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Abstract

Adding interpretability to word embeddings
represents an area of active research in text
representation. Recent work has explored the
potential of embedding words via so-called po-
lar dimensions (e.g. good vs. bad, correct vs.
wrong). Examples of such recent approaches
include SemAxis, POLAR, FrameAxis, and
BiImp. Although these approaches provide in-
terpretable dimensions for words, they have
not been designed to deal with polysemy, i.e.
they can not easily distinguish between differ-
ent senses of words. To address this limitation,
we present SensePOLAR, an extension of the
original POLAR framework that enables word-
sense aware interpretability for pre-trained con-
textual word embeddings. The resulting inter-
pretable word embeddings achieve a level of
performance that is comparable to original con-
textual word embeddings across a variety of
natural language processing tasks including the
GLUE and SQuAD benchmarks. Our work
removes a fundamental limitation of existing
approaches by offering users sense aware inter-
pretations for contextual word embeddings.

1 Introduction

The overwhelming success of deep neural networks
(DNN) in the last decade has been accompanied by
increasing concerns about the lack of interpretabil-
ity (Ribeiro et al., 2016). This problem is ampli-
fied in the area of Natural Language Processing
(NLP) where word embeddings are used as input
to machine learning models instead of more clas-
sical, understandable features. Traditional (static)
word embedding models like Word2Vec (Mikolov
et al., 2013) or Glove (Pennington et al., 2014),
that create one embedding for each word, are cur-
rently being replaced by contextual word embed-
ding models like BERT (Devlin et al., 2019) which
have achieved competitive performance in NLP
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benchmarks such as GLUE (Wang et al., 2018) and
SQuAD (Rajpurkar et al., 2016).

To improve interpretability, recent approaches
such as SemAxis (An et al., 2018), POLAR
(Mathew et al., 2020), FrameAxis (Kwak et al.,
2021), and BiImp (Şenel et al., 2022) have explored
the potential of embedding words via polar dimen-
sions (e.g. good vs. bad, correct vs. wrong). While
these approaches have been useful for interpreting
word vectors, they have not been designed to deal
with polysemy, i.e. multiple senses of words.
Objective: Addressing polysemy, in this paper we
aim to enable word-sense aware interpretability for
pre-trained contextual word embeddings.
Approach: We base our approach on the origi-
nal POLAR framework (Mathew et al., 2020) and
the idea of semantic differentials (Osgood et al.,
1957), which are psychometric scales between two
antonym words, e.g. “right” ↔ “wrong”. Sense-
POLAR extends POLAR (Mathew et al., 2020)
to contextual word embeddings, and defines polar
sense instead of polar word scales. This enables
SensePOLAR to offer polar dimensions that distin-
guish between the correctness sense of “right” and
the direction sense of “right”, for example.
Results: SensePOLAR enables word sense aware
interpretability of contextual embeddings by select-
ing polar sense dimensions that align reasonably
well with human judgements, as demonstrated in
survey experiments. SensePOLAR exhibits com-
petitive performance on various NLP tasks where
it is used as input features for a separate model
(feature-based approach) as well as directly inte-
grated in the model itself (fine-tuning approach).
Contributions: SensePOLAR introduces the no-
tion of sense aware interpretations. To the best of
our knowledge, SensePOLAR represents the first
(semi-) supervised method that enables word sense
aware interpretability for contextual word embed-
dings. SensePOLAR is publicly available1.

1https://github.com/JanEnglerRWTH/

4636

https://github.com/JanEnglerRWTH/SensePOLAR


Figure 1: SensePOLAR overview. Pre-trained contextual word embeddings are transformed into an interpretable
space where the word’s semantics are rated on scales individually encoded by opposite senses such as “good”↔“bad”.
The scores across the dimensions are representative of the strength of relationship (between word and dimension)
which allows us to rank the dimensions and thereby identify the most discriminative dimensions for a word. In this
example, the word “wave” is used in two senses: hand waving and ocean wave. SensePOLAR not only generates
dimensions that are representative of individual contextual meanings, the alignment to the respective sense spaces
also aligns well with human judgement. SensePOLAR generates neutral scores for dimensions not related to the
word in the given context (e.g., “idle”↔“work”, “social”↔“unsocial”). We follow the WordNet convention to
represent a particular sense of a word. For example, “Tide.v.01” represents the word “tide” in the sense of surge
(rise or move forward).

2 SensePOLAR

The key idea of SensePOLAR is to transform pre-
trained word embeddings into an interpretable,
sense aware space. In this space, each dimension
represents a scale on which words are rated, in-
spired by the semantic differential technique (Os-
good et al., 1957). In a departure from the existing
approaches, we define opposite senses for the poles
of these scales (e.g. “left direction” ↔ “right di-
rection”), as opposed to opposite words (e.g. “left”
↔ “right”), as used in Mathew et al. (2020).

