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Abstract

Prompt-based learning, with its capability to
tackle zero-shot and few-shot NLP tasks, has
gained much attention in community. The main
idea is to bridge the gap between NLP down-
stream tasks and language modeling (LM),
by mapping these tasks into natural language
prompts, which are then filled by pretrained lan-
guage models (PLMs). However, for prompt
learning, there are still two salient gaps be-
tween NLP tasks and pretraining. First,
prompt information is not necessarily suffi-
ciently present during LM pretraining. Second,
task-specific data are not necessarily well rep-
resented during pretraining. We address these
two issues by proposing AdaPrompt, adaptively
retrieving external data for continual pretrain-
ing of PLMs by making use of both task and
prompt characteristics. In addition, we make
use of knowledge in Natural Language Infer-
ence models for deriving adaptive verbaliz-
ers. Experimental results on five NLP bench-
marks show that AdaPrompt can improve over
standard PLMs in few-shot settings. In addi-
tion, in zero-shot settings, our method outper-
forms standard prompt-based methods by up to
26.35% relative error reduction.

1 Introduction

Prompt-based methods (Brown et al., 2020; Liu
et al., 2021; Schick and Schütze, 2021a; Li and
Liang, 2021) have received increasing attention
in Natural Language Processing (NLP) recently.
The main idea is to make the most use of pre-
trained language models (PLMs) by adapting an
NLP task into a natural language prompt, which
can then be filled by PLMs. Take sentiment classifi-
cation (Socher et al., 2013; Bai et al., 2021) for ex-
ample. Given the sentence “I love the movie.”, the
standard task is to make a binary classification on
its sentiment polarity (i.e., positive or negative).
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The acting, costumes, music,
cinematography and sound are
all astounding…

In summary, the movie is
outstanding.

general data
domain data
task data
prompt data
target data for
prompt learning
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Figure 1: The distributions of data in prompt-based
models. Task data, domain data, prompt data, and gen-
eral data (for LM pretraining) are usually sampled from
different distributions while remaining certain overlap
(target data for prompt training). We aim to explore data
from the overlapping area to bridge the gap between
PLM and downstream tasks in prompt-based systems.

Prompt-based methods first transform the sentence
into “I love the movie. The movie is ⟨mask⟩.” (the
underlined text is called prompt), and then iden-
tify its polarity by checking whether PLMs tends
to predict “good” or “bad” for the ⟨mask⟩ token
(where the predicted words are then verbalized into
class labels). The prompt-based task formulation
is close to masked language modeling (Schick and
Schütze, 2021a,b), which is the mainstream pre-
training strategy, allowing PLMs to provide rich
language knowledge seamlessly. Prompt-based
methods have been shown particularly useful in
zero-shot and few-shot settings (Petroni et al., 2019;
Yin et al., 2019; Min et al., 2022), where with lim-
ited direct task data, prompt-based inference ben-
efits more from large-scale pretraining than task-
oriented fine-tuning.

Existing methods, however, still suffer from sev-
eral potential limitations. First, large raw text
data used for pretraining do not necessarily con-
tain sufficient patterns that are directly related to
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task specific prompts (Illustrated in Figure 1). For
instance, the prompt for a question classification
task is “Can you tell me the ⟨mask⟩: What are the
twin cities?”, where ⟨mask⟩ should be a class label
word, e.g., location, person and etc (the correct
label for this sample is definition). However, LM
pretraining data are typically BOOKCORPUS (Zhu
et al., 2015) plus WIKIPEDIA corpus, where such
prompts can occur scarcely in the literal or para-
phrased form. As a result, directly using PLMs to
fill such handcrafted prompts across domains can
lead to poor performance. Second, to project label
words to task labels, most existing work (Schick
and Schütze, 2021a,b; Cui et al., 2021) uses a
pre-defined verbalizer. However, it often requires
expert knowledge to build a verbalizer that can
thoroughly cover candidate words and a poorly-
designed verbalizer limits the accuracy of predic-
tions. These problems become even more serious
under zero-shot or very-few-shot settings, where
prompt-based models highly rely on the generaliza-
tion ability of PLMs to new tasks and domains.

We propose AdaPrompt, a framework that adapts
PLMs for end tasks considering both the prompts
and the verbalizer. We are interested in addressing
the above issues under a zero-shot setting, where
little or no labeled training data are available for a
particular task. The main idea is to adapt a PLM
to a strong prompt-based model for an end task
by exploring knowledge from its raw input data.
In particular, as shown in Figure 2, given a raw
test set without labels, we first ask a PLM to fill
a prompt template for each input (e.g., “In sum-
mary, the movie is great.”, where “great” is filled
by PLMs). Then, we use the resulting text (input
text + prompt + PLM output) as a prompt-aware
query to retrieve relevant data from a large unla-
beled corpus. In this manner, we can obtain a large
dataset that contain both task and prompt charac-
teristics, and we adaptively continual pretrain (Gu-
rurangan et al., 2020) the PLM on the retrieved
data, which can substantially benefit prompt-based
methods on downstream NLP tasks.

