
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6132 - 6146
December 7-11, 2022 ©2022 Association for Computational Linguistics

Explore Unsupervised Structures in PLMs for Relation Extraction

Xi Yang∗, Tao Ji∗, Yuanbin Wu
School of Computer Science and Technology

East China Normal University
{xyang41,taoji}@stu.ecnu.edu.cn, ybwu@cs.ecnu.edu.cn

Abstract

Syntactic trees have been widely applied in
relation extraction (RE). However, since pars-
ing qualities are not stable on different text
domains and a pre-defined grammar may not
well fit the target relation schema, the intro-
duction of syntactic structures sometimes fails
to improve RE performances consistently. In
this work, we study RE models with various
unsupervised structures mined from pre-trained
language models (e.g., BERT). We show that,
similar to syntactic trees, unsupervised struc-
tures are quite informative for RE task: they
are able to obtain competitive (even the best)
performance scores on benchmark RE datasets
(ACE05, WebNLG, SciERC). We also conduct
detailed analyses on their abilities of adapting
new RE domains and influence of noise links
in those structures. The results suggest that
unsupervised structures are reasonable alterna-
tives of commonly used syntactic structures in
relation extraction models 1.

1 Introduction

Relation extraction (RE) tasks aim to extract pairs
of text spans (entities), each of which expresses
certain relation semantics. As shown in Figure 1,
w1w2 and w5 are two extracted entities with the
type of person (PER) and geography (GPE) respec-
tively, and they carry a physical location relation
(PHYS).

While end-to-end neural relation extractors have
achieved great success (Wei et al., 2020; Wang
et al., 2021b; Ye et al., 2022), proper prior knowl-
edge or external features are still crucial to make
RE models more flexible and robust. Syntactic
trees (especially, dependency trees) are such fea-
tures which are widely applied in RE systems (Xu
et al., 2015; Miwa and Bansal, 2016; Zhang et al.,
2018; Guo et al., 2019; Fu et al., 2019; Mandya

∗Equal contribution.
1Our code is publicly available at https://github.com/

xyang41/structures-for-RE.

Encoder

Classifier
GCNs 

←

←

←

←

WSJ news 
≈ 40K

Open Domain 
≈ 1.6B

Parser

w1 w2 w3 w4 w5

w2 w5w1

PER GPE

Figure 1: A diagram of a RE model using different exter-
nal structures. The top is the traditional dependency tree
structure and the bottom is unsupervised but informative
structure inducted by PLM.

et al., 2020; Tian et al., 2021). The prior depen-
dency relations among words are believed to be
helpful for spotting most user-defined relations.
However, to fulfil their advantages, there are still
some challenges to tackle. For example (Figure 1),
a syntactic tree usually characterizes the full syn-
tactic structure of a sentence, but some parts of the
dense structure may be redundant (even mislead-
ing) when detecting sparse relations among entities.
Another problem is that since syntactic parsers are
trained on external Treebanks, parsing qualities
are no longer guaranteed when the Treebanks’ text
domain mismatch the target RE text domain.

Here, we investigate another kind of external
structural features, namely unsupervised structures
mined from pre-trained language models (PLMs).
Like other NLP tasks, PLMs have been deployed in
RE models due to their strong abilities on unsuper-
visely aggregating semantic information from large
corpora and contextual information from the whole
input sentence. Current RE models use PLMs to en-
code words: the classifier queries word embeddings
from PLMs as features. We ask that, apart from
embedding features, whether RE models could also
query PLMs for structural features. On the one side,
we would like those structures to be easy to access

6132

https://github.com/xyang41/structures-for-RE
https://github.com/xyang41/structures-for-RE


as syntactic structures, on the other side, we would
expect them to be able to provide rich syntactic and
semantic information as PLM embeddings.

In this paper, we obtain unsupervised structures
using three types of interpretation tools (attention-
based, occlusion-based and gradient-based). They
basically use different kinds of information to char-
acterize connections among input words, and out-
put weighted complete graphs with words as nodes
and connection scores as edge weights. Then, we
adopt graph convolutional networks (GCNs) as
a plug-and-play encoding module to incorporate
structures into relation extraction models. We sys-
tematically test RE models with unsupervised struc-
tures and find that,

• on benchmark datasets (ACE05, WebNLG, Sci-
ERC), they indeed provide additional perfor-
mance gains comparing with vanilla RE feature
sets. Furthermore, under a fair setting, they
are able to obtain competitive (or better) perfor-
mances than dependency trees.

• on the scientific RE task (SciERC), we observe
that unsupervised structures inherit scalability
from PLMs: if the target RE domain is different
from the training domain of PLMs, we could fine
tune PLMs with unsupervised text of the target
RE domain and the structures extracted on the
fine-tuned PLMs could fit the RE task better.

Therefore, considering the cost of getting structural
features (i.e., with or without human annotations),
we think that unsupervised structures are promising
features for future RE models.

