perfect, and its outputs contain errors such as wrong characters, unreasonable sentence breaking, and misidentification of narrations as movie dialogues, etc. We therefore recruit human annotators to further correct the ASR transcription errors and remove non-narration texts manually to improve the data quality. We also delete the irrelevant clips at the beginning (e.g., movie synopsis, cast introductions) and the summary narration at the end.

We then further organize the narrations at the clip level. We merge two narration sentences if their temporal gap is less than one second. We also apply a paragraph-length threshold set to 100 to limit over-merging to avoid excessively long paragraphs. We take punctuation into account as well, for example, a period in Chinese is likely to mean the end of a narrative paragraph. We further elaborate on data quality in Appendix B. The various annotation formats are illustrated in Fig. 1.

3.2 Dataset Statistics

Table 1 shows the overall statistics of MovieUN. MovieUN collects a total of 33,060 narration paragraphs, which are annotated with START and END timestamps. The average length of narration paragraphs is 45.3 Chinese characters, and the average duration of corresponding movie clips is 11.4 seconds. Meanwhile, MovieUN provides 3,253 long movie clips as well, with an average duration of 197.6 seconds to support the localization task.

Paragraph Properties. We tagged all words in the dataset adopting the Chinese Part-Of-Speech (POS) and Named Entity Recognition (NER) tagger toolbox HanLP\(^3\). Figure 2(a) presents the distribution of the number of role names in each paragraph. The vast majority of paragraphs contain at least one role name. Figure 2(b) shows the distribution of number of verbs in each paragraph. 71% of paragraphs involve at least three verbs.

Movie Properties. We analyze the genres of all 101 movies in MovieUN, which involves 41 different genres in total. A movie can have up to four genre tags. Figure 3 shows the top 10 genres, with Comedy/Romance/Action ranking in the top 3, which illustrates the diversity of movies. Meanwhile, Figure 4 presents the distribution of the number of portraits in each movie. Specifically, most movies contain at least 20 portraits of different roles.

4 Movie Clip Narrating

4.1 Task Description

In order to help the visually impaired keep up with the plot of the movie, it is crucial to describe the visual contents when no actors are speaking. Besides, ensuring the descriptions within a plot are coherent plays an important role in understanding the overall story. Thus, we first propose a Movie Clip Narrating (MCN) task, which aims to generate a plot-related paragraph description given a video clip. MovieUN contains 33k (movie clip, narration) pairs to support the MCN task. We name this set MovieUN-N. As shown in Table 2, compared with existing movie-related narrating datasets, MovieUN-N contains much longer video clips and text descriptions, which indicates that MCN tasks on MovieUN-N are more challenging.

\(^2\)https://www.xfyun.cn/doc/asr/lfasr/API.html

\(^3\)https://github.com/hankcs/HanLP
Table 2: MovieUN versus Video Captioning and Temporal Sentence Grounding datasets. * indicates statistics based on Chinese characters.

<table>
<thead>
<tr>
<th>Task</th>
<th>Dataset</th>
<th>Text type</th>
<th>Videos/Texts</th>
<th>Avg. video len.</th>
<th>Avg. text len.</th>
<th>Avg. actions</th>
<th>Avg. role names</th>
<th>Portraits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCN</td>
<td>M-VAD</td>
<td>sentence</td>
<td>47k/47k</td>
<td>6.2 sec.</td>
<td>10.8</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MPII-MD</td>
<td>sentence</td>
<td>68k/68k</td>
<td>3.9 sec.</td>
<td>9.6</td>
<td>1.4</td>
<td>0.37</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TVC</td>
<td>sentence</td>
<td>109k/262k</td>
<td>9.1 sec.</td>
<td>13.4</td>
<td>1.9</td>
<td>0.75</td>
<td>0</td>
</tr>
<tr>
<td>MovieUN-N</td>
<td></td>
<td>paragraph</td>
<td>33k/33k</td>
<td>11.4 sec.</td>
<td>45.3*</td>
<td>7.0</td>
<td>1.58</td>
<td>2,533</td>
</tr>
<tr>
<td>TNG</td>
<td>Charades-STA</td>
<td>sentence</td>
<td>10k/16k</td>
<td>31 sec.</td>
<td>7.2</td>
<td>1.1</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ActivityNet</td>
<td>sentence</td>
<td>20k/72k</td>
<td>118 sec.</td>
<td>13.5</td>
<td>2.1</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TVR</td>
<td>sentence</td>
<td>22k/109k</td>
<td>76 sec.</td>
<td>13.4</td>
<td>1.9</td>
<td>0.75</td>
<td>0</td>
</tr>
<tr>
<td>MovieUN-G</td>
<td></td>
<td>paragraph</td>
<td>3k/33k</td>
<td>198 sec.</td>
<td>45.3*</td>
<td>7.0</td>
<td>1.58</td>
<td>2,533</td>
</tr>
</tbody>
</table>