Meanwhile, we found current way of building
verbalizers is also not optimal. Given a specific
task, different words can be verbalized into the
same class labels. For example, a large number
of adjectives can express the positive sentiment,
and the best-performing candidates depend on the
domain, PLM and context. In AdaPrompt, we pro-
pose to adaptively augment verbalizers by making

use of knowledge from PLMs and Natural Lan-
guage Inference (NLI) models. Take sentiment
analysis for example, given “good” and “bad” as
seed verbalizers, we first let PLMs to predict more
candidate words, such as “amazing” and “great”.
Then, to identify if these candidates are suitable
to verbalizer, we refer to an NLI model to predict
whether “This movie is amazing.” entails the mean-
ing of “This movie is good.”. In this way, we can
automatically expand the verbalizers.

Experiments on five text classification tasks
show that AdaPrompt outperforms baseline prompt-
based methods by 2.29%-5.79% in very-few-shot
setting and 2.46%-15.00% in zero-shot setting on
accuracy. To our knowledge, we are the first to
consider how to bridge the gap between LM pre-
training and NLP downstream tasks for prompt-
based NLP. We release our code and data at
https://github.com/cylnlp/AdaPrompt.

2 Related work

2.1 Zero/Few-shot Prompt-based NLP

Although prompt-based methods have been used
for multiple NLP tasks (Brown et al., 2020; Raf-
fel et al., 2020; Brown et al., 2020; Cui et al.,
2021), most of existing work focus on text clas-
sification (Shin et al., 2020; Gao et al., 2021;
Min et al., 2022; Hu et al., 2022). A typical re-
lated work is PET (Schick and Schütze, 2021a),
where Schick and Schütze (2021a) formally de-
fine pattern-verbalizer pairs that have been widely
adopted by successive works. By using such pairs,
Schick and Schütze (2021a,b) develop a series of
work to explore the potential of PLMs, includ-
ing annotating soft labels for raw training data,
and data augmentation iteratively. However, dif-
ferent from PET that assumes the availability of
large silver training set for downstream tasks, we
focus on zero and very-few-shot settings, where
even unannotated task-relevant dataset is also lim-
ited (Perez et al., 2021). Therefore, following Hu
et al. (2022), we simply focus on standard pattern-
verbalizer pairs for text classification.

Prompt engineering (Jiang et al., 2020; Gao et al.,
2021) focuses on how to create prompts that can
better induce PLMs to make correct predictions.
Discrete prompt engineering works by replacing,
deleting, inserting or paraphrasing parts of the
prompt (Wallace et al., 2019; Yuan et al., 2021).
Those methods can efficiently adapt PLMs to end
tasks, but they highly reply on annotated data for
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tuning parameters. Different from the above stud-
ies, we are interested in narrowing the gap between
LM pretraining and NLP tasks for prompting learn-
ing in zero or very-few-shot settings.

It has been shown that using different verbal-
izers can also be a key factor for prompt learn-
ing (Hu et al., 2022; Cui et al., 2021). However,
manually exploring label words is time-consuming
and may neglect potential candidates. Recently,
Hu et al. (2022) uses multiple external knowledge
bases, such as related words and sentiment dictio-
naries, to augment verbalizers for corresponding
tasks. Different from them, we focus on exploring
knowledge in PLMs themselves. By making use
of external NLI models AdaPrompt can select ver-
balizers automatically without the need of labeled
task data, which is useful in zero-shot settings.

2.2 Continual Pretraining for Domain
Adaptation

Continual pretraining (Gururangan et al., 2020) has
shown benefit of optimizing a PLM to a target do-
main before further fine-tuning. It can be cate-
gorised into domain adaptive continual pretraining
and task adaptive continual pretraining. The differ-
ence is that, domain adaptive pretraining (DAPT)
uses domain relevant data while task adaptive pre-
training (TAPT) uses task-specific data.

Similar to continual pretraining, many recent
methods highlight the merits of relying on lan-
guage modeling objectives for domain adaptation.
Chronopoulou et al. (2019) and Radford et al.
(2018) propose to train task-specific parameters for
PLMs by using an auxiliary LM loss on target do-
mains. Models like SciBERT (Beltagy et al., 2019),
DialogLM (Zhong et al., 2021), AMRBART (Bai
et al., 2022a), SARA-BERT (Bai et al., 2022b)
and Dict-BERT (Yu et al., 2022) are PLMs that
are continually pretrained on large amounts of
domain/task-specific corpora.

