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Abstract

How can we protect the intellectual property
of trained NLP models? Modern NLP models
are prone to stealing by querying and distilling
from their publicly exposed APIs. However,
existing protection methods such as watermark-
ing only work for images but are not applica-
ble to text. We propose Distillation-Resistant
Watermarking (DRW), a novel technique to
protect NLP models from being stolen via dis-
tillation. DRW protects a model by injecting
watermarks into the victim’s prediction proba-
bility corresponding to a secret key and is able
to detect such a key by probing a suspect model.
We prove that a protected model still retains the
original accuracy within a certain bound. We
evaluate DRW on a diverse set of NLP tasks
including text classification, part-of-speech tag-
ging, and named entity recognition. Experi-
ments show that DRW protects the original
model and detects stealing suspects at 100%
mean average precision for all four tasks while
the prior method fails on two1.

1 Introduction

Large-scale pre-trained neural models have shown
great success in NLP tasks (Devlin et al., 2019; Liu
et al., 2019). Task-specific NLP models are often
deployed as web services with pay-per-query APIs
in business applications. Protecting the intellectual
property of these cloud deployed models is a crit-
ical issue in both research and practice. Service
providers often use authentication mechanism to
authorize valid accesses. However, while this pre-
vents clients directly copying a victim model, it
does not hinder clients from stealing it using dis-
tillation. Emerging model extraction attacks have
demonstrated convincingly that most functions of
the victim API are likely to be stolen with care-
fully designed queries (Tramèr et al., 2016; Wal-
lace et al., 2020; Krishna et al., 2020; He et al.,

1Our code is available at https://github.com/
XuandongZhao/DRW

2021). A model extraction process is often imper-
ceptible because it queries APIs in the same way as
a normal user does (Orekondy et al., 2019). In this
paper, we study the problem of model protection
for NLP against distillation stealing.

Little has been done to adapt watermarking to
identify model infringements in language tasks. Al-
though a number of defense techniques have been
proposed to prevent the model extraction for com-
puter vision, they are not applicable to language
tasks with discrete tokens. Among them, deep neu-
ral networks (DNN) watermarking (Szyller et al.,
2021; Jia et al., 2021) works by embedding a se-
cret watermark (e.g., logo or signature) into the
model exploiting the over-parameterization prop-
erty of DNNs. This procedure leverages a trigger
set to stamp invisible watermarks on their commer-
cial models before distributing them to customers.
When suspicion of model theft arises, model own-
ers can conduct an official ownership claim with the
aid of the trigger set. However, these protections all
focus on the image/audio tasks, since it is easy to
modify the continuous data. In addition, most wa-
termarking methods are invasive and fragile. They
cannot avoid tampering with the training procedure
in order to embed the watermark. Besides, the wa-
termarks are outliers of the task distribution so that
the adversary may not carry the watermark through
distillation.

To fill in the gap, we make the first attempt to
protect NLP models from distillation. We pro-
pose Distillation-Resistant Watermarking (DRW)
to protect models and detect suspicious stealing.
Inspired by the idea from CosWM for computer
vision (Charette et al., 2022), we utilize prediction
perturbation to embed a secret sinusoidal signal to
the output of the victim API. To handle discrete
tokens, we design a technique to randomly project
tokens to a uniform region within sinusoidal cycles.
We design watermarking effective for distillation
with soft labels and with hard-sampled labels. As
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long as the adversary trains the distillation proce-
dure till convergence, DRW is able to detect the
watermark signal from the extracted model.

The advantages of DRW include 1) training inde-
pendence: it works directly on the trained models
and can be directly plugged into the final output. 2)
flexibility: it can be applied to both soft-label out-
put and hard-label output in the black-box setting.
3) effectiveness: we evaluate the effectiveness of
DRW and obtain perfect model extraction detection
accuracy; we also justify the fidelity with a negligi-
ble side effect on the original classification quality.
4) scalability: the secret keys for the watermark
are randomly generated on the fly so that we are
able to provide different watermarks for different
end-users and verify them.

The contributions of this paper are as follows:

• We enhance the concept of model protection
against model extraction attacks with an em-
phasis on language applications.

• We propose DRW, a novel method to inject
watermarks to the output of the NLP models
and later to detect if suspects distill from the
victim.

• We provide a theoretical guarantee on the pro-
tected API accuracy — with protection DRW
does not harm much of original API’s perfor-
mance.

• Experiments on four diverse tasks (POS
Tagging/NER/SST-2/MRPC) verify that DRW
detects extracted models with 100% mean av-
erage precision, yet with only a small drop
(<5%) in original prediction performance.

2 Related Work

Model Extraction Attacks Model extraction at-
tacks target the confidentiality of ML models and
aim to imitate the function of a black-box victim
model (Tramèr et al., 2016; Orekondy et al., 2019;
Correia-Silva et al., 2018). First, adversaries col-
lect or synthesize an initially unlabeled substitute
dataset. Next, they exploit the ability to query the
victim model APIs for label predictions to annotate
the substitute dataset. Then, they can train a high-
performance model utilizing the pseudo-labeled
dataset. Recently, several works (Krishna et al.,
2020; Wallace et al., 2020; He et al., 2021) attempt
to address the model extraction attacks on NLP
models, e.g. BERT (Devlin et al., 2019) or Google
Translate.

