@inproceedings{yang-tu-2022-semantic,
title = "Semantic Dependency Parsing with Edge {GNN}s",
author = "Yang, Songlin and
Tu, Kewei",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.452",
doi = "10.18653/v1/2022.findings-emnlp.452",
pages = "6096--6102",
abstract = "Second-order neural parsers have obtained high accuracy in semantic dependency parsing. Inspired by the factor graph representation of second-order parsing, we propose edge graph neural networks (E-GNNs). In an E-GNN, each node corresponds to a dependency edge, and the neighbors are defined in terms of sibling, co-parent, and grandparent relationships. We conduct experiments on SemEval 2015 Task 18 English datasets, showing the superior performance of E-GNNs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-tu-2022-semantic">
<titleInfo>
<title>Semantic Dependency Parsing with Edge GNNs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Songlin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kewei</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Second-order neural parsers have obtained high accuracy in semantic dependency parsing. Inspired by the factor graph representation of second-order parsing, we propose edge graph neural networks (E-GNNs). In an E-GNN, each node corresponds to a dependency edge, and the neighbors are defined in terms of sibling, co-parent, and grandparent relationships. We conduct experiments on SemEval 2015 Task 18 English datasets, showing the superior performance of E-GNNs.</abstract>
<identifier type="citekey">yang-tu-2022-semantic</identifier>
<identifier type="doi">10.18653/v1/2022.findings-emnlp.452</identifier>
<location>
<url>https://aclanthology.org/2022.findings-emnlp.452</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>6096</start>
<end>6102</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Dependency Parsing with Edge GNNs
%A Yang, Songlin
%A Tu, Kewei
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Findings of the Association for Computational Linguistics: EMNLP 2022
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F yang-tu-2022-semantic
%X Second-order neural parsers have obtained high accuracy in semantic dependency parsing. Inspired by the factor graph representation of second-order parsing, we propose edge graph neural networks (E-GNNs). In an E-GNN, each node corresponds to a dependency edge, and the neighbors are defined in terms of sibling, co-parent, and grandparent relationships. We conduct experiments on SemEval 2015 Task 18 English datasets, showing the superior performance of E-GNNs.
%R 10.18653/v1/2022.findings-emnlp.452
%U https://aclanthology.org/2022.findings-emnlp.452
%U https://doi.org/10.18653/v1/2022.findings-emnlp.452
%P 6096-6102
Markdown (Informal)
[Semantic Dependency Parsing with Edge GNNs](https://aclanthology.org/2022.findings-emnlp.452) (Yang & Tu, Findings 2022)
ACL
- Songlin Yang and Kewei Tu. 2022. Semantic Dependency Parsing with Edge GNNs. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6096–6102, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.