Data selection is a common practice in do-
main adaption for NLP models (Moore and Lewis,
2010; Ruder and Plank, 2017; van der Wees et al.,
2017). It has been used in machine transla-
tion (van der Wees et al., 2017; Wang et al., 2018),
parsing (Plank and van Noord, 2011; Ruder and
Plank, 2017) and sentiment analysis (Ruder et al.,
2017). The main idea is to have a selection model
that can distinguish in-domain and out-of-domain
data. The selection model can be a supervised
classifier (Aharoni and Goldberg, 2020), similarity-

based metric (Plank and van Noord, 2011) or lan-
guage model perplexity (Moore and Lewis, 2010).
Very recently, Yao et al. (2021) propose to retrieve
a small set of training data from general corpora
with labeled task data as queries, finding that us-
ing LM objective on this data as an auxiliary loss
can help train task-specific NLP models without
pretraining.

3 Method

Our method is based on prompt-based text classi-
fication methods (Section 3.1). The overall proce-
dure of AdaPrompt is shown in Figure 2, which can
be divided into two parts: PLM adaptation (Sec-
tion 3.2) and verbalizer adaptation (Section 3.4).
In Section 3.3, we introduce a method that adapts
both PLMs and verbalizers in an iterative way for
continual improvements.

3.1 Prompt-based Text Classification

Given an input text, x = (x0, x1, ..., xn), we con-
sider various tasks to classify the sentence into a
class label l ∈ L. As mentioned in Section 1,
the standard prompt-based method reformulates
the input into a cloze-style question and identi-
fies its label by checking PLMs’ predictions. Ta-
ble 1 shows the prompt templates and verbalizer
patterns for the SST-2 (Socher et al., 2013), Yelp
(Zhang et al., 2015), AGNews (Zhang et al., 2015),
TREC (Voorhees and Tice, 2000) and DBPedia
(Lehmann et al., 2015) datasets, which cover sen-
timent classification, topic classification and ques-
tion classification tasks. Formally, let M be a lan-
guage model pretrained on large-scale general data,
and ⟨mask⟩ be the mask token. The prompt-based
method first defines a pattern function, Prompt,
that converts x into a cloze-style question contain-
ing ⟨mask⟩. Then, it defines a verbalizer function
v, which maps a small set of pre-defined verbalizer
words (Y) predicted at the position of <mask> into
class labels, i.e., v : Y 7→ L.

Take sentiment classification for movie review
for instance. The task is to classify the sentiment
polarity, where L = {positive, negative}. For
an input x, we choose the pattern:

Prompt =“x. In summary, the movie is
⟨mask⟩.”

Then we define a verbalizer that maps Y =
{“good”, “bad”} into L:

v(“good”) = positive;
v(“bad”) = negative
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It’s a charming and often affecting journey.

It’s a charming and often affecting journey. In 
summary, the movie is <mask>.

Search Engine

Prompt-aware query
It’s a charming and often affecting journey. In summary, the movie is
great.

It’s a charming and often affecting journey. In summary, the movie is
amazing.

…

Retrieve from General Data
really is a funny, charming movie. It‘s very sweet, and it‘s a great romantic comedy.

I first heard about this from Chelsi‘s. She gives a great summary of the movie which 
you can read about here. This was the best movie we had seen in a long time.

...

query

retrieve

continual pretrain

predicted label words
great amazing

…

positive negative
good bad
great …

… …

verbalizer augmentation

Adapted Pretrained Language Model

pattern

PLM mask prediction

NLI filter

Adapted Verbalizers

Figure 2: Overall framework of AdaPrompt.

Given an example:
x = “It’s a charming journey.”,

we can convert the input into a cloze-style ques-
tion using Prompt:

Prompt(x) = “It’s a charming journey. In
summary, the movie is ⟨mask⟩.”

Using such pattern-verbalizer pairs, we ask M
to directly give scores s for each label l ∈ L as:

s(l|x) = Pr[<mask> = y|Prompt(x),M] (1)

where l = v(y). The predicted label is:

l̂ = argmax
l∈L

s(l|x) (2)

3.2 Adaptively Retrieve Data for Continual
Pretraining

As discussed in the Section 1, the lack of domain
adaptation can be a potential challenge for prompt-
based NLP models, especially under zero-shot and
very-few-shot settings. To tackle this problem, we
propose to build a continual pretraining dataset by
retrieving from general corpora, with unannoated
test texts, designed prompts and label words as
queries. In this way, we can obtain task-relevant
data for any tasks or domains, using only test input.
Meanwhile, prompt and verbalzier information is
also considered during the retrieval process, lead-
ing to a more comprehensive dataset for prompt-
aware continual pretraining.

Formally, given a retrieval query q, a retrieval
engine ED indexed on a large general dataset D can

return a set of similar text dq = ED(q). To obtain
prompt-aware data that can not only adapt PLMs
to target domains but also make PLMs more sensi-
tive to prompts, we include both task and prompt
characteristics when building queries. As shown
in Figure 2, for a raw input text x in text data, we
first convert it into Prompt(x), and obtain a set of
predicted label words using a PLM M:

O = M(Prompt(x)) (3)

where O = {o1, o2, ..., o|O|} are the top-|O| pre-
dictions. We replace the mask token in P (x) with
oi, to form a list Q of queries. For example:

Q = {q1, ..., q|O|}, (4)

where qi = “x. In summary, the movie is oi.”
With this set of prompt-based queries, we re-

trieve prompt-aware data Dp, which is a small sub-
set of the general data. In this work, we use Elas-
ticSearch1 indexed on a large general corpus as the
search engine and we ask it to return a list of top-k
texts that match the query. As shown in Figure 2,
one test input can lead to multiple prompt-aware
queries because the masked token in the prompt
can be replaced by the |O| predictions. In addi-
tion, given one query, ElasticSearch can also give
multiple returns with demanded k.

We continue to pretrain the PLM M on Dp

with masked language modeling loss and obtain
1https://www.elastic.co
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Algorithm 1 Verbalizer Adaptation
Input: prompt P , seed verbalizer words y ∈ Yl, candidate
words c ∈ C and an NLI system N
for c in C do

if N (f(P, y), fill(P, c)) = Entail
or N (fill(P, c), f(P, y)) = Entail then
add c in Yl

end if
end for
Return Yl

an adapted PLM MDp . MDp now contains richer
knowledge of both the target domain and the
prompts. It can be used to replace M in Eq. 1
for zero-shot text classification.

3.3 Iterative Adaptation

After obtaining MDp , we can iterate the process
by replacing M with MDp in Eq. 3, and obtain
an iterative set of predicted words and a list of
queries marked as O′ and Q′. Given that O′ con-
tains more in-domain knowledge, we can retrieve
higher quality pretraining data with more task rel-
evant information, using Q′ to query the ED. In
this way, we obtain a new version of D′

p, and a new
continual pretrained PLM M′

Dp
, which can also be

used for zero-shot predictions using Eq. 1. In this
work, we conduct this procedure twice.

3.4 Adaptive Verbalizer Augmentation

As described in Section 3.1, the regular prompt-
based method defines the verbalizer that maps pre-
dicted label word into task classes, such as “good”
for positive and “bad” for negative. However,
predefined verbalizer can be limited. To expand
this verbalizer, we first infer top-|O| label words
at mask token position over all inputs in test set.
We filter the predicted words and obtain a set of
high frequent words C as candidates for verbalizer
augmentation. Then, we propose a new method for
exploring useful verbalizer words by using knowl-
edge from a Natural Language Entailment model.

Specifically, given a seed verbalizer word yl ∈
Yl for label l, and a candidate word c ∈ C, we com-
pare whether a prompt filled by yl is entailed with
the prompt filled by c. The pseudo code is shown
in Algorithm 1. If entailment relation holds for this
pair, we add c add to Yl. And the new Y which can
be considered as an augmented verbalizer.

After obtaining the augmented set of verbalizer

words, Eq. 1 can be rewritten as:

s(l|x) = 1

|Yl|
∑

y∈Yl

Pr[<mask> = y|Prompt(x),M]

(5)
and we can still use Eq. 2 for prediction.

4 Experiments

4.1 Datasets and Prompts
To evaluate our methods, we conduct experiments
on five benchmarks: SST-2 (Socher et al., 2013),
Yelp (Zhang et al., 2015), AGNews (Zhang et al.,
2015), TREC (Voorhees and Tice, 2000) and DBPe-
dia (Lehmann et al., 2015) datasets. Table 1 shows
prompt templates and seed verbalizer words that we
use for each dataset. For AGNews and YELP, we
adapt patterns and verbalizers from PET (Schick
and Schütze, 2021a) since it is the basic prompt-
based method that has been mostly widely used.

AGNews is a text classification dataset in the
domain of News. Given a headline and a main
text body, the model is require to classify the news
into one of the classes: (1) World, (2) Sports, (3)
Business or (4) Science/Tech.

YELP is a sentiment analysis dataset. Given a
restaurant review, the task is to predict whether the
review is positive or negative.

SST-2 is a sentiment analysis dataset similar to
YELP but its domain is movie reviews. Thus, we
use the same seed prompt and verbalizer words
as for YELP, but change “restaurant” in prompt
template to “movie”.