2 Preliminary

Pre-trained Language Models are important
feature extractors in modern NLP systems. In this
work, we will take the BERT (Devlin et al., 2019)
family as our demonstrative PLMs. Main compo-
nents of BERT are Transformer blocks (Vaswani
et al., 2017) which consist of multiple self-attention
heads. For a token xi in an input sentence X of
n tokens {x1, x2, . . . , xn}, an attention head com-
putes the token’s attention scores over all input
tokens and outputs a hidden representation hi. We
denote the encoding procedure as hi = PLMi(X).

Graph Convolutional Networks (GCN) are
powerful feature extractors for structured data.
(Kipf and Welling, 2017) . They learn hidden

representations for graph nodes by gradually col-
lecting information from their neighbors. In re-
lation extraction, GCNs are popular tools for en-
coding external syntactic features (Zhang et al.,
2018; Fu et al., 2019; Mandya et al., 2020; Tian
et al., 2021). We follow Marcheggiani and Titov
(2017) by using a bi-directional version of GCN.
Denote {h(u)

1 , ...,h
(u)
n } to be intermediate hidden

representations of u-th layer of a GCN,

h⃗
(u+1)
i = ReLU(

∑

j∈−→N (i)

(
−→
W (u)h

(u)
j + b⃗(u)))

⃗h
(u+1)

i = ReLU(
∑

j∈←−N (i)

(
←−
W (u)h

(u)
j + ⃗b

(u)
))

h
(u+1)
i = h⃗

(u+1)
i ⊕ ⃗h

(u+1)

i ,

where W , b are parameters of GCN layers, N(i)
contain neighbors of node i, {→,←} represent the
outgoing and incoming direction of a node respec-
tively, and ⊕ is the vector concatenation operator.

3 How to Get Structures

We describe the structures included in our RE mod-
els. One kind of structure is derived from depen-
dency trees, and another kind is mined from PLMs.
Both of them are represented by a n×n importance
matrix G (also called saliency map). An entry Gij

of G indicates the strength of connection between
word xj and word xi.

3.1 Dependency Structures
Dep We obtain dependency trees of sentences
with an off-the-shelf dependency parser (spaCy
Honnibal and Johnson, 2015). The matrix G is the
adjacency matrix of the tree,

Gij =

{
1 if edge xi → xj exists
0 otherwise

. (1)

GP-Dep It has been shown that with a proper
pruning of dependency trees, RE models may get
a more clear view of task-specific structures. We
apply the pruning strategy proposed in Zhang et al.
(2018). The dependency tree is first pruned into
a subtree rooted at the lowest common ancestor
(LCA) of all gold entities, and then only paths from
LCA to each entity and edges in the subtree which
are directly connected to these paths are retained.
It is worth noting that the pruning strategy assumes
gold entities are given, which is a cheating strategy
when we perform joint entity relation extraction.

6133



3.2 Unsupervised Structures in PLM
To acquire unsupervised structures from PLMs, we
explore three popular model interpretation meth-
ods,
• Attention-based structures (Abnar and Zuidema,

2020),

• Occlusion-based structures (Wu et al., 2020),

• Gradient-based structures (Li et al., 2016; Denil
et al., 2014; Sundararajan et al., 2017).

3.2.1 Attention-based Structures
The attention mechanism is the core component of
PLMs, as it allows each input word to interact with
all words in the input sequence and find out which
they should pay more attention to. Previous work
shows that attention in PLMs could characterise
some of the syntax rules, and the span boundary of
entities (Clark et al., 2019). These could be useful
for the RE task.

Attention matrix (Attn) At l-th layer, attention
matrix Al describes the attention score between
any two words. 2 The Al could be treated directly
as an importance matrix G:

G = Al. (2)

Rollout and Flow Abnar and Zuidema (2020)
show that word representation aggregating from
other words gets increasingly mixed across multi-
ple layers, which makes attention scores unreliable.
Thus, they propose two methods for approximat-
ing the attention to individual input words, namely
rollout and flow. Rollout tracks the propagation
of information from the input layer to the hidden
vectors in the higher layers. The l-th layer’s rollout
matrix Ãl is obtained by recursively multiplying
the attention matrices A≤l in all the layers below.

G = Ãl =

{
Al · Ãl−1 if l > 1

A1 if l = 1
(3)

Flow runs the max-flow Flowl(V,E, src, tgt) al-
gorithm to obtain the importance matrix, where the
set of nodes is the words in the sentence (V =X),
the set of edges is the union of the attention matri-
ces from 1-th layer to l-th layer (E=A1∪· · ·∪Al),
the source node is xi and the target/sink node is xj .

Gij = Flowl(X,A1 ∪ · · · ∪Al, xi, xj) (4)
2By convention, we obtain the single matrix by averaging

multi-head attentions.

3.2.2 Occlusion-based Structures

Occlusion-based methods measure the impact of
masking one word on the representation of another
word. Previous studies observe strong inter-chunk
word impacts in noun phrases and verb phrases (Wu
et al., 2020), which may improve the RE model.

Perturbed Masking (PMask) Wu et al. (2020)
apply two perturbations to an input sentence and
then compare the differences in the PLMs outputs.
They use X−{xi} to denote the word xi is replaced
with the [MASK] token, and X−{xi,xj} to denote
the words xi, xj both replaced by the [MASK] to-
ken. The influence of word xj on word