for models to comprehend key visual contents and generate coherent narrations. Besides, the narration styles may vary across different genres of movies. The role portraits are important external knowledge for a model to accurately describe the subject of actions. Thus, we also provide this information in MovieUN-N to support the MCN task.

4.2 Proposed Model

For the MCN task, we propose two models, namely Multimodal Movie Narrator (MMN) and Role-pointed Movie Narrator (RMN).

Multimodal Movie Narrator. With multimodal inputs including video, movie genres (e.g., action, romance), role names, and actor portraits, we first propose an end-to-end Transformer-based model, namely Multimodal Movie Narrator (MMN), as shown in Fig. 5 (a). Taking into account the frame-level visual information, especially the face characteristics, and temporal variance, the video clip is embedded into a sequence of frame-level features. To emphasize the characters, we extract face features from each frame and concatenate them to corresponding frame feature sequentially based on confidence scores of face detection. With learnable genre embeddings, genres are represented as a sequence of genre features. For each role name of the movie, we sum its textual representations and visual portrait representations as external knowledge. After multimodal representation, we apply a Transformer Encoder to learn the cross-modal relationship and a Transformer Decoder to generate narrations. At each decoding step, we follow the One-stage Video Paragraphing model (OVP) (Song et al., 2021) to use a dynamic memory bank to refine the video-part representations.

Role-pointed Movie Narrator. While MMN introduces role names as inputs, it still generates a person name token by token. This can distract the model from describing visual contents to organizing person names, which is not the key target of narration generation. Thus, we further propose a Role-pointed Movie Narrator (RMN), which can directly choose a complete role name from the movie cast according to context via a Pointer Network (Gu et al., 2016), as shown in Fig. 5(b). During encoding, different from MMN, only genre and video representations are fed into the Transformer Encoder. At the decoding step t, with the decoder output h_t, we first calculate the token scores y_{vt}^{voc} among normal vocabulary. Then we design a Role Selector module to get the name scores among external role vocabulary. Concretely, with the decoder’s video-part attention distribution α_t, we perform a weighted summation among video representations to get a context-filtered video feature. Then the role scores y_{vt}^{role} are computed with the context-filtered video feature as query and portrait features as key. Finally, the prediction distribution at step t is calculated as follows:

$$y_t = f([y_{vt}^{voc}; \lambda y_{vt}^{role}])$$ (1)

where $[;]$ means concatenation, λ is a gate computed from h_t, $f()$ is the softmax function.

4.3 Experiments

Task Settings. We design two task settings to examine the narrating ability of models, namely movie-seen and movie-unseen. For the movie-seen setting, we randomly select 80% of the clips as the training set from each movie, and the remaining 10% and 10% as the validation and test sets. In this setting, clips from train/val/test splits can belong to an identical movie. For the movie-unseen setting, we select 81 movies as the training set, 10 movies each for the validation and test sets. Therefore, in this setting, models are tested on video clips from movies that have never been seen during training.
Implementation Details. We evaluate the qualities of narration generation in terms of both accuracy and diversity. Following previous works (Song et al., 2021), we use BLEU@4 (Papineni et al., 2002), METEOR (Denkowski and Lavie, 2014) and CIDEr (Vedantam et al., 2015) to measure accuracy, and n-gram diversity (Div@n) (Shetty et al., 2017) and n-gram repetition (Rep@n) (Xiong, 2017) to measure diversity. Given the ground truth, both MMN and RMN are trained by the maximum likelihood estimation (MLE) objective. For videos, we use CLIP (Radford et al., 2021) pretrained on large-scale image-text pairs and MIL-NCE (Miech et al., 2020) pre-trained on HowTo100M videos (Miech et al., 2019) to extract frame-level CLIP and S3D features with dimensions of 512 and 1024, respectively, at 1 FPS. For faces in videos frames and portraits, we use the Arcface model (Deng et al., 2019) pre-trained on MS1M (Guo et al., 2016) to extract face features. More details about model input can be found in Appendix C.1.