Given a contextual word embedding model M,
the interpretable embeddings are obtained through
the following steps. 1) We use M to obtain the
(non-interpretable) contextual embedding space. 2)
We obtain polar senses with contextual information
from an oracle. 3) We proceed with generating
representative sense embeddings from which we
4) construct the interpretable polar sense space. 5)
The original embedding is transformed into the po-
lar sense space, which enables interpretation with
regard to opposite sense pairs. We illustrate each
step in figure 1 and elaborate them next.
1. Obtaining contextual embeddings: To obtain
the embedding of a particular word, we forward the
word with its context, i.e. an example sentence, to
the embedding model M. The embedding of the
corresponding word can then be retrieved from the
output of M. Because most models deploy sub-
word tokenization algorithms, such as WordPiece

SensePOLAR

(Wu et al., 2016), embeddings of only subword
tokens, rather than entire words, are generated by
the contextual embedding models. This provides
for obtaining representations for out-of-vocabulary
words but, at the same time, makes embeddings of
even common words not directly available. Follow-
ing existing literature (McCormick and Ryan, 2019;
Bommasani et al., 2020), we compute the embed-
ding of a word by averaging over the embeddings
of the constituent tokens.

2. Selecting opposite polar senses: Each dimen-
sion in the interpretable space corresponds to a
scale spanned by opposite polar senses, which we
define as a polar sense dimension. We assume
that the poles and corresponding contexts are pro-
vided by an oracle. In this paper, we use Word-
Net (Miller, 1995) as an oracle, since the database
already provides senses, contexts and antonyms
for many words. Each sense of a word is repre-
sented by a unique identifier, e.g. “Right.r.0” (a
convention followed in WordNet) encodes “right”
in the sense of direction. From over 6000 sense-
antonym pairs that are available in WordNet, we
use only a subset (1763) that are annotated with
example sentences for both words. After various
post-processing steps (cf. Appendix), these exam-
ple sentences are used as context in step 3.

3. Generating polar sense embeddings: We pro-
pose to generate polar sense embeddings for each
sense that is chosen by the oracle. Let w denote the
word of interest and s the word-sense. Furthermore,
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let Cs = {c1, ..., cm} be m context examples for
the sense s, which we assume are provided by the
oracle. In each context c ∈ Cs, the word w is used
in the sense s, e.g. “A strange sound came from the
right side.” for the word “right” in the sense of di-
rection (i.e., we intend to embed “Right.r.04”). We
create polar sense embeddings in two steps. First,
we input m context examples for a sense s to the
embedding model M and retrieve an embedding
ws

c ∈ Rd of the word w for each context c ∈ Cs. If
the word w consists of several subword tokens, the
individual subword embeddings are averaged. We
also allow for senses consisting of multiple words,
e.g. “keep track” ↔ “lose track”, where we again
average the embeddings of the individual tokens.
Second, we compute the average of the contextual
word embeddings per sense and define it as the
sense embedding s ∈ Rd:

s =
1

m

m∑

j=1

ws
cj (1)

This is a rather straightforward way to represent
individual senses of words in a (semi-) supervised
manner. The method is dependent on the quality
and the number of the example sentences provided
by the oracle. We observe that more context ex-
amples lead to a better and stable representation,
but we usually achieve a satisfactory representation
with already one suitable example sentence. This is
motivated by the observations in Reif et al. (2019)
which provide strong evidence that BERT positions
the embeddings of senses in individual clusters
in space and that these clusters are usually suffi-
ciently spatially separated from each other. A polar
sense dimension is represented by a pair of opposite
senses (s−i, si) (e.g., “Right.a.02”, “Wrong.a.01”).
4. Constructing a polar sense space:
Given n polar sense dimensions
S = ((s−1, s1), ..., (s−n, sn)) with their con-
texts C = ((Cs−1 , Cs1), (Cs−n , Csn)), we
compute the polar sense embedding si for each
sense si and corresponding context Csi , following
equation 1.

We now utilize the representations of individual
senses to construct the interpretable polar sense
space. Each polar sense dimension (si, s−i) ∈ S
defines an interpretable scale, which is encoded by
the direction vector ai, defined as follows:

ai = s−i − si (2)

The direction vectors for all polar sense dimen-
sions are then stacked to obtain the change of basis
matrix a ∈ Rn×d for the interpretable polar sense
space.
5. Transformation to interpretable embeddings:
Finally, an embedding of a word x in a context c,
xc can be transformed into the polar sense space in
the following way. Given a represents the change
of basis matrix, we can compute the polar sense
embedding pc following the rules of linear algebra:

aT pc = xc (3)

pc = (aT )−1 xc (4)

The inverse of aT is computed by the Moore-
Penrose generalized inverse (Ben-Israel and Gre-
ville, 2003). The resulting contextual word embed-
ding pc in the polar sense space is of dimension
n × 1. The absolute value across axis ai corre-
sponds to the word’s rating on the scale between
the polar senses (s−i, si) and the sign represents
the direction of alignment to a particular pole. A
higher absolute value represents a stronger relation-
ship to the corresponding polar sense dimension.
This allows us to obtain the most expressive polar
sense dimensions for a given word and context.
Normalization: As a post-processing step, we av-
erage the word embeddings of all words (from a
corpus) to get the average-word embedding in our
interpretable space and subtract this average word
embedding from each embedding when analyzing
interpretability. This also allows us to deal with
the anisotropic nature of contextual word embed-
dings (Ethayarajh, 2019) whereby the embeddings
are not randomly distributed but rather lay on a
high-dimensional cone in space.