Knowledge Distillation Model extraction attacks
are closely related to knowledge distillation (KD)
(Hinton et al., 2015), where the adversary acts as
the student who approximates the behaviors of the
teacher (victim) model. The student can learn from
soft labels or hard labels. KD with soft labels has
been widely applied due to the fact that soft labels
can carry a lot of useful information (Phuong and
Lampert, 2019; Zhou et al., 2021).
Watermarking A digital watermark is an unde-
tected label embedded in a noise-tolerant signal,
such as audio, video, or image data. It is designed
to identify the owner of the signal’s copyright.
Some works (Uchida et al., 2017; Adi et al., 2018;
Zhang et al., 2018; Merrer et al., 2019) employ
watermarks to prevent precise duplication of ma-
chine learning models. They insert watermarks
into the parameters of the protected model or con-
struct backdoor images that activate particular pre-
dictions. If an adversary exactly copies a protected
model, a watermark can be used to verify owner-
ship. However, safeguarding models from model
extraction attacks is more difficult due to the fact
that the parameters of the suspect model might be
vastly different from those of the victim model, and
the backdoor behavior may not be transferred to the
suspect model either. Several works (Juuti et al.,
2019; Szyller et al., 2021; Jia et al., 2021; Charette
et al., 2022; He et al., 2022) study how to identify
extracted models that are distilled from the victim
model. Jia et al. (2021) forces the protected model
to acquire features for identifying data samples
taken from authentic and watermarked data. He
et al. (2022) conducts lexical modification as a wa-
termarking method to protect language generation
APIs. CosWM (Charette et al., 2022) incorporates
a watermark as a cosine signal into the output of the
protected model. Since the cosine signal is difficult
to eliminate, extracted models trained via distilla-
tion will continue to have a significant watermark
signal. Nonetheless, CosWM only applies to image
data and soft distillation. We design multiple new
techniques to extend CosWM in handling the text
data with discrete sequence and we provide a theo-
retical guarantee on the protected API accuracy for
soft and hard distillations

3 Proposed Method: DRW

3.1 Overview

Figure 1 presents an overview of distillation proce-
dure, watermarking and detection. The main idea
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Figure 1: Overview of model extraction attack and watermark detection. The upper panel illustrates that the
API owner adds a sinusoidal perturbation to the predicted probability distribution before answering end-users.
The extracted model will convey this periodical signal if the adversary distills the victim model. At the phase
of watermark detection, as shown in the bottom panel, the owner queries the suspect model and applies Fourier
transform to the output with a key. Then the designed perturbation can be detected when a peak shows up in the
frequency domain at fw. The extracted watermark can thus serve as legal evidence and judgment for the ownership
claim.

of DRW is to introduce a perturbation to the output
of a protected model. This designed perturbation
is transferred onto a suspect model distilled from a
victim model that remains identifiable by probing
the suspect model.
Problem Formulation We consider a common
real-world scenario that the adversary only has
black-box access to the victim model’s API V .
There exist two types of output from victim model
API: soft (real-valued) labels (i.e. probabilities)
and hard labels. The adversary employs an auxil-
iary unlabeled dataset to query V . Once the adver-
sary gains the predictions from the victim model,
it can train a separate model S from scratch with
the pseudo-labeled dataset. The adversary may ei-
ther distill the victim model with hard labels by
minimizing the cross-entropy loss

LCE = −
m∑

i=1

ŷi log (q̂i) , (1)

where q̂i is the prediction from the stealer’s model
and ŷ are the pseudo-labels from the victim model;
or distill from soft labels by minimizing the Kull-
back–Leibler (KL) divergence loss

LKL =
m∑

i=1

ŷi log

(
ŷi

q̂i

)
. (2)

3.2 Watermarking the Victim Models
DRW dynamically embeds a watermark in re-
sponse to queries made by an API’s end-user.

We use a set of variables to represent key K =
(c∗, fw,vk,vs,M), where c∗ ∈ {1, . . . ,m} is the
target class to embed watermark; fw ∈ R is the
angular frequency; vk ∈ Rn is the phase vector;
vs ∈ Rn is the selection vector; M ∈ R|D|×n is
the random token matrix. |D| represents the vocab-
ulary size, so that every token ID corresponds to
vector Mi ∈ Rn. Following Charette et al. (2022),
we define a periodic signal function based on K
and the input x.

zc(x) =

{
cos (fwg(vk, x,M)) , c = c∗

cos (fwg(vk, x,M) + π) , c ̸= c∗

(3)
for c ∈ {1, . . . ,m}, where g(·) ∈ [0, 1) is a hash
function projecting a text representation to a scalar.
Ideally, the scalar should uniformly distribute span-
ning multiple cycles.