Results & Analysis. We choose Vanilla Transformer (Zhou et al., 2018) and state-of-the-art video paragraphing model OVP (Song et al., 2021) as the baselines. As shown in Table 3, firstly, in movie-seen or movie-unseen settings, both MMN and RMN outperform baselines in terms of narration accuracy and diversity. This validates the effectiveness of our models for narration generation. Secondly, RMN outperforms MMN in the movie-unseen setting but underperforms it in the movie-seen setting. This shows that compared with MMN, RMN is poorer at remembering some empirical knowledge (e.g., role names) but better at describing video clips of a new movie with the help of the pointer network.

To verify the contribution of different-modality representations in our MMN and RMN models, we perform an ablation study by progressively adding these representations as input. As shown in Table 4, adding representations of each modality brings performance improvement for MMN and RMN. In particular, for RMN, face features extracted from video frames bring significant gains in narration accuracy and diversity. This shows that using face features to bridge the video content and external skeletal information while narrowing the gap between MMN and RMN.
Table 4: Ablation study about multimodal inputs. (n: role names, p: face features from external portraits, v: face features from video frames, g: movie genres.) MMN and RMN are tested in the movie-seen setting and movie-unseen setting, respectively.

<table>
<thead>
<tr>
<th>Model</th>
<th>Multimodal input</th>
<th>CIDEr↑</th>
<th>Rep@4↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMN</td>
<td>✓ ✓ ✓ ✓</td>
<td>25.36</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>26.64</td>
<td>3.35</td>
</tr>
<tr>
<td></td>
<td>✓ ✓</td>
<td>27.47</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓ ✓</td>
<td>28.55</td>
<td>2.60</td>
</tr>
<tr>
<td>RMN</td>
<td>✓ ✓ ✓</td>
<td>7.78</td>
<td>8.94</td>
</tr>
<tr>
<td></td>
<td>✓ ✓</td>
<td>10.66</td>
<td>3.62</td>
</tr>
<tr>
<td></td>
<td>✓ ✓ ✓</td>
<td>10.15</td>
<td>2.18</td>
</tr>
</tbody>
</table>

actor portraits is critical for generating role-related narrations. More qualitative results can be found in Appendix D.1.

5 Temporal Narration Grounding

5.1 Task Description

To help visually impaired people revisit clips of interest to them during movie entertainment, an AI agent should be able to understand users’ intentions and locate the target movie clips. To achieve this goal, we propose a Temporal Narration Grounding (TNG) task. With a paragraph narration as the query, TNG aims to predict its starting and ending time in an untrimmed video. Based on MovieUN, we build MovieUN-G to support the TNG task.

Concretely, we first split each movie into 200-second clips and discard ones without narrations. Then, we adjust the clip boundaries to ensure that all narrations in them are complete. After such processing, MovieUN-G contains 3,253 long video clips. Finally, follow the movie-unseen setting in the MCN task, we split the 3,253 long clips into 2,611/328/314 for training, validation, and test. A clip contains an average of 10 queries.

There are two major differences between MovieUN-G and existing Temporal Sentence Grounding (TSG) datasets. As shown in Table 2, firstly, text queries in MovieUN-G contain much more actions and role names, which suggests that understanding the correspondence between roles and actions is crucial for the TNG task. To aid in learning such relationships, we additionally provide portraits of the characters, which are ignored in previous datasets. Secondly, video clips of MovieUN-G are much longer than ones in existing datasets while the target scale (duration proportion of the target interval in a video clip) is smaller, as shown in Figure 7, which suggests that the model should understand longer video content at a finer-grained level in order to locate shorter target intervals. In general, the TNG task based on MovieUN-G is more challenging than existing Temporal Sentence Grounding tasks.