3 Evaluation

Note that while SensePOLAR allows for deploy-
ment across any contextual word embedding model,
in this work, we consider BERT (Devlin et al.,
2019) as our model for illustration. We con-
sider a BERT-base model which utilizes 12 trans-
former (Vaswani et al., 2017) encoder layers and
generates embeddings of size 768. The pre-trained
BERT-base model was downloaded from Hugging-
face2. In addition, we use WordNet as our oracle
with 1763 polar sense pairs.

2https://huggingface.co/docs/
transformers/model_doc/bert, we used “bert-
base-uncased”
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ML Model SVM FFN
Task Base SensePOLAR Base SensePOLAR
Sport 0.941 0.935↓ 0.6% 0.961 0.956↓ 0.5%

Religion 0.891 0.848↑ 4.8% 0.880 0.894↑ 1.6%
Computer 0.770 0.750↓ 2.6% 0.763 0.727↓ 4.7%

Table 1: Performance of the original BERT (Base)
embeddings and SensePOLAR embeddings on feature-
based tasks with a support vector machine (SVM) and a
feed-forward neural network (FFN) classifier. SensePO-
LAR achieves performance comparable to the original
BERT embeddings across all three tasks.

3.1 Performance on downstream tasks

The goal of SensePOLAR is to add interpretabil-
ity to word embeddings without major losses in
performance. Hence, we evaluate SensePOLAR
on a wide range of NLP downstream tasks. We
investigate whether replacing the original BERT
embeddings with SensePOLAR embeddings has
any effect on performance.

3.1.1 Feature-based tasks
We analyze the effectiveness of SensePOLAR em-
beddings in a “classical” NLP pipeline, where word
embeddings are generated beforehand and are used
as input-features to a separate machine learning
model. We consider a binary text classification task
utilizing the 20 Newsgroups dataset (Lang, 1995).
The dataset consists of ∼ 20K news articles cov-
ering 20 types of news. Our experiment follows
the structure of Panigrahi et al. (2019), where we
only consider the topics sports, computer and re-
ligion. For each topic, an article must be clas-
sified into one of two categories (“baseball” or
“hockey” for sports, “IBM” or “Apple” for com-
puter, “christianity” or “atheism” for religion). In
table 1, we present the results in terms of accuracy
across the three tasks. We use a support vector
machine (SVM) and a 2-layer feed-forward neural
network (FFN) as classifier models, which use the
BERT and SensePOLAR embeddings as features.
Across all three tasks, SensePOLAR achieves a
level of performance that is comparable to the orig-
inal embeddings.

3.1.2 Fine-tuning tasks
Integrating SensePOLAR into fine-tuned mod-
els: The models achieving state-of-the-art perfor-
mances on different NLP tasks usually deploy a
task specific network layer (usually a feed-forward
network) on top of the embedding layers. The
embedding layers and the task specific layers are
then fine-tuned on the task specific dataset. Con-

SQuAD 1.1 SQuAD 2.0
Metric Base SensePOLAR Base SensePOLAR

EM 86.92 86.85↓ 0.07% 80.88 81.06↑ 0.22%
F1 93.15 93.12↓ 0.03% 83.87 83.89↑ 0.02%

Table 2: Results of fine-tuned BERT embeddings and
with SensePOLAR transformed embeddings on the
SQuAD benchmark. The results are competitive and
even improve marginally after applying SensePOLAR.

sequently, SensePOLAR embeddings need to be
computed considering the fine-tuned version of the
embeddings rather than the original pre-trained ver-
sion. In this particular setting, we propose to uti-
lize the embedding layer of the fine-tuned model
(instead of the original pre-trained version) to con-
struct the polar sense space. Given an input text,
each token (including the [CLS] token) can then
be transformed to a corresponding SensePOLAR
embedding. Because of the dimensionality mis-
match between the original embedding and the
transformed SensePOLAR embedding, we replace
the first layer of the task specific feed-forward net-
work and re-fine-tune it on the task specific dataset.
Note that the weights of the underlying embedding
model are frozen during this re-fine-tuning proce-
dure. This is computationally inexpensive as only
the task specific layers need to be trained, which
are often just 1 or 2-layered feed-forward network.
Question answering: This task deals with locat-
ing an answer to a question in a given paragraph
and is often referred to as a reading comprehen-
sion task. We consider the SQuAD benchmark,
including both SQuAD1.1 (Rajpurkar et al., 2016)
and SQuAD2.0 (Rajpurkar et al., 2018) versions.
The BERT-based QA model consists of the em-
bedding module followed by a span-classification
head, which is a 1-layer feed-forward network. The
model takes both the question text and the passage
text as input. The [CLS] token (a special token
generated by BERT for classification tasks) ob-
tained from the embedding module is then passed
onto the span-classification head, which predicts
the start and the end position of the span in the text
passage that contains the answer.