Constructing the hash function We project ev-
ery input x into the fixed scalar range to add the si-
nusoidal perturbation by the hash function g(·). We
randomly generate the phase vector vk, selection
vector vs and the token matrix M. Each element
in {vk,vs} is randomly sampled from a uniform
distribution over [0, 1). Each element of the matrix
M is randomly sampled from a standard normal
distribution Mij ∼ N (0, 1). Let Mi ∈ Rn de-
note the i-th row of matrix M, v⊤

k Mi ∼ N (0, n3 )
and v⊤

s Mi ∼ N (0, n3 ) (we prove it in Appendix
A.2). Then we apply probability integral transfor-
mation to obtain the uniform distribution of the
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hash values, where g(vk, x,M) ∼ U(0, 1) and
g(vs, x,M) ∼ U(0, 1). We set g(vs, x,M) ≤ τ
to select part of all samples, where τ is the data se-
lection ratio. When implementing sequence label-
ing tasks, we use the token ID to fetch the vector in
matrix M. Similarly, when implementing sentence
classification tasks, we use the ID of the second
token in the sentence to obtain the vector.

Next we compute the periodic signal for the vic-
tim output

ŷc =





p̂c, g(vs, x,M) > τ
p̂c+ε(1+zc(x))

1+2ε
, c = c∗ and g(vs, x,M) ≤ τ

p̂c+
ε(1+zc(x))

m−1

1+2ε
, c ̸= c∗ and g(vs, x,M) ≤ τ

(4)

where ε is the watermark level for the periodic sig-
nal and p̂c is the victim model’s prediction before
watermarking. Since 0 ≤ ŷi ≤ 1 and

∑m
i=1 ŷi = 1

(see proof in Appendix A.3), ŷ is a surrogate for
softmax output.

In the soft label setting, the victim model gen-
erates output ŷ directly; while in the hard label
setting, the victim model produces the sampling
hard label, i.e. a one-hot label with probability ŷi

for each class i. Intuitively, the hard-label sampled
output retains the watermark because it is equal to
ŷ in expectation. Further, we define the accuracy
for soft label output, named “argmax soft”, which
calculates the accuracy of the argmax of soft output
compared with the true label. Similarly, we define
“sampling hard” to describe the output of the victim
model which is a one-hot vector.

3.3 Detecting Watermark from Suspect
Models

We first create a probing dataset Dp, for which the
labels are not required. Dp can be drawn from the
training data of the extracted model since the owner
is able to store any query sent by a specific end-user.
In our setting, we also allow Dp to be drawn from
other distributions.

We employ the Lomb-Scargle periodogram
method (Scargle, 1982) for detecting and charac-
terizing periodic signals. The Lomb–Scargle peri-
odogram yields an estimate of the Fourier power
spectrum P (f) at frequency f in an unevenly sam-
pled dataset. After getting the power spectrum,
we evaluate the signal strength by calculating the

signal-to-noise ratio

Psignal =
1

δ

∫ fw+ δ
2

fw− δ
2

P (f)df

Pnoise =
1

F − δ

[∫ fw− δ
2

0

P (f)df +

∫ F

fw+ δ
2

P (f)df

]

Psnr = Psignal /Pnoise , (5)

where δ controls the window width of[
fw − δ

2 , fw + δ
2

]
; F is the maximum frequency,

and fw is the angular frequency embedded into the
victim model. A higher signal-to-noise ratio Psnr
indicates a higher peak in the frequency domain.

4 Theoretical Analysis

In this section, we provide theoretical guarantees
for DRW for both argmax soft output and sampling
hard output. The analysis assumes the victim is
calibrated so its soft-predictions are informative.
We also focus on the binary classification task, i.e.,
m = 2. Generalization to m > 2 is straightforward
and omitted only to ensure a clean presentation.

Theorem 1. Without loss of generality, set target
class c∗ = 1, so that p̂ = p̂1(x), ŷ = ŷ1, z(x) =
z1(x). Assume p̂(x) is calibrated, i.e., E[y|p̂(x) =
a] = a, ∀0 ≤ a ≤ 1, the argmax soft label of
the victim model is ŷs = 1{ p̂(x)+ε(1+z(x))

1+2ε > 0.5}
and the sampling hard label of the victim output
is ŷh ∼ Ber( p̂(x)+ε(1+z(x))

1+2ε ). For a fixed vk, given
that z(x) = cos (fwg(vk, x,M)) ∈ [−1, 1] and
the data selection ratio is set to τ , then DRW
argmax soft label and sampling hard label satisfy:

Evk
[Acc(Argmax Soft)] ≥ Acc(Victim)

− τ(0.5 + ε)P[0.5− ε ≤ p̂ ≤ 0.5 + ε], (6)

Evk
[Acc(Sampling Hard)] ≥ (1− τ)Acc(Victim)

+
τ

1 + 2ε
E
[
2p̂2 − 2p̂+ 1

]
. (7)

The proof is deferred to Appendix A.1.
Equation (6) says that, in the soft label setting,

DRW does not hurt the accuracy too much if the
watermark level ε is small. Note that only samples
in which the victim model output lies around 0.5
(±ε) might be affected by the watermarking. These
are data points where the victim model is uncertain
and inaccurate anyway.