5.2 Proposed Model

Comprehending the actions of different roles is critical for Temporal Narration Grounding. Therefore, based on state-of-the-art TSG model IA-Net (Liu et al., 2021), we propose a Role-aware Narration Locator (RNL), as shown in Figure 6.

Role-aware Video Encoding. Each video clip is firstly embedded into a sequence of frame features \(V = \{ v_1, v_2, \cdots, v_L \} \) with CLIP and MIL-NCE as MMN/RMN, where \(L \) is the total number of video frames. Similar to the solution for the MCN task, we extract face features from the frames and perform dimension reduction by a fully-connected layer to filter key face information. The sequence of face representations for the video clip is noted as \(F = \{ f_1, f_2, \cdots, f_L \} \). Finally, by adding \(V \) and \(F \), the video clip is encoded into a sequence of role-aware video representations \(\hat{V} = \{ \hat{v}_1, \hat{v}_2, \cdots, \hat{v}_L \} \).

Role-aware Text Encoding. The paragraph query is tokenized into \(N \) tokens and then represented as a sequence of contextualized text features \(Q = \{ q_1, q_2, \cdots, q_N \} \) by the Bert-Base-Chinese model (Devlin et al., 2019). To relate a role name in the text query with a character in the video, it is important to introduce external vision knowledge about the appearance of the actor playing the role. Therefore, we firstly extract role names in the text query by Named Entity Recognition with HanLP. By leveraging metadata in MovieUN, we relate these role names with portraits of actors. Then, each portrait is represented as a face feature and fed to a fully-connected layer. By adding all tokens in role names with corresponding portrait representations, the text query is encoded into a sequence of role-aware text representations \(\hat{Q} = \{ \hat{q}_1, \hat{q}_2, \cdots, \hat{q}_K \} \).

Grounding Module. IA-Net consists of two main components: cross-fusion module and detection head. Video representations \(\hat{V} \) and text representations \(\hat{Q} \) are firstly fed to the cross-fusion module, which iteratively interacts inter- and intra-modalities in multiple steps for semantic alignment. Then, the anchor-based detection head is applied.
to predict the confidence scores of all anchors and corresponding temporal offsets.

5.3 Experiments

Implementation Details. Following previous works (Zhang et al., 2020; Liu et al., 2021), we use “R@n, IoU@m” and mIoU (the average temporal IoU) as the metrics. “R@n, IoU@m” is defined as the percentage of at least one of top-n proposals having a larger temporal IoU than m with the ground truth. Meanwhile, we benchmark two code-released state-of-the-art Temporal Grounding models 2D-TAN (Zhang et al., 2020) and IA-Net (Liu et al., 2021). Firstly, IA-Net outperforms 2D-TAN in the TNG task with the help of an Iterative Alignment Network, which can better encode complicated intra- and inter-modality relations. Secondly, RNL further outperforms IA-Net by introducing role-aware video and text encoding. This shows that distinguishing actions of different roles is critical for grounding movie narration. Furthermore, we perform an ablation study to verify the effectiveness of role-aware encoding. As shown in Table 6, adding face features to either video or text representations outperforms the baseline IA-Net. RNL with both role-aware video encoding and role-aware text encoding achieves the best performance. More qualitative results can be found in Appendix D.2.

6 Conclusion

In this work, we propose MovieUN, a Chinese large-scale video benchmark for movie understanding and narrating. To assist visually impaired people in enjoying movies, MovieUN supports two

Table 5: Temporal Narration Grounding performance on MovieUN-G validation and test set.