The polar sense space is computed using the
BERT embedding module already fine-tuned on
the task. The [CLS] token is then transformed
into the interpretable space before being passed
on to the span-classification head. This classifica-
tion head, however, needs to be replaced (to match
the dimension of the transformed embedding) and
re-trained. In table 2, we report the exact match
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(EM) and F1 scores with the original BERT (base)
and the SensePOLAR model. SensePOLAR again
achieves comparable performance, even marginally
outperforming the base model for SQuAD2.0.
Natural language understanding: We utilize
the General Language Understanding Evaluation
(GLUE) benchmark, which is designed for compar-
ing models on the task of natural language under-
standing (NLU). It consists of nine tasks that cover
a diverse range of text genres, dataset sizes, and de-
grees of difficulty (Wang et al., 2018). We point the
reader to the original paper by Wang et al. (2018)
for a general overview of the tasks. To evaluate
SensePOLAR, we follow a similar procedure to the
previous question answering task. The polar sense
space is computed using the underlying BERT em-
bedding module, already fine-tuned on the task.
This is followed by transforming the [CLS] to-
ken into the interpretable polar sense space. The
feed-forward layers on top are then replaced and re-
trained. In table 3, we report the results on GLUE

Task Train size Metric Base SensePOLAR
CoLa 8.5k Matthew’s corr. 56.62 55.05 ↓ 2.77%

SST-2 67k Accuracy 91.51 91.40 ↓ 0.12%

MRPC 3.7k Accuracy 84.31 82.84 ↓ 1.74%
F1 89.00 87.41 ↓ 1.79%

STS-B 7k Person corr. 89.03 84.17 ↓ 5.46%

QQP 364k Accuracy 90.59 90.15 ↓ 0.49%
F1 87.29 86.82 ↓ 0.54%

MNLI 393k Accuracy 84.49 84.04 ↓ 0.53%

QNLI 105k Accuracy 91.54 91.58 ↑ 0.04%

RTE 2.5k Accuracy 63.18 59.93 ↓ 5.14%

WNLI 634 Accuracy 56.34 56.34 ↑↓0%

Table 3: Comparison of the fine-tuned BERT model and
the re-fine-tuned BERT model with SensePOLAR em-
beddings. Mostly, comparable performance is achieved.
Slightly worse performance is achieved for tasks with
smaller training datasets.

tasks with both the original BERT (Base) and the
SensePOLAR embeddings. SensePOLAR achieves
competitive performances across all the tasks.

The results indicate that SensePOLAR is able
to achieve interpretability without compromising
performance on downstream tasks.

3.2 Interpretability

We turn our attention to evaluating the interpretabil-
ity of SensePOLAR.
Qualitative analysis: We transform the embed-
dings of the words into a polar sense space and an-
alyze the position/rating (determined by the signed
value on that dimension) of different words on se-
lected dimensions. More specifically, we consider

a context in which the word is used and pass it
through the BERT module. The embedding corre-
sponding to the target word (note that BERT gener-
ates embeddings corresponding to each word in the
context) is then transformed into the polar sense
space through the base change operation. Ana-
lyzing the ratings of words in a selected dimen-
sion, allows us to demonstrate the advantages of
interpreting word embeddings in terms of polar
sense dimensions. We first consider the dimension
“Black.a.02”↔“White.a.02” (in the sense of ethnic-
ity) and transform the embeddings of celebrities
and nationalities on this dimension. The obser-
vations mostly match the ethnicities of the indi-
viduals (see figure 2(a)). We also consider words
such as milk, coal etc. which are not related to
“Black.a.02”↔“White.a.02” in the sense of ethnic-
ity and observe their corresponding scores in this
dimension to be neutral. However, their representa-
tion on the dimension “Black.a.01”↔“White.a.01”
(in the sense of color), captures their semantic well.
This demonstrates the benefits of using polar senses
as dimensions instead of words, which would have
failed to differentiate between the two senses.

We also consider other dimensions and present
the connotative meanings of words across these di-
mensions in figure 2(b) which leads to interesting
observations. For example, “politician”, “meet-
ing” are more aligned towards “Hate.a.01” (in the
sense of disgust). Similarly, “murder” and “devil”
are aligned towards “Wrong.a.01” (in the sense of
morality).

In addition to picking out interesting dimensions
by hand, we also propose to evaluate interpretabil-
ity by investigating the most descriptive dimensions
of a given word. The dimensions for a word are
ranked based on the absolute value across all di-
mensions. Ideally, the top dimensions should be
the most descriptive and fitting for the word. For
illustration, we provide example words and the cor-
responding top-5 dimensions in figure 3. The top
dimensions mostly have a high semantic similarity
with the word, and they also reasonably align with
human judgement.
Survey experiment: For evaluating interpretabil-
ity on a larger scale, we follow the approach
by Mathew et al. (2020) and conduct a human judg-
ment survey. We utilize the crowdsourcing plat-
form Clickworker3 where we randomly select 15
common English nouns, verbs and adjectives (with

3https://www.clickworker.com/
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Black.a.02 White.a.02
-0.04-0.08 0.080.04

Barack Obama Swedish

Kobe Bryant GermanAngela Merkel

Black.a.01 White.a.01

0.0-0.015-0.03 0.030.015
Coal Milk

Michael Jackson

Space Paper Snow

0.0

(a) Benefits of sense dimensions

Hate.a.01 Love.n.01

0.0-0.02-0.03 0.030.02
Work

Politician

Bragging

Mother

Baby

King

-0.01 0.01

Meeting Girlfriend

Wrong.a.02 Right.a.03

0.0-0.02-0.03 0.030.02
Killed

Devil

Lying

Donating

Lawful

Praying

-0.01 0.01

Murder Kicked

Steal Jesus

(b) Connotative meanings across dimensions

Figure 2: Illustration of polar sense dimensions. (a) SensePOLAR allows for interpretability along multiple senses.
“black”↔“white” in the sense of ethnicity (top) can be differentiated from “black”↔“white” in the sense of color
(bottom). Words like “snow”or “coal” - which are not semantically related to ethnicity - score neutral on the upper
scale while being clearly distinguishable on the lower scale. (b) The connotative meanings of words can also be
investigated through SensePOLAR. For example, “politician” is associated with “hate” while “mother” is associated
with “love”.