Equation (7) lowerbounds the accuracy of the
sampled hard labels, which is close to the vanilla
victim model if τ is small. Observe that if τ =
1, the accuracy may drop even if the watermark
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Model Type SST-2 MRPC POS NER
mAP of detection for soft distillation:

DeepJudge* 1.00 1.00 0.54 0.84
DRW 1.00 1.00 1.00 1.00

mAP of detection for hard distillation:
DeepJudge* 1.00 1.00 0.48 0.40
DRW 1.00 1.00 1.00 1.00

Performance of the models:
BERT 92.9 86.7 - 92.4
Victim model 92.8 87.0 90.7 91.3

+argmax soft 92.5 86.8 90.7 91.3
+sampling hard 88.4 85.8 90.3 91.0

Adversary soft 92.0 86.2 89.8 87.7
Adversary hard 91.3 86.1 89.7 87.4

Table 1: Main results for detection and model perfor-
mance. We report the mean average precision of the
model infringements detection for both soft-label distil-
lation and hard-label distillation. The baseline is con-
structed based on the modification of DeepJudge. We
show the results for BERT reported in the original paper.
We report the results of victim model for argmax soft
and sampling hard.

magnitude ε = 0 due to the sampling of the output
label2. Our design of a second random projection
vs plays an important role here as it allows us to
control the accuracy drop to any level we desire by
adjusting τ .

5 Experiments

5.1 Tasks

We evaluate the performance of DRW on four
different tasks. Two are sequence labeling tasks,
Part-Of-Speech (POS) Tagging and Named Entity
Recognition (NER); the other two are from GLUE
(Wang et al., 2018) text classification tasks, SST-2
and MRPC. We choose BERT (Devlin et al., 2019)
as our model backbone and fine-tune it in different
tasks.

Sequence labeling We utilize the CoNLL-2003
dataset (Sang and Meulder, 2003) for POS Tagging
and NER tasks. The CoNLL-2003 dataset consists
of news articles from the Reuters RCV1 corpus
with POS and NER tags. We formulate POS Tag-
ging and NER as token-level classification tasks
following standard practice. Specifically, POS Tag-
ging has 47 classes and NER has 9 classes. We

2Under the calibration assumption, Acc(V ictim) =
E [p̂1(p̂ ≥ 0.5) + (1− p̂)1(p̂ < 0.5)], which is strictly big-
ger than E

[
2p̂2 − 2p̂+ 1

]
except when p̂ is supported only

at trivial points {0, 1, 0.5}

take the token embedding of the last hidden layer
of BERT (Devlin et al., 2019) as the input to a lin-
ear layer, which is then used as the classifier over
the POS/NER label set. The token ID is set as the
input x for the hash function g(·). F1 score is hired
for the evaluation metric.

Text classification SST-2 is a binary single-
sentence classification task consisting of movie re-
views with corresponding sentiment (Socher et al.,
2013). MRPC is a collection of sentence pairs from
online news with labels suggesting whether the pair
is semantically equivalent or not (Dolan and Brock-
ett, 2005). We use the final hidden vector of the
special [CLS] token of BERT as the input to a lin-
ear layer, which serves as the sentence classifier.
The ID of the second token in the sentence is set as
the input x for the hash function g(·). Since GLUE
does not include any test dataset, we use accuracy
of the validation set as the evaluation metric.

For each task, we train the protected model to
achieve the best performance on the validation set.
As demonstrated in Table 1, the victim model has
comparable performance to BERT (Devlin et al.,
2019). For soft and hard label distillation, we split
the training data in each task into two parts and
use the first half to query the victim model. Then
the extracted model is trained for 20 epochs on the
pseudo-labeled dataset. We choose the same key
K = (c∗, fw,vk,vs,M), where frequency fw =
16.0, watermark level ε = 0.2 and {vk,vs,M} are
generated with different random seed. We set target
class c∗ = 22 (“NNP” tag) for POS Tagging, c∗ =
2 (“I-PER” tag) for NER and c∗ = 0 (“negative”
class) for SST-2/MRPC. We set data selection ratio
τ = 0.5 to add watermarks to half of the output
data. More details for the experiment setting can
be found in Appendix A.4.

Baseline We take the state-of-the-art method
DeepJudge (Chen et al., 2022) as a baseline against
DRW. DeepJudge quantitatively tests the similari-
ties between the victim model and suspect model,
then determines whether the suspect model is a
copy based on the testing metrics. Since Deep-
Judge is designed for continuous signals such as
images and audio, we modify the method to apply
it to texts. We consider the black-box setting for
DeepJudge, and compute Jensen-Shanon Distance
(JSD) (Fuglede and Topsøe, 2004) for the prob-
ing dataset of the victim model and the extracted
model. JSD measures the similarity of two prob-
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SST-2 MRPC POS NER
DeepJudge-JSD-Soft:

Negative Suspect (0.012, 0.032) (0.009, 0.161) (0.016, 0.444) (0.001, 0.416)
Positive Suspect (0.001, 0.002) (0.001, 0.002) (0.087, 0.279) (0.002, 0.201)

DeepJudge-JSD-Hard:
Negative Suspect (0.013, 0.029) (0.008, 0.154) (0.010, 0.432) (0.009, 0.274)
Positive Suspect (0.004, 0.005) (0.003, 0.007) (0.029, 0.112) (0.011, 0.052)

DRW-Psnr-Soft:
Negative Suspect (0.008, 4.775) (0.128, 2.607) (0.012, 2.309) (0.105, 4.243)
Positive Suspect (18.82, 25.77) (17.81, 24.25) (20.59, 28.73) (17.25, 25.22)

DRW-Psnr-Hard:
Negative Suspect (0.011, 4.235) (0.012, 3.678) (0.182, 2.869) (0.203, 4.183)
Positive Suspect (16.38, 22.77) (16.70, 21.80) (16.23, 25.67) (16.19, 25.49)

Table 2: The probing results for DeepJudge and DRW in soft distillation and hard distillation settings. We present the
range of JSD and Psnr. The first value in parentheses is the minimum score and the second value is the maximum
score. A larger gap in score between the negative and positive suspect models indicates that the detection method
performs better in identifying the extracted model.

Figure 2: Examples of DRW in NER task. The left panel of each sub-figure plots the output of the target class c∗

for the victim model and the extracted model (ŷc∗ vs. g(x)). The right panel of each sub-figure plots the power
spectrum value for output of the extracted model(P (f) vs. f ). We also display the Psnr value for signal strength of
the extracted model.

ability distributions. We use the probing dataset
to query both the victim model and the suspect
model, and then calculate JSD of the output layer
as follows

JSD (ŷ, q̂) =
1

2|Dp|
∑

x∈Dp

K (ŷ(x), u) +K (q̂(x), u)

where u = (ŷ(x) + p̂(x)) /2 and K(·, ·) is the
Kullback-Leibler divergence. A small JSD value
implies similar output distribution of the two mod-
els, which further indicates that the suspect model
may be distilled from the victim model.

Evaluation We evaluate the performance of the
victim model and the extracted model with accu-
racy/F1 score. In order to compare DRW with
DeepJudge in detecting extracted models, we can
reduce this binary classification problem to thresh-
olding a particular test score. Since DRW and

DeepJudge use different scores to detect the ex-
tracted model, we set up a series of ranking tasks to
show the effect of these scores. For each task, we
train 10 extracted models from the watermarked
victim model with different random initialization
as positive samples, 10 extracted models from the
unwatermarked victim model with different ran-
dom initialization, and 10 models from scratch
with true labels as negative samples. For DRW,
we use the watermark signal strength values Psnr
as the score for ranking (identifying whether it is
an extracted model); for DeepJudge, we use JSD
as the score. Next, we compute the mean average
precision (mAP) for the ranking tasks which as-
sesses the model extraction detection performance.
A higher mAP means the detecting method can
distinguish the victim and the suspect model better.

We show the experiment results in the following
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subsections.

5.2 Effectiveness: Is DRW able to identify
model infringements?

We evaluate our method in two settings, distillation
with soft labels and distillation with hard labels.
The results are displayed in Table 1. DeepJudge
performs well on SST-2 and MRPC tasks but it can
not effectively detect the extracted models in POS
Tagging and NER tasks. In contrast, our method
can successfully detect the extraction with 100%
mAP across all tasks in both settings. We also
present the range of JSD and Psnr in Table 2. Re-
garding the performance of DeepJudge on POS
Tagging and NER tasks, the JSD intervals for pos-
itive and negative samples overlap each other, re-
sulting in the aforementioned lower mAP compared
to DRW. A case in point is DeepJudge-JSD-Hard
for NER task, where the ranges for negative suspect
score and positive suspect score are [0.009, 0.274]
and [0.011, 0.052] respectively. The overlapping
intervals lead to the imperfect detection result, i.e.,
mAP = 0.40. Whereas, DRW is able to perfectly
distinguish between positive and negative suspects.
Typically, Psnr for the negative suspect is smaller
than 5 while that for the positive suspect is larger
than 15.

5.3 Fidelity: Does DRW decrease the
performance of the model?

The results for the model performance at the wa-
termark level ε = 0.2 are displayed in Table 1.
The perturbed API (victim model with argmax
soft/sampling hard) only has a slight performance
drop (within 5%) in comparison to the original one
due to the trade-off between detection effectiveness
and model performance. For the victim model API,
argmax soft exhibits less performance drop than the
sampling hard, since the argmax of the soft label re-
mains unchanged with small perturbation. For the
extracted model, distillation with soft label tends to
have a better accuracy/F1 score than that with hard
label. Additionally, the performances of extracted
models are very close to those of victim models, a
clear manifestation of the distillation success.

5.4 Case Study
We present how our method works on some ex-
amples in NER task. We fix the victim model
and choose different settings for the suspect model
across all the examples. For the watermarked ones,
we set fw = 16, ε = 0.2 and c∗ = 2.

