@inproceedings{liu-etal-2022-gnn,
title = "{GNN}-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Dense Passage Retrieval",
author = "Liu, Jiduan and
Liu, Jiahao and
Yang, Yang and
Wang, Jingang and
Wu, Wei and
Zhao, Dongyan and
Yan, Rui",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.39",
doi = "10.18653/v1/2022.findings-emnlp.39",
pages = "564--575",
abstract = "Recently, retrieval models based on dense representations are dominant in passage retrieval tasks, due to their outstanding ability in terms of capturing semantics of input text compared to the traditional sparse vector space models. A common practice of dense retrieval models is to exploit a dual-encoder architecture to represent a query and a passage independently. Though efficient, such a structure loses interaction between the query-passage pair, resulting in inferior accuracy. To enhance the performance of dense retrieval models without loss of efficiency, we propose a GNN-encoder model in which query (passage) information is fused into passage (query) representations via graph neural networks that are constructed by queries and their top retrieved passages. By this means, we maintain a dual-encoder structure, and retain some interaction information between query-passage pairs in their representations, which enables us to achieve both efficiency and efficacy in passage retrieval. Evaluation results indicate that our method significantly outperforms the existing models on MSMARCO, Natural Questions and TriviaQA datasets, and achieves the new state-of-the-art on these datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2022-gnn">
<titleInfo>
<title>GNN-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Dense Passage Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiduan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiahao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, retrieval models based on dense representations are dominant in passage retrieval tasks, due to their outstanding ability in terms of capturing semantics of input text compared to the traditional sparse vector space models. A common practice of dense retrieval models is to exploit a dual-encoder architecture to represent a query and a passage independently. Though efficient, such a structure loses interaction between the query-passage pair, resulting in inferior accuracy. To enhance the performance of dense retrieval models without loss of efficiency, we propose a GNN-encoder model in which query (passage) information is fused into passage (query) representations via graph neural networks that are constructed by queries and their top retrieved passages. By this means, we maintain a dual-encoder structure, and retain some interaction information between query-passage pairs in their representations, which enables us to achieve both efficiency and efficacy in passage retrieval. Evaluation results indicate that our method significantly outperforms the existing models on MSMARCO, Natural Questions and TriviaQA datasets, and achieves the new state-of-the-art on these datasets.</abstract>
<identifier type="citekey">liu-etal-2022-gnn</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.39</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.39</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>564</start>
<end>575</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GNN-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Dense Passage Retrieval
%A Liu, Jiduan
%A Liu, Jiahao
%A Yang, Yang
%A Wang, Jingang
%A Wu, Wei
%A Zhao, Dongyan
%A Yan, Rui
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F liu-etal-2022-gnn
%X Recently, retrieval models based on dense representations are dominant in passage retrieval tasks, due to their outstanding ability in terms of capturing semantics of input text compared to the traditional sparse vector space models. A common practice of dense retrieval models is to exploit a dual-encoder architecture to represent a query and a passage independently. Though efficient, such a structure loses interaction between the query-passage pair, resulting in inferior accuracy. To enhance the performance of dense retrieval models without loss of efficiency, we propose a GNN-encoder model in which query (passage) information is fused into passage (query) representations via graph neural networks that are constructed by queries and their top retrieved passages. By this means, we maintain a dual-encoder structure, and retain some interaction information between query-passage pairs in their representations, which enables us to achieve both efficiency and efficacy in passage retrieval. Evaluation results indicate that our method significantly outperforms the existing models on MSMARCO, Natural Questions and TriviaQA datasets, and achieves the new state-of-the-art on these datasets.
%R 10.18653/v1/2022.findings-emnlp.39
%U https://aclanthology.org/2022.findings-emnlp.39
%U https://doi.org/10.18653/v1/2022.findings-emnlp.39
%P 564-575
Markdown (Informal)
[GNN-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Dense Passage Retrieval](https://aclanthology.org/2022.findings-emnlp.39) (Liu et al., Findings 2022)
ACL