I like to run fast.

Running.a.04 Standing.a.04

-0.1-0.2 0.20.1

Idle.v.01 Run.v.13
Passing.a.02 Running.a.03

Delay.v.01 Rush.v.03
Stoppable.a.01 Unstoppable.a.01

🏃

(a) Run

Music is life.

Musical.a.02 Unmusical.a.01

-0.05-0.15 0.150.05

Atomism.n.02
Harmonic.a.01 Non-harmonic.a.01

Experience.n.01 Inexperience.n.01
Absence.n.01 Presence.n.01

🎵

Holism.n.01

(b) Music

The answer is right.

Right.a.05 Wrong.a.05

-0.05-0.15 0.150.05

Due.a.01 Undue.a.01
False.a.01 True.a.01

Certain.a.03 Uncertain.a.02
Dead.a.02 Live.a.02

✔

(c) Right

I am happy to see you

Unwelcome.a.01 Welcome.a.01

-0.05-0.15 0.150.05

Glad.a.01
Insincerely.r.01 Sincerely.r.01

Evil.n.03 Good.n.02
Troubled.a.01 Untroubled.a.01

Sad.a.01

😃

(d) Happy

Figure 3: Illustration of SensePOLAR embeddings. We show the top 5 dimensions as selected by SensePOLAR
for exemplary words. The pre-trained embeddings are obtained using BERT. The top dimensions and the word’s
rating/alignment to the pole reasonably align with human judgement (cf. table 4).

short context) and compute their interpretable em-
bedding with SensePOLAR. Then, for each word,
we extract the top-5 polar sense dimensions (mea-
sured in absolute value) and additionally five ran-
dom dimensions from the lower 50%. These 10
dimensions are then presented to the participants
in a random order. Participants are asked to select
five dimensions that are most representative of a
given word and to rate each dimension based on
their alignment to one of the poles on a likert scale
between 1 and 7 (with 4 as neutral). Each word
is assigned 3 annotators. For a given word, each
dimension is assigned a score depending on how
many annotators found it relevant. We then select
the top 5 dimensions based on this score and we
consider them as the ground-truth dimension to
which we compare the ones selected by SensePO-
LAR.

In table 4, we present the conditional probability
of the top k dimensions selected by SensePOLAR
to be also chosen by the human annotators. In the
same table, we also report the random chance of
getting selected. For the top-1 dimension, agree-
ment is roughly 87% and for the top-2 dimension
it is still around 65%, indicating strong alignment
with human judgment. We also found that the par-
ticipant’s ratings on these dimensions were the (ab-
solute) highest, showing that the word is strongly
connected to one of the polar senses.

Top-k 1 2 3 4 5
SensePOLAR 0.876 0.558 0.312 0.187 0.093

Random 0.5 0.22 0.083 0.023 0.004

Table 4: Alignment with human judgement. The con-
ditional probability of the top-k dimensions selected
by SensePOLAR to be also chosen by the human an-
notators, together with the random chance of guessing.
Significantly higher probabilities than random chance
are achieved, indicating that the chosen dimensions
are meaningful and match human judgment reasonably
well.

Differentiating between senses: We also evalu-
ate the interpretability of SensePOLAR in terms
of its ability to differentiate between two senses of
a given word. As an illustrative example, we con-
sider the word “right” in the sense of both direction
and correctness (refer to figure 4). The selected
polar sense dimensions are indeed representative
of the correct sense. Note that the original POLAR
framework would not be able to differentiate be-
tween the senses, given it generates exactly one
embedding for a given word.

We follow up with another human judgement ex-
periment where we present the top-10 polar sense
dimensions of words with multiple meanings, to-
gether with the word’s score on these dimensions,
to the annotators. The task is to identify in which
sense the target word is being used in. We limit this
experiment to only two common senses for each
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He left the room.

Exit.v.02 Enter.v.01

-0.075-0.15 0.150.075

Inner.a.02
Pop in.v.01 Pop out.v.01

Shut.a.01 Open.a.01
Disappear.v.01 Appear.v.01

Outer.a.01

He looked right and left.

Left.r.02 Right.r.01

-0.125-0.25 0.250.125

Here.r.02
Downwind.r.01 Upwind.r.01

Early.r.02 Late.r.01
Foolish.a.01 Wise.a.01

There.r.01

Figure 4: Top-5 dimensions of the word “left” for two
different contexts in the sense of going away (left) and
direction (right). The top dimensions are indeed dif-
ferent for the different word-senses and are reasonably
descriptive of the correct sense.

word and present the WordNet definitions as the
answer possibilities. Thus, by random guessing,
an accuracy of 50% would be achieved. For our
hand-picked examples, the correct sense was iden-
tified in around 95% of the examples. The average
inter-participant agreement on the result is around
78%.

The results in this section indicate that Sense-
POLAR is indeed able to add interpretability to
contextual word embeddings and that it aligns rea-
sonably well with human judgement.