In Figure 2 (a), we show how DRW works on
a suspect model that does not extract the victim
model. We select a model trained from scratch
with true labels as a negative example. There is no
sinusoidal signal in the output of the suspect model
hence a small Psnr.

In Figure 2 (b)(c), we illustrate the effect on
soft distillation and hard distillation. We use the
watermark key K to extract the output of the victim
model and suspect model. The extracted model
clearly follows the victim model and there is a
prominent peak at frequency fw. Note that suspect
model distillation with soft labels has a higher Psnr
than the one with hard labels. This is because the
training process of extracted models can be more
effective and faster with soft labels (Phuong and
Lampert, 2019).

In Figure 2 (d), we validate the secrecy of our
method. If the adversary does not have the secret
key, it can not justify what the watermark is or
whether there exist watermarks. The output of
the victim model and extracted model are almost
indiscernible when we use a wrong key to project
them given the hash function g(·).

In Figure 2 (e)(f), we demonstrate the generality
of our method. Watermarking algorithm should be
independent of the dataset and the ML algorithms.
In sub-figure (e), a different dataset is used to probe
the suspect model. To be specific, we select the sec-
ond half of the training data as the probing dataset,
rather than the first half used in previous experi-
ments. The results imply that DRW turns out to
work well when we use unseen data to produce the
probing dataset for the suspect model. In sub-figure
(f), we choose a different backbone RoBERTa (Liu
et al., 2019) for the suspect model, in which the
victim model continues to be the BERT model. The
high peak in the power spectrum at frequency fw
reveals that DRW is still able to detect the signal.

6 Ablation Study

6.1 Does watermark level impact detection?

An important aspect of watermarking is how much
perturbation we add to the output of the victim
model. Theoretically, a smaller watermark level is
associated with a higher accuracy/F1 score of the
victim, yet it makes it harder to extract the signal
from the probing results. We conduct two exper-
iments to investigate the effect of the watermark
level.

In the first experiment, we vary the watermark
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Figure 3: Test accuracy of victim model API with dif-
ferent watermark level in SST-2 task.

level in SST-2 task. According to the Theorem 1,
the accuracy of the victim model output is bounded
and a higher watermark level causes poorer perfor-
mance. As shown in Figure 3, when the watermark
level rises from 0 to 0.7, the performance drops by
around 10 percent. It is worth noting that a big drop
of the argmax soft emerges as ε passes 0.5, which
means the argmax of the output is highly likely to
be changed in this case.
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Figure 4: Model detection results with different water-
mark level in NER task.

In the second experiment, we design 10 sets of
ranking tasks, and build up 10 positive samples
together with 20 negative samples (similar to the
setting in Section 5.1) for each set in NER task.
The watermark level is the only varied parameter
across different tasks, ranging from 0.02 to 0.2. We
plot the mAP of the detection against the water-
mark level in Figure 4. When the watermark level
ε is below 0.12, DRW can not generate perfect de-
tection of positive and negative suspects, indicating
that the adversary may not convey a strong sinu-
soidal signal at a low watermark level. In this case,
DRW can not extract the watermark in frequency
space and thus fails to detect it successfully.

These two experiments demonstrate the trade-off

between the detection effectiveness and the victim
model’s performance after watermarking.

6.2 Do categories affect watermark
protection?
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Figure 5: Adding watermark to four categories in POS
Tagging task. "DT": determiner; "NNP": proper noun,
singular; "VBN": verb, past practice; "JJ": adjective.

We vary the target class c∗ of the watermark
key K in POS Tagging task. We add watermarks to
four different categories and then train the extracted
model by soft distillation and hard distillation. The
results of the signal-to-noise ratio Psnr are visual-
ized in Figure 5. The effect of the watermark will
be more salient if the category involves more sam-
ples. Since "NNP" covers the most (14.16%) of
all tokens, adding watermark to "NNP" produces
the strongest signal. In contrast, the determiners
("DT") category only has a few number of types,
such as "the" and "a". As a result, adding water-
mark to "DT" is ineffective as it is hard to add a
periodic signal to a very discrete domain.

6.3 How much should be selected for
watermarking?
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Figure 6: Output accuracy of the victim model and
signal strength of the extracted model with different
data selection ratio τ in MRPC task.

A critical design of our method is that we apply
selection vector vs to select a portion of the victim
model output to be watermarked. We change the
ratio of the watermarked data by tuning the data
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selection ratio τ in MRPC task. The results shown
in Figure 6 indicate that the accuracy of the victim
model output falls with a higher data selection ratio,
yet it introduces a greater signal strength of the
extracted model. This trade-off is similar to the one
described in Section 6.1. 0.5 could be a reasonable
selection ratio.

7 Conclusion

In this work, we propose Distillation-Resistant
Watermarking (DRW), a novel and unified water-
marking technique against model extraction attacks
on NLP models. By injecting watermarks into the
prediction output of the victim model, the model
owner can detect the watermark if the adversary dis-
tills the protected model. We prove the theoretical
guarantee of DRW and show remarkable empirical
results on text classification and sequence labeling
tasks.

