@inproceedings{czinczoll-etal-2022-scientific,
title = "Scientific and Creative Analogies in Pretrained Language Models",
author = "Czinczoll, Tamara and
Yannakoudakis, Helen and
Mishra, Pushkar and
Shutova, Ekaterina",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.153",
doi = "10.18653/v1/2022.findings-emnlp.153",
pages = "2094--2100",
abstract = "This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2. Existing analogy datasets typically focus on a limited set of analogical relations, with a high similarity of the two domains between which the analogy holds. As a more realistic setup, we introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains. Using this dataset, we test the analogical reasoning capabilities of several widely-used pretrained language models (LMs). We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="czinczoll-etal-2022-scientific">
<titleInfo>
<title>Scientific and Creative Analogies in Pretrained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tamara</namePart>
<namePart type="family">Czinczoll</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushkar</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2. Existing analogy datasets typically focus on a limited set of analogical relations, with a high similarity of the two domains between which the analogy holds. As a more realistic setup, we introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains. Using this dataset, we test the analogical reasoning capabilities of several widely-used pretrained language models (LMs). We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding.</abstract>
<identifier type="citekey">czinczoll-etal-2022-scientific</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.153</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.153</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>2094</start>
<end>2100</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Scientific and Creative Analogies in Pretrained Language Models
%A Czinczoll, Tamara
%A Yannakoudakis, Helen
%A Mishra, Pushkar
%A Shutova, Ekaterina
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F czinczoll-etal-2022-scientific
%X This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2. Existing analogy datasets typically focus on a limited set of analogical relations, with a high similarity of the two domains between which the analogy holds. As a more realistic setup, we introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains. Using this dataset, we test the analogical reasoning capabilities of several widely-used pretrained language models (LMs). We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding.
%R 10.18653/v1/2022.findings-emnlp.153
%U https://aclanthology.org/2022.findings-emnlp.153
%U https://doi.org/10.18653/v1/2022.findings-emnlp.153
%P 2094-2100
Markdown (Informal)
[Scientific and Creative Analogies in Pretrained Language Models](https://aclanthology.org/2022.findings-emnlp.153) (Czinczoll et al., Findings 2022)
ACL
- Tamara Czinczoll, Helen Yannakoudakis, Pushkar Mishra, and Ekaterina Shutova. 2022. Scientific and Creative Analogies in Pretrained Language Models. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 2094–2100, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.