4 Applications

We discuss two potential use cases: (i) analyzing
bias in contextual embeddings and (ii) explaining
model decisions on downstream tasks.

4.1 Bias Analysis

Contextual embedding models have been shown
to capture bias from training data (Nadeem et al.,
2021; Ahn and Oh, 2021; Bartl et al., 2020; Moza-
fari et al., 2020). We demonstrate that SensePO-
LAR can be used for analyzing biases by exam-
ining the polar sense dimensions which differ the
most. For our evaluation, we utilize examples from
the Stereoset dataset from Nadeem et al. (2021).
Next sentence prediction: BERT can be used to
predict the probability of a second sentence fol-
lowing a first one. Consider the sentence pair
“Hispanic people are very diverse. All people
like that are criminals.”. Replacing the word
“Hispanic” by “American” leads to significant de-
crease in BERT’s confidence score. We pick
the SensePOLAR embeddings of the words “His-
panic” and “American” from these sentences and
compute the polar sense dimensions in which
they differ the most. Noticeably, the most dis-
criminative dimensions mostly encode senses re-
lated to being or not being a legal citizen such
as “Documented.a.01”↔“Undocumented.a.01” or
“Irregular.a.01”↔“Regular.a.01”. We observe that

the word “Hispanic” is rated on the side of irregu-
lar, undocumented, unrighteous and unconcerned,
as opposed to “American”.
Masked LM: We conduct a similar experiment on
the task of masked language modeling. Consider
the sentence “Because he is black, he works as a
[MASK].”. Replacing “black” with “white” leads
to vastly different predictions for the [MASK] to-
ken. We apply SensePOLAR to analyze the polar
sense dimensions of the [MASK] token in both con-
texts. We find that the most discriminative dimen-
sion is “Employed.a.01”↔“Unemployed.a.01”, in-
dicating that BERT predicts a word more related to
unemployed when the word “black” is used.

4.2 Explaining classifier results

SensePOLAR can further be deployed to ex-
plain decisions of classifier models that make
use of contextual word embeddings. To il-
lustrate this we consider binary sentiment pre-
diction (positive or negative) on the SST-2
dataset (Socher et al., 2013). We sample and av-
erage the SensePOLAR transformed [CLS] to-
kens from the positive and negative class sepa-
rately and examine the most discriminative dimen-
sions. We find the most discriminative dimensions
to be “sharp”↔“dull”, “unpleasant”↔“pleasant”,
“endemic”↔“cosmopolitan”, “soft”↔“loud” and
“tasteless”↔“tasteful”. BERT is more likely to clas-
sify a review as negative when it is seen as more
sharp, unpleasant, endemic, and tasteless.

5 Discussion

Next, we discuss issues pertinent to SensePOLAR.
Generalizability: SensePOLAR is applicable to
any pre-trained contextual embedding model. It
can also be deployed on top of any of the con-
stituent transformer layers. This allows for not only
comparing different contextual word embedding
models in terms of interpretability or bias analysis
but also performing similar analysis across trans-
former layers of the same embedding model.
Extension to other languages: SensePOLAR
should also be extendable to other languages. The
only requirement would be to be able to obtain
suitable sense antonym pairs as well as example
contexts via an oracle.
Interpretable decision-making. In section 4.2,
we demonstrated how SensePOLAR could be used
to explain decisions of text classifiers. However,
the design of SensePOLAR allows for deployment
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across any other downstream task as well. This
is in contrast with existing interpretability meth-
ods which are often developed with a particular
downstream task in mind.
Quantitative comparison with other inter-
pretability methods: An ideal evaluation set up
would have been to quantitatively compare Sense-
POLAR to other interpretability methods. How-
ever, as pointed out in the existing literature (Sun-
dararajan et al., 2017; Sikdar et al., 2021), when
two models provide different interpretations, it is
difficult to judge if one is better than the other. In-
volving humans makes it even harder, as one now
needs to tease out a person’s own subjective bi-
ases. Hence, our crowdsourcing experiments were
only designed to understand the efficacy of Sense-
POLAR. Nevertheless, we provide a qualitative
comparison with the existing methods in section 6.
SensePOLAR variants: Other variants of Sense-
POLAR can be devised as well. For example, lin-
ear transformation instead of base change could
be used for obtaining SensePOLAR embeddings.
However, we observed that linear transformation
does not preserve the original structure of the em-
bedding space, where the different senses of words
are already sufficiently separated. One can also ex-
periment with different normalization techniques,
such as scaling or standardization. In this paper, we
concentrated on an exhaustive evaluation setup to
include more downstream tasks and crowdsourcing
experiments rather than exploring other variants.
We consider all the above variants promising av-
enues for future work.

6 Related work

In this section, we briefly summarize previous re-
search on enabling interpretability for both static
and contextual word embeddings.
Unsupervised methods: The key idea for this class
of methods is to create sparse embeddings, which
is achieved through a post-processing step on top of
the embeddings (Murphy et al., 2012; Faruqui et al.,
2015; Luo et al., 2015). Additionally, the idea of
creating sparse embeddings can also be integrated
into the word embedding training itself, as demon-
strated in Sun et al. (2016); Chen et al. (2017).
The meaning of the dimensions are assigned by
the model itself (hence unsupervised) and are often
intelligible to humans. Notably, Word2Sense (Pan-
igrahi et al., 2019) proposes to create sparse non-
negative vectors through Latent Dirichlet Alloca-

tion (LDA). Each dimension is assigned a meaning,
which is retrieved from a training corpus. The
methods discussed above are specific to static word
embeddings. Berend (2020) extends some of these
ideas to contextual word embeddings.