Limitations

1) The watermark detection does not work well
when the watermarked data covers only a small
amount of the whole training data for the extracted
model. 2) Our method may not work well when the
adversary only makes a few queries to the victim
model APIs and trains the extracted model with
few-shot learning. 3) If the victim model outputs
soft labels, even with watermarking, the adversary
can take argmax operation to erase the watermark.
So it is better to combine watermarks with hard
label output in real-world applications.

Broader Impact

This work will alleviate ethical concerns of com-
mercial NLP models. This paper provides one
promising solution to an important aspect of NLP:
how to protect the intellectual property of trained
NLP models. Companies with NLP web services
can apply our method to protect their models from
model extraction attacks.
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A Appendix

A.1 Proof for the Theorem 1

Theorem A.1 (Restate Theorem 1). Without loss
of generality, set target class c∗ = 1, so that
p̂ = p̂1(x), ŷ = ŷ1, z(x) = z1(x). Assume p̂(x)
is calibrated, i.e., E[y|p̂(x) = a] = a, ∀0 ≤
a ≤ 1, the argmax soft label of the victim model
is ŷs = 1{ p̂(x)+ε(1+z(x))

1+2ε > 0.5} and the sam-
pling hard label of the victim output is ŷh ∼
Ber( p̂(x)+ε(1+z(x))

1+2ε ). For a fixed vk, given that
z(x) = cos (fwg(vk, x,M)) ∈ [−1, 1] and the
data selection ratio is set to τ , then DRW argmax
soft label and sampling hard label satisfy:

Evk
[Acc(Argmax Soft)] ≥ Acc(Victim)

− τ(0.5 + ε)P[0.5− ε ≤ p̂ ≤ 0.5 + ε], (8)

Evk
[Acc(Sampling Hard)] ≥ (1− τ)Acc(Victim)

+
τ

1 + 2ε
E
[
2p̂2 − 2p̂+ 1

]
. (9)

Proof. We first prove the argmax soft label case
with τ = 1.

E [1(ŷs = y)]

=E [P(ŷs = y|x)]
=E [P(ŷs = 1, y = 1|x) + P(ŷs = 0, y = 0|x)]
=E [P(ŷs = 1|x)P(y = 1|x)
+ P(ŷs = 0|x)P(y = 0|x)]

=E [1{p̂+ εz(x) > 0.5}P(y = 1|x)
+ 1{p̂+ εz(x) ≤ 0.5} (1− P(y = 1|x))]

=E
[
E [1{p̂+ εz(x) > 0.5}P(y = 1|x)

+ 1{p̂+ εz(x) ≤ 0.5} (1− P(y = 1|x)) |p̂]
]

≥E
[
E [1{p̂− ε > 0.5}P(y = 1|x)|p̂]

+ E [1{p̂+ ε ≤ 0.5}(1− P(y = 1|x))|p̂]
]

=E
[
1{p̂− ε > 0.5}E [P(y = 1|x)|p̂]

+ 1{p̂+ ε ≤ 0.5}E [1− P(y = 1|x)|p̂]
]

=E
[
1{p̂ > 0.5 + ε}p̂+ 1{p̂ ≤ 0.5− ε}(1− p̂)

]

=E [1{p̂ > 0.5}p̂+ 1{p̂ ≤ 0.5}(1− p̂)]︸ ︷︷ ︸
Accuracy of victim model without watermark

− E [1{0.5 < p̂ ≤ 0.5 + ε}p̂]
+ E [1{0.5− ε ≤ p̂ ≤ 0.5}(1− p̂)]

≥Acc(Victim Model)

− (0.5 + ε)P(0.5− ε ≤ p̂ ≤ 0.5 + ε)

where the first "≥" follows from |z(x)| ≤ 1;
the third "=" follows from the conditional in-
dependence of ŷs and y given x; the seventh

"=" follows from the calibration assumption, i.e.
E [P(y = 1|x)|p̂(x)] = p̂(x).

Notice that over the distribution of vs selects
every unique x with probability τ independently to
everything else, by exchanging the order of expecta-
tion, it is easy to prove that the expected accuracy is
a convex combination of the accuracy of the victim
model (with weight 1−τ ) and the case above (with
weight τ ). This completes the proof for argmax
soft label.

We then start by analyzing the sampling hard
label case with τ = 1.

E [1(ŷ = y)]

=E [P(ŷ = y|x)]
=E [P(ŷ = 1, y = 1|x) + P(ŷ = 0, y = 0|x)]
=E [E(ŷ|x)E(y|x) + E(1− ŷ|x)E(1− y|x)]

=E
[(

p̂

1 + 2ε
+

ε(1 + z(x))

1 + 2ε

)
E(y|x)

+

(
1− p̂

1 + 2ε
+

ε(1− z(x))

1 + 2ε

)
E(1− y|x)

]

= 1

1 + 2ε
E [p̂E(y|x) + (1 − p̂)E(1 − y|x)]
︸ ︷︷ ︸

A

+ ε

1 + 2ε
E [(1 + z(x))E(y|x) + (1 − z(x))E(1 − y|x)]
︸ ︷︷ ︸

B

A =E [E [p̂E(y|x) + (1− p̂)E(1− y|x)|p̂]]
=E [p̂E(y|p̂) + (1− p̂)E(1− y|p̂)]
=E

[
p̂2 + (1− p̂)2

]

=E
[
2p̂2 − 2p̂+ 1

]

where the third line follows from the calibration
assumption, i.e., E[y|p̂(x) = a] = a.