<table>
<thead>
<tr>
<th>Set</th>
<th>Method</th>
<th>mIoU</th>
<th>IoU=0.3</th>
<th>IoU=0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>R@1</td>
<td>R@5</td>
</tr>
<tr>
<td>val</td>
<td>2D-TAN</td>
<td>20.63</td>
<td>29.86</td>
<td>58.47</td>
</tr>
<tr>
<td></td>
<td>IA-Net</td>
<td>22.43</td>
<td>32.84</td>
<td>63.56</td>
</tr>
<tr>
<td></td>
<td>RNL</td>
<td>24.17</td>
<td>34.82</td>
<td>67.26</td>
</tr>
<tr>
<td>test</td>
<td>2D-TAN</td>
<td>16.66</td>
<td>23.98</td>
<td>54.11</td>
</tr>
<tr>
<td></td>
<td>IA-Net</td>
<td>20.38</td>
<td>30.20</td>
<td>59.91</td>
</tr>
<tr>
<td></td>
<td>RNL</td>
<td>22.21</td>
<td>32.32</td>
<td>64.03</td>
</tr>
</tbody>
</table>

Table 6: Ablation study of role-aware encoding. video-face and text-face refer to adding face features to video representations and text representations, respectively.

<table>
<thead>
<tr>
<th>Method</th>
<th>video-face</th>
<th>text-face</th>
<th>mIoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA-Net</td>
<td>-</td>
<td>-</td>
<td>20.38</td>
</tr>
<tr>
<td>RNL</td>
<td>✓</td>
<td>✓</td>
<td>21.43</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td></td>
<td>21.87</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>22.21</td>
</tr>
</tbody>
</table>

which the maximum number of video frames is set to 200, and two complementary losses are used: a binary cross-entropy loss for confidence evaluation and a smooth L1 loss for regressing the IoU.

Results & Analysis. Table 5 shows the grounding performance of our model RNL and state-of-the-art Temporal Sentence Grounding models 2D-TAN (Zhang et al., 2020) and IA-Net (Liu et al., 2021). Firstly, IA-Net outperforms 2D-TAN in the TNG task with the help of an Iterative Alignment Network, which can better encode complicated intra- and inter-modality relations. Secondly, RNL further outperforms IA-Net by introducing role-aware video and text encoding. This shows that distinguishing actions of different roles is critical for grounding movie narration. Furthermore, we perform an ablation study to verify the effectiveness of role-aware encoding. As shown in Table 6, adding face features to either video or text representations outperforms the baseline IA-Net. RNL with both role-aware video encoding and role-aware text encoding achieves the best performance. More qualitative results can be found in Appendix D.2.
challenging tasks, namely Movie Clip Narrating (MCN) and Temporal Narration Grounding (TNG). In both tasks, we design role-aware models that outperform strong baselines. Furthermore, our experiments validate the importance of movie genres and external actor portraits for movie understanding and narrating. However, there is still a significant gap between our models and expert annotations. This reveals that further research endeavors are still needed to help visually impaired people enjoy movies by AI.

Limitation

Keeping narration coherent within a movie is crucial for visually impaired people to enjoy the movie. In this work, we move a step forward for this target by setting the ground-truth texts in Movie Clip Narrating task as narration paragraphs and providing longer video clips as inputs. However, how to ensure description coherence across different clips within a movie is not studied in this work. This requires models to process the whole movie and a higher-level comprehending ability to link different plots. We leave this to study in the future.

7 Acknowledgement

This work was partially supported by the National Key R&D Program of China (No. 2020AAA0108600) and the National Natural Science Foundation of China (No. 62072462).

References

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. 2017. Dense-captioning events in videos. In Proc. of ICCV.

Jie Lei, Tamara L Berg, and Mohit Bansal. 2021. Detecting moments and highlights in videos via natural language queries. Proc. of NeurIPS.

A USABILITY ASSESSMENT OF ENGLISH DATASETS

To deal with the lack of Chinese movie narration datasets, one might consider a straightforward solution, which is to translate the available English movie narration datasets. We therefore conduct an experiment to verify whether Chinese movie narration data can be obtained simply by translating existing English datasets. Concretely, we automatically translate the English narrations in LSMDC (containing M-VAD, MPII-MD mentioned in Related Works) into Chinese via Youdao’s text translation API, and then perform paragraph merging to obtain an average length of 11.4s (the same as our MovieUN-N), constructing a translation-based Chinese movie clip narration dataset LSMDC-Ch containing 23,504 clips. We then train our baseline model OVP on LSMDC-Ch and test it on MovieUN-N. As expected, it performs worse than the same model trained on MovieUN-N under the movie-unseen setting, as shown in Table 7, which indicates that it is necessary to construct a Chinese movie narration dataset to support follow-up research.