(Semi-)supervised methods: This class of meth-
ods aims at adding interpretability to word embed-
dings by first defining an interpretable space and
then transforming the pre-trained embeddings to
this space. In this space, each dimension spans be-
tween two pole words. While SemAxis (An et al.,
2018) proposes to use antonym pairs retrieved from
ConceptNet (Speer et al., 2017), the POLAR frame-
work (Mathew et al., 2020) utilizes the semantic
differential technique pioneered by Osgood (Os-
good et al., 1957). Similarly, BiImp (Şenel et al.,
2022) proposes to use opposite semantic concepts
as poles. Not only are the dimensions interpretable,
these methods are computationally less expensive.

Embedding geometry: Part of the existing re-
search has focussed on analyzing the position of
words in the embedding space. Ethayarajh (2019)
provides evidence that the BERT embeddings are
not uniformly distributed in the space, but rather
lay on a high dimensional cone. Reif et al. (2019)
demonstrate that BERT is able to separate fine-
grained senses of words by placing them in differ-
ent locations in space. Similar observations are
made by Schmidt and Hofmann (2020) as well.

Probing: The goal in probing tasks is to determine
whether some syntactic or semantic knowledge is
encoded in the produced word embeddings (or at-
tention heads). The embeddings (or attentions)
are fed into a simple linear classifier to predict
unseen linguistic properties. The performance of
the classifier is indicative of the extent to which
these linguistic properties are encoded in the em-
beddings. For BERT, these probing experiments
have demonstrated that the layers on the top are
more contextual (Ethayarajh, 2019) and the layers
at the center contain a large amount of syntactic
information (Hewitt and Manning, 2019; Goldberg,
2019; Jawahar et al., 2019; Chi et al., 2020). The
semantic information is generally spread across the
entire network (Tenney et al., 2019; Zhao et al.,
2020; Lin et al., 2019).

Visual explanations: Finally, recent work has also
considered visualizing attention in transformer lay-
ers to explain contextual language models (Hoover
et al., 2020; Vig, 2019). Similarly, visualizing
word embeddings can also aid in explaining what a
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model learns as demonstrated in Liu et al. (2017);
Heimerl and Gleicher (2018); Boggust et al. (2022)
(static) and Sevastjanova et al. (2021); Berger
(2020) (contextual).
Comparison with SensePOLAR: To the best of
our knowledge, SensePOLAR is the first (semi-)
supervised method for enabling interpretability for
contextual word embeddings. We extend the idea
of rating the meaning of words on a scale - defined
between two polar words - to two polar senses.
SensePOLAR can also be integrated into task spe-
cific fine-tuned models as well. In comparison
to unsupervised methods, our method enables us
to understand the individual dimensions and ac-
tively choose and adjust polar sense dimensions
for the task at hand. While probing and visualiza-
tion methods can reveal whether specific linguistic
information is encoded in the embeddings, analyz-
ing the embedding geometry can help in uncover-
ing the model characteristics. However, none of
these methods can directly augment interpretabil-
ity to the embeddings. Since with SensePOLAR
interpretability is directly incorporated into the em-
beddings, it is applicable to any downstream task.
This is in contrast to most of the existing methods,
which are often specific to embedding methods or
downstream tasks.

7 Conclusion

We introduced SensePOLAR which enables word
sense aware interpretability for contextual word
embeddings. The key idea is to project word em-
beddings onto an interpretable space which is con-
structed from polar sense pairs obtained from an
oracle. SensePOLAR extends the original POLAR
framework developed for static word embeddings
to contextual word embeddings. We demonstrated
that the obtained interpretable embeddings align
well with human judgement. Moreover, SensePO-
LAR could be integrated into fine-tuned models
and can be deployed to specific applications like
bias analysis and explaining prediction results of
classifier models.

8 Limitations

Underlying embedding models: SensePOLAR
uses embeddings of polar senses to build an inter-
pretable subspace. Thereby, we assume that the un-
derlying embedding model captures the semantics
of words from which we construct the sense em-
beddings. As a result, SensePOLAR is dependent

on the quality of the underlying contextual word
embedding model. Compared to the original PO-
LAR framework proposed in (Mathew et al., 2020),
the present approach also depends on the ability of
the model to capture individual word-senses with
sufficient accuracy.
Presence of bias: Naturally, our model inherits the
biases of the underlying embedding model. The
word “physics”, for example, has a high rating
towards “male” on the polar sense scale of “male”
↔ “female”. However, SensePOLAR could be
used to make these biases visible and potentially
help to remove them. One can also tap into state-of-
the-art bias mitigation methods (e.g. Ahn and Oh
(2021); Bartl et al. (2020); Mozafari et al. (2020))
to address this issue.
Dependence on oracles: The construction of the
polar sense space depends largely on the choice of
polar opposite senses and the quality of the con-
text examples. Using the example of WordNet, we
have shown how a general model can be created.
However, we observed that rare senses and low-
quality example sentences can lead to poor results.
Moreover, it is not clear how the optimal number
of polar dimensions can be determined. Empiri-
cally, we observed that adding more pairs does not
necessarily lead to improvement in performance.
For a particular downstream task, it may also be
appropriate to discard polar sense pairs that are not
relevant to the task (e.g. if they never occur in the
corpus).
Counter-intuitive rating of words. We find that in
some cases the rating of words on the polar sense
scales does not coincide with human judgement.
The word “doctor”, for example, is highly skewed
towards “guilty” on a scale from “innocent” ↔
“guilty”, which does not match the typical percep-
tion of doctors. We believe this is because word
embeddings by design are shaped by their context.
There are probably more articles and stories about
“guilty doctors” than “innocent doctors”, because
these stories would be less interesting.
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A Appendix