B =E [E(y|x) + E(y|x)z(x) + 1− z(x)

− E(y|x) + E(y|x)z(x)]
=1 + E [(2E(y|x)− 1) z(x)]

≥0

where the last line follows from the facts that
|z(x)| ≤ 1 and |2E(y|x)− 1| ≤ 1.

Finally, notice that for each x the probability to
be chosen to add watermark and to sample the out-
put is τ independently, thus the expected accuracy
is the convex combination of the accuracy of the
victim model and that of the fully watermarked
model.

A.2 Distribution Property
Lemma 1. Assume v ∼ U(0, 1), v ∈ Rn and
x ∼ N (0, 1), x ∈ Rn, where v and x are both
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i.i.d. and independent of each other. Then we have:

1√
n
v · x⇝ N

(
0,

1

3

)
, n → ∞

Proof. Let ui = vixi, i ∈ 1, 2, . . . , n. By assump-
tion, ui are i.i.d.. Clearly, the first and second mo-
ments are bounded, so the claim follows from the
classical central limit theorem,

√
nūn =

∑n
i=1 ui√
n
⇝ N

(
µ, σ2

)
as n → ∞

where

µ = E (ui) = E (vixi) = E (vi)E (xi)

= 0

σ2 = Var(ui) = E
(
u2i

)
− (E (ui))

2

= E
(
u2i

)
= E

(
v2
i x

2
i

)
= E

(
v2
i

)
E
(
x2
i

)

=
1

3

It follows that given large n

1√
n
v · x⇝ N

(
0,

1

3

)

A.3 Modified Softmax Properties
Lemma 2 (Lemma 1 in (Charette et al., 2022)).
Let p̂ be the softmax output of a model V , then
the modified softmax ŷ, as defined in Equation 4
satisfies 0 ≤ ŷi ≤ 1 and

∑m
i=1 ŷi = 1.

Proof. Notice that in Equation 4, when
g(vs, x,M) > τ , ŷ = p̂, so that it satisfies
the property above.

By the definition of softmax, for all class c ∈
{1, . . . ,m} we have

0 ≤ p̂c ≤ 1,−1 ≤ zc(x) ≤ 1.

Therefore, when c = c∗, we have

0 ≤ p̂c + ε (1 + zc(x)) ≤ 1 + 2ε,

and then

0 ≤ p̂c + ε (1 + zc(x))

1 + 2ε
≤ 1.

When c ̸= c∗, since m ≥ 2, we have

0 ≤ p̂c +
ε (1 + zc(x))

m− 1
≤ 1 +

2ε

m− 1
≤ 1 + 2ε

and then

0 ≤
p̂c +

ε(1+zc(x))
m−1

1 + 2ε
≤ 1.

Thus, q̂ satisfies 0 ≤ ŷi ≤ 1.
To prove

∑m
i=1 ŷi = 1, we use the fact that zc∗+

zi ̸=c∗ = 0 and obtain

c∑

i=1

ŷi =
p̂c∗ + ε (1 + zc∗)

1 + 2ε
+

∑

i ̸=c∗

p̂i +
ε(1+zi)
m−1

1 + 2ε

=

m∑

i=1

p̂i

1 + 2ε
+

∑

i ̸=c∗

ε (1 + zc∗ + 1 + zi)

(m− 1)(1 + 2ε)

=
1

1 + 2ε
+

2ε

1 + 2ε

= 1

A.4 Experiment Details
We provide more details for the experiments in this
section.

We build our classification models upon
bert-base-uncased from Hugging Face3. The
model contains 110M parameters. We add a
dropout layer before the last linear layer with a
dropout rate of 0.5. We implement DRW in Py-
Torch 1.11.0 on a server with 4 NVIDIA TITAN-
Xp GPUs. We set batch size to 8 for SST-2 and
MRPC tasks, and 32 for POS Tagging and NER
tasks.

We train the victim model using AdamW
(Loshchilov and Hutter, 2019) optimizer with learn-
ing rate 1e-5 and epsilon 1e-8. Each victim model
is trained 40 epochs and the one with the best vali-
dation results is chosen.

Regarding the extracted model, we use half of
the training data to query the victim model and ob-
tain the labeled dataset. Then the extracted model
is trained with Adam (Kingma and Ba, 2015) opti-
mizer for 20 epochs with learning rate 5e-5. The
average training time is 3 minutes for each epoch.

We show the results for RoBERTa model in Sec-
tion 5.4. In this setting, we choose roberta-base
from Hugging Face, which has 125M parameters.

3https://huggingface.co/
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