Table 7: Movie Clip Narrating Performance of the OVP model trained on LSMDC-Ch and MovieUN-N.

<table>
<thead>
<tr>
<th>Training Set</th>
<th>BLEU@4</th>
<th>METEOR</th>
<th>CIDEr</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSMDC-Ch</td>
<td>0.68</td>
<td>6.87</td>
<td>2.81</td>
</tr>
<tr>
<td>MovieUN-N</td>
<td>1.19</td>
<td>7.76</td>
<td>6.08</td>
</tr>
</tbody>
</table>

C ADDITIONAL IMPLEMENTATION DETAILS

C.1 Movie Clip Narrating

The maximum length of the paragraph narration is set to 100. For each video clip, up to 25 frames are selected as input. For each frame, at most 3 face features are concatenated to the frame representation, if there are less than 3 face features, zero vectors are padded. Up to 4 genres are used as input. For MMN, at most 30 role names with portraits are fed to Transformer Encoder. For RMN, the maximum length of the external role name dictionary is set to 10.

D QUALITATIVE RESULT

D.1 Movie Clip Narrating

Qualitative results in the movie-seen setting are shown in Fig. 8(a) and (b). All of these models are able to correctly generate role names token by token because these roles also appear in the training set. Compared to VT and OVP, MMN describes more relevant actions for different characters. Fig. 8(c) and (d) show the generation results of baselines and our proposed RMN model in the movie-unseen setting. Under this setting, VT and OVP can correctly mention some actions but fail to generate correct role names because these characters have never appeared during training. However, with the help of the Role Selector module, our RMN could well relate characters in video clips with their role names.

Overall, while our models outperform strong baselines in this task, the quality of auto-generated narrations is still far from expert annotations.

D.2 Temporal Narration Grounding

Figure 9 shows qualitative results of our RNL model and strong baseline IA-Net. While IA-Net applies an Iterative Alignment Network to encoding intra- and inter-modality relationships, it still performs poorly at relating actions to different characters since it does not know the appearance of characters. By emphasizing face features in videos and relating role names in the text query with actor portraits, our Role-aware Narration Locator can better locate the target clip.
叶薰说完之后转身离开，黄达尴尬地笑了笑，他看着叶薰离开的背影沉下了脸，随后离开了酒吧现场，叶薰回到桌前继续听外国人讲述着自己的事情。

酒吧老板喝下酒，酒杯一饮而尽。

袁华端起红酒杯邀请夏洛和他碰一杯，两人都一口饮完了杯中的酒。

她转身走到柜子前，拿起手机看了眼陈姗姗，随后转身离开了，她走到桌子上，她把手中的药瓶放在桌子上，她拿起桌子上的药瓶和杯子，她从柜子里拿出一瓶饮料，然后又转身去拿杯子。

所有人站在会议室笑着鼓掌，王多鱼一头雾水。
薛勇话音刚落，只见黑衣人纳剑入鞘。一声大喝，随即跳下棚阁，环视众人说道。

As soon as Xue Yong finished speaking, he sees a man in black putting his sword into the sheath. With a loud shout, the man immediately jumps off the pavilion, looks around the crowd, and says.

此时撑得说不出话的鱼佬拍了拍阿妙的腿，指了指衣兜，阿妙把饼干放在一边，从兜里掏出信封并打开。

At this moment, Yu Lao, who is speechless, pats A Miao’s leg and points to her pocket. A Miao puts the biscuits aside, takes out the envelope from the pocket, and opens it.

妖猫便跳窗离开，但春琴却站在原地一动不动，突然她的眼睛闪了一下，好似变成了猫的眼睛一般。

The demon cat jumps out of the window, but Chun Qin stands still. Suddenly her eyes flash as if they had changed into a cat’s.

此时妙妙正在卧室里挑选着出门要穿的衣服，站在镜子前扭来扭去，时秒一路疾驰，刚好赶在了妙妙出门时到达。

Miao Miao is choosing clothes to wear in her bedroom. She twists and turns in front of the mirror. Shi Miao rushes all the way, just in time for Miao Miao to arrive when she leaves.

Figure 9: Qualitative Results of TNG task on MovieUN-G. The words in red represent the role names.