DBPedia 2014 is an ontology classification
dataset, extracted from DBPedia 2014 with 14 non-
overlap classes, such as Educational Institution and
Office Holder. We define two patterns for this task:

P1(x) = “Description to the ⟨mask⟩ x”
P2(x) = “Introduction to the ⟨mask⟩ x”

and we use P2 as the seed pattern.
TREC-10 is a question classification dataset.

Given a question, the task is identify the objective
that the question asks, and classify it into one of six
classes, such as a definition question or a numeric
question. We define two patterns for this task:

P1(x) = “Tell me the ⟨mask⟩ x”
P2(x) = “Can you tell me the ⟨mask⟩: x”

and P2 as the seed prompt.

4.2 Settings
In this work, we take ROBERTA-large (Liu et al.,
2019) as our foundation PLM and adopt pattern-
verbalizer pairs from (Schick and Schütze, 2021a)
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Dataset Class Objective Prompt Template Verbalizer
SST-2 2 sentiment Text In summary, this movie is ⟨mask⟩. “good”, “bad”
Yelp 2 sentiment Text In summary, this restaurant is ⟨mask⟩. “good”, “bad”
AGNews 4 news topic [Category: ⟨mask⟩] Title , Body “Sport”, “Tech”, “Business”, “World”

TREC 6 question Can you tell me the ⟨mask⟩ Text “explanation”, “description”, “person”,
“location”, “number”, “entity”

DBPedia 14 ontology Introduction to the ⟨mask⟩ Text
“company”, “school”, “artist”,“film”,
“book”, “plan”, “building”, “village”,

“animal”, “sport”, “album”,
“officer”, “scenery”, “transportation”

Table 1: Datasets used in this paper with seed prompts and verbalizer words. Each seed verbalizer word corresponds
to a class label.

Dataset test set Top-|O| Espace Resulting Data
TREC 500 20 100 60k
SST-2 872 20 100 205k
AGNews 7,600 10 50 414k
YELP 38,000 1 50 267k
DBPedia 70,000 1 50 1,301k

Table 2: Data statistics for datasets. Espace corresponds
to the ElasticSearch space. Note that the resulting data
size is calculated after data de-duplication.

(Section 3.1) as the baseline setting which is widely
used and can be easily extended to other meth-
ods (Shin et al., 2020).

We conduct experiments in zero-shot and few-
shot settings. In the zero-shot setting, we directly
use PLMs to infer label words at masked posi-
tions. Under the few-shot setting, we follow Schick
and Schütze (2021a) and Hu et al. (2022) and
use prompt-tuning, which directly fine-tunes a LM
given a small set of annotated data and prompts.

For zero-shot settings, the choice of hyper-
parameters is based on previous work (Gao et al.,
2021; Schick and Schütze, 2021a,b). For all con-
tinual pretraining, we use a learning rate of 1e−5,
batch size of 96. We train each model for 3 epochs
and use the checkpoint at 500 steps for evaluation.

For few-shot settings, we evaluate our models
with 10, 50, 100 training samples. We follow pre-
vious work (Hu et al., 2022; Schick and Schütze,
2021a; Gao et al., 2021) and repeat the training
and evaluation for 5 times using different seed, and
report the averaged scores for each datasets.

Prompt-Aware Data Retrieval We take pre-
train data of the ROBERTA model ( BOOK-
CORPUS (Zhu et al., 2015), WIKIPEDIA, CC-
NEWS (Nagel, 2016), STORIES (Trinh and Le,
2018), and OPENWEBTEXT (Gokaslan and Cohen,
2019)) as the general dataset to query from. We
index them on sentence level with ElasticSearch
and consider TF-IDF as the similarity metric.

Table 2 presents the statistics of evaluation
datasets used in this paper. TREC and SST contain
smaller test sets, while YELP and DBPedia contain
much larger test sets. To balance the retrieved data
size, we set different top-|O| for predicted words
and ElasticSearch space (k) for different datasets
based on our practical experience. In other words,
given one test input, we have |O| × k data. After
de-duplication, the resulting retrieved data sizes are
shown in Table 2.

Verbalizer Augmentation To obtain possible
verbalizers that can better represent classes, we
first obtain top-N predicted words given a test sam-
ple (N = 20 for SST-2 and TREC, N = 10 for
AGNews and N = 5 for YELP and DBPedia, con-
sidering their test set sizes). We set the number of
candidate words |C| = 20× |L|, where |L| is num-
ber of classes. We use a ROBERTA-large model
fine-tuned on MNLI (Williams et al., 2018), as
the entailment model for identifying potential ver-
balizer words for augmentation. Candidate with
probability higher than a threshold t is then added
to the augmented verbalizer. We set t = 0.4 by
experiments.

For comparison, we also use Word2Vec
(Mikolov et al., 2013) to obtain word vectors and
explore potential verbalizer words by their similar-
ity with the seed verbalizer words.

4.3 Results

4.3.1 Main Results
Zero-shot Performance In zero-shot setting, we
compare AdaPrompt with prompt-based methods
using ROBERTA (Schick and Schütze, 2021a),
GPT-2 (Gao et al., 2021) and GPT-3 (Zhao et al.,
2021), respectively. The Channel refers to noisy
channel model (Min et al., 2022) based on GPT-
2. Table 3 presents the results under zero-shot set-
ting. Following previous work (Schick and Schütze,
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Models SST-2 Yelp AGNEWS DBPedia TREC Avg.
GPT-2 63.00/ NA(NA) −− 59.80/ NA(NA) 32.30/ NA(NA) 38.70/ NA(NA) −−
Channel 77.10/ NA(NA) −− 61.80/ NA(NA) 51.40/ NA(NA) 30.50/ NA(NA) −−
GPT-3 75.80/ 0.00(75.80) −− 73.90/0.00(73.90) 59.70/0.00(59.70) 57.40/0.00(57.40) −−
R. 64.56/16.77(88.99) 72.63/ 6.34(87.97) 69.52/6.96(78.76) 56.32/0.49(56.67) 45.50/0.14(45.60) 61.71
Ada 75.92/17.36(91.28) 75.09/17.57(89.25) 76.55/7.28(84.95) 70.95/8.80(77.17) 60.50/3.54(63.00) 71.80
iAda 77.18/17.96(91.74) 75.81/18.05(90.41) 74.28/9.00(83.37) 73.01/6.70(77.92) 61.10/1.27(62.00) 72.28

Table 3: Zero-shot results. We report average accuracy and standard deviation of different patterns here. Results of
the best patterns are shown in brackets. The Avg. reports the overall averaged results. R. stands for ROBERTA-large.
Ada and iAda denote to AdaPrompt and iterative AdaPrompt based on ROBERTA-large, respectively. The results
of GPT-2 large and Channel are from (Min et al., 2022), and Channel is based on GPT-2 large. GPT-3 results are
reported by Zhao et al. (2021), using GPT-3 (175B). NA denotes to that results are not reported. For GPT-3 (Zhao
et al., 2021), they only use a fixed prompt format.

|T| Models SST-2 Yelp AGNEWS DBPedia TREC Avg.

10 ROBERTA 84.97± 9.88 86.84± 16.08 78.42± 6.23 86.78± 1.10 45.56± 9.55 76.51
AdaPrompt 90.42± 1.63 89.13± 13.30 84.21± 2.00 91.68± 1.84 57.56± 7.85 82.60

50 ROBERTA 92.56± 1.31 95.87± 0.57 85.50± 1.36 94.72± 0.49 73.88± 3.13 88.51
AdaPrompt 92.75± 1.03 95.74± 0.89 86.29± 0.80 94.59± 0.71 78.42± 6.17 89.56

100 ROBERTA 92.40± 1.04 95.89± 0.68 87.29± 1.31 95.59± 0.52 86.30± 2.14 91.49
AdaPrompt 92.75± 0.68 95.93± 0.95 87.98± 0.65 95.60± 0.51 87.58± 1.38 91.97

Table 4: Average accuracy and standard deviation on SST-2, YELP, AGNews, DBPedia and TREC under few-shot
settings. |T| is the training set size. Each experiment is repeated 5 times using different seeds.

2021a,b), we report average accuracy, standard de-
viation and accuracy of the best pattern over differ-
ent patterns.

First, compared with our foundation model,
ROBERTA-large, we see that AdaPrompt consis-
tently outperforms regular prompt-based methods
on all datasets with better average performance and
best pattern performance, bringing a 2.46 ∼ 14.63
improvement. It is noticeable that AdaPrompt out-
performs GPT-3 in zero-shot setting, which is a
huge model with 175B parameters pretrained on
a gigantic corpus. This confirms the effective-
ness of AdaPrompt in domain adaptation. We ob-
serve that iterative AdaPrompt can further bring
improvements on most datasets (SST-2, YELP and
DBPedia). This directly demonstrates that PLMs
continual pretrained on the retrieved data can be
more adaptive to downstream tasks, and thus gen-
erate more task relevant label words, which can
serve as a source to find better texts. Performance
of iterative AdaPrompt (iAda) decreases on AG-
NEWS, we believe this is because this news dataset
is similar with general data used for pretraining
ROBERTA, and thus continual pretraining on such
retrieved data can be less useful. Finally, we see
that AdaPrompt improves over 10.09 accuracy of
the overall performance.

Few-shot Performance Table 4 reports the exper-
imental results in few shot setting. Each experiment

is repeated 5 times using different seeds and we
report the average accuracy and standard deviation.
To explore whether AdaPrompt can consistently
bring improvement to ROBERTA, we conduct ex-
periments using 10, 50, 100 samples, respectively.

Compared with ROBERTA-large baseline, un-
der few-shot setting, AdaPrompt can still improve
model performance. Although the relative im-
provement decreases as the size of training set im-
proves, we can see that AdaPrompt outperforms
ROBERTA over all tasks in all few-shot settings.
In particular, AdaPrompt outperforms standard
ROBERTA models by 2.29 ∼ 5.79% in 10-shot
setting, showing that it is useful in the very-few-
shot setting.

4.3.2 Ablation Study

To study the effectiveness of continual pretrain-
ing on prompt-aware data and verbalier augmenta-
tion, we conduct ablation experiments by removing
continual pretraining (CP) or verbalizer augmenta-
tion (va). As shown in Table 5, We can see that
compared with foundation model (-CP-va, 61.71
acc. on average), continual pretraining and ver-
balizer augmentation can both bring improvement
to model performance (5.31 and 5.89 acc. on av-
erage, respectively), and the model has the best
results when two methods are combined together
(AdaPrompt), suggesting these two methods can
benefit each other.
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Models SST-2 Yelp AGNEWS DBPedia TREC Avg.
AdaPrompt 75.92± 17.36 75.09± 17.57 76.55± 07.28 70.95± 08.80 60.50± 03.54 71.80
-va 71.07± 13.58 71.04± 15.57 72.16± 05.78 65.90± 02.71 45.40± 01.13 65.11
-CP 72.16± 16.35 75.72± 17.79 75.70± 07.88 50.95± 00.09 58.70± 03.25 66.65
-PR 71.22± 15.55 74.85± 17.51 75.12± 05.71 70.40± 07.48 58.60± 00.57 70.04
-CP-va 64.56± 16.77 72.63± 16.34 69.52± 06.96 56.32± 00.49 45.50± 00.14 61.71

Table 5: Experimental results of ablation study. “-” means “without” here. va: verbalizer augmentation, CP:
Continual Pretraining, PR: Prompt-aware Retrieval. Note that -PR means we do not use prompt-aware retrieval, but
simply use raw test input data for retrieval and continual pretraining, refered as in-domain adaptation.

Model SST-2 DBPedia
ROBERTA 64.82± 11.62 56.49± 00.41
AdaPrompt 73.05± 13.08 70.97± 08.87

Table 6: Model performance tested on unseen test set.
We report averaged accuracy and standard deviation.

SST-2
Espace 1 10 50 100
Size 3k 23k 98k 205k

Accuracy 73.54 75.06 75.95 75.92
±16.77 ±17.34 ±17.73 ±17.36

DBPedia
Espace 1 5 25 50
Size 58k 235k 708k 1,301k

Accuracy 70.64 71.39 74.13 70.95
±9.66 ±10.78 ±7.51 ±8.80

Table 7: Analysis on retrieved data size. Data sizes are
calculated after de-duplication.

In addition, we investigate the influence on
model performance by removing prompt-aware re-
trieval and only retrieving with raw texts. From the
table we can see that on all datasets, using prompt-
augmented queries (AdaPrompt) give substantially
stronger results. Take SST-2 for example, the ac-
curacy is 71.22 (SST-2 -PR) given only raw input
queries, but 75.92 with prompt-augmented queries,
with a 4.7 absolute improvement. This shows that
continual pretraining using prompt-aware data is
highly beneficial to zero-shot prompt-based NLP.

4.4 Analysis

Generalization Capability For experiments in
section 4.3.1, we use task test set as the sources to
build queries for retrieving pretraining data. How-
ever, in a more general setting, we want to learn
when the query data and test set are different,
whether AdaPrompt can still generalize to this test
set. To this end, we build an unseen test set by
using the original training set of SST-2 and DB-
Pedia. We then evaluate models (trained using
queries from the origin test set) on this unseen test
set. As shown in Table 6, AdaPrompt achieves
73.05 and 70.97 accuracy on SST-2 and DBPedia,

respectively. Compared with performance on orig-
inal test set (Table 3), although the performance
of AdaPrompt sightly decreases when evaluated
on SST-2 unseen test set, it can still outperform
ROBERTA by a large margin (+8.23). It demon-
strates that AdaPrompt has a strong generalization
ability when query data and test set are different.

Size of Retrieved Data As stated, Elasticsearch
returns top-k texts in the order of matching scores.
Using a smaller k, the retrieved data are more tex-
tual related to the query, while using a larger k, the
retrieved data can contain certain noise. To com-
pare the effects of different sizes of retrieved data
for continual pretraining, We set k to 1, 10, 50 100
for the SST-2 and set k to 1, 5, 25, 50 for DBPe-
dia, respectively. As shown in Table 7, we see that
accuracy rises in the beginning when retrieval size
increases. But as the retrieval size grows bigger,
the accuracy starts to decrease slightly. This can be
explained by that the lower-ranked retrieved data
have a lower relevance to the target task, which
introduces more noise in continual pretraining. We
use fixed k for our experiments in zero-shot set-
tings (Section 4.2), due to lack of a validation set.
In few-shot settings, in practice, k can be consid-
ered as a hyperparameter and tuned over validation
data.

The Effect of Verbalizer Strategies Table 8
compares the model performance when using dif-
ferent verbalizer augmentation strategies, namely
using NLI model and word similarity (Section 4.2).
Additional, we compare AdaPrompt with a verbal-
izer augmentation method using knowledge base
(KB) (Hu et al., 2022) 2. To set a fair compari-
son, we limit the verbalizer word set for each label
within 5. We report average accuracy and standard
deviation here.

2For sentiment analysis tasks, we take sentiment words
shown in (Hu et al., 2022), which are adopted from https://
www.enchantedlearning.com/wordlist/; for other tasks,
we use most related words: https://relatedwords.org/.
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Dataset SST-2 YELP AGNEWS DBPedia TREC Avg.
vaw 74.91± 11.71 75.39± 17.47 69.07± 06.70 55.32± 11.33 60.60± 03.39 67.06
vam 75.92± 17.36 75.09± 17.57 76.55± 07.28 70.95± 08.80 60.50± 03.54 71.80
vak 69.07± 15.80 74.64± 17.55 60.15± 07.79 74.85± 17.50 24.00± 00.57 60.54

Table 8: Model performance of AdaPrompt using different verbalizer augmentation strategies. vaw: using word2vec
similarity. vam: using ROBERTA trained on MNLI. vak: using most related words/sentiment dictionary. Avg.
refers to overall averaged results.

Model Size SST-2
Albert 17M 54.67± 3.30(58.94)
Albert+AdaPrompt 17M 58.51± 5.79(63.99)
Bert 340M 58.03± 6.18(63.53)
Bert+AdaPrompt 340M 68.89± 16.11(85.67)
ROBERTA 355M 64.56± 16.77(88.99)
ROBERTA+AdaPrompt 355M 77.18± 17.96(91.74)

Table 9: We report average accuracy and standard de-
viation here. Results of best patterns are shown in the
bracket.

Results show that, compared with using word
similarity to select candidate words and directly us-
ing KBs to augment verbalizer words, using NLI to
augment verbalizer words gives better performance
on most tasks, and is also more stable. We also
find that using KBs to augment verbalizer words
gives better performance on the DBPedia tasks, but
much worse performance on the TREC task. This
can be because TREC is less close to topic classi-
fication (Min et al., 2022), and directly using the
most related words can be noisy. This also suggests
that more sophisticated strategy that cares of tasks
and prompt information can be useful, which we
leave for future work.

AdaPrompt with different PLMs We ap-
ply AdaPrompt with different PLMs (Bert-large,
Albert-large and ROBERTA-large). We report
experimental results on the SST-2 dataset in Ta-
ble 9. Although the performance of different mod-
els varies, we observe that AdaPrompt can consis-
tently bring huge improvement over all models. We
also find that model performance increases with
model size. AdaPrompt using ROBERTA-large
outperforms other models overall performance by
a large margin (8.29 ∼ 18.67) and achieves 91.74
accuracy with the best pattern.

5 Conclusion

We investigated AdaPrompt, a zero-shot prompt-
based method for NLP that makes use of test input
data and prompts for adaptive continual pretraining
and verbalizer selection. Results on five classi-
fication datasets show that AdaPrompt improves

over a standard prompt method by large margins.
In particular, retrieving relevant data for contin-
ual pretraining of a language model can serve to
warm-up the model for both domain adaptation and
prompt-filling tasks. In addition, an NLI model al-
lows effective selection of filled tokens to achieve
improved performance.

Limitation

We acknowledge two major limitations of this
work:

1. We only tested AdaPrompt on text classifica-
tion tasks. The intention is to use this clear
setting to compare with other prompt-based
models. However, it is possible to extend
AdaPrompt to other natural language under-
standing tasks or languages, which we leave
for future exploration.

2. We only tested with ElasticSearch as the
search method. However, there are signals
showing the quality of retrieved text is con-
strained to the search engines. A better config-
uration or model of the search method might
further improve AdaPrompt.
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