A.1 Post-processing

We point out some issues when using WordNet
directly as our oracle and present ways to address
them.

A.1.1 Sense Post-processing
We notice that word-senses identified by WordNet
can be overly granular (e.g. according to Word-
Net there are five different polar sense pairs for
“wet” ↔ “dry”). To get rid of redundant senses,
we propose to use dimension-reduction methods
such as variance maximization and orthogonal-
ity maximization from the original POLAR frame-
work (Mathew et al., 2020). Alternatively, one
could merge similar senses if the cosine similarity
between their sense embeddings is high. Selecting
or discarding a rare sense is often task specific.

A.1.2 Low-quality Example Sentences
The polar sense embeddings are dependent on
the quality of the context (i.e., example sentences
demonstrating a particular sense). While deploying
WordNet as source for contexts, we encountered
some issues which we elaborate on next.
Flections. When constructing polar sense dimen-
sions, we use the respective word in its basic form
and extract the embedding from the example con-
text. However, in WordNet’s example sentences,
words often do not appear in their basic form, but
in inflections (e.g. “She walks with a slight limp”
for “Walk.v.01”).
Synonyms. Occasionally, the word itself is not
present in the context sentence but is replaced
by a synonym (e.g. “the right answer” for “Cor-
rect.a.01”).
Misspellings. We observe that the example
sentences often contain spelling mistakes (e.g.
“toungued lightning” for “Tongued.a.01”)
Mixed-up examples. In some cases, the exam-
ple sentences of a sense are identical to those of
the opposite pole (e.g. “we docked at noon” for
“Undock.v.01”).

These problems need to be addressed with man-
ual checks of the obtained polar sense pairs and
context sentences.

A.2 Sense Scales

Instead of rating words on scales defined between
two pole words (e.g. “left” ↔ “right”), our scales
are defined between two pole word-senses (e.g.
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“left” ↔ “right” in the sense of direction). While
the static POLAR framework rates the word “cor-
rect” highly on the dimension “left” ↔ “right”, we
expect our framework to rate it low on the dimen-
sion “left” ↔ “right” in the sense of direction but
rate it high on the dimension “wrong” ↔ “right” in
the sense of correctness.

To this aim, we analyze whether our constructed
representative sense embeddings encode enough
sense-related information. As an illustrative exam-
ple, we consider the word “right” which is used in
the senses of direction, correctness and lawfulness.
For each context, we compute the SensePOLAR
embeddings for the word and rank the dimensions
based on the absolute value.

Sense-Scales
Context

he went to the right his argument is right film rights

Direction
“left” ↔ “right” 1st 38th 32nd

Correct
“wrong” ↔ “right” 44th 1st 291st

Lawful
“wrong” ↔ “right” 55th 27th 9th

Table 5: Ability of SensePOLAR in differentiating be-
tween senses. We consider the word “right” in three dif-
ferent contexts and obtain a ranking of the dimensions
for each case. We report the rank of a SensePOLAR
dimension in each of the three contexts in each row. For
example, the dimension “left” ↔ “right” representing
the sense of direction is ranked first for the context “he
went to the right”, while it is ranked 38th and 32nd
respectively in the other two contexts. SensePOLAR
is indeed able to identify the correct sense dimensions
depending on the context.

In table 5, we report the ranks of the polar sense
dimensions for each context. For the word “right”
in the context of direction “he went to the right”,
the dimension “left” ↔ “right” is selected as the
most representative dimension (rank 1), while the
correctness and the lawful dimensions are ranked
much lower (44 and 55 respectively). Similar re-
sults are obtained for the other contexts (see ta-
ble 5).

These results indicate that the sense-dimensions
of SensePOLAR precisely captures the individual
semantics of the senses.

A.3 Computational Requirements

SensePOLAR embeddings of words for a given
context can be obtained at low cost if the polar
sense space is pre-computed. We provide such
an implementation along with the submission and
encourage readers to review it. Our implementation
can even be run on a personal computer.

Given n polar sense dimensions, inversion of the
matrix can be computed in the worst case in O(n3).
Since in our case n = 1762, the computation is
very fast. Moreover, this computation needs to be
performed only once.

Retraining the task-specific feed-forward layer
with SensePOLAR embeddings was performed on
a computing server with 1 TB RAM, 72 cores, each
Intel Xeon Gold 6140 CPU at 2.30 GHZ and 2
Tesla P100-PCIE, 16GB GPUs. We would like to
reiterate that the retraining is also quite cheap given
only the task-specific feed-forward layer needs to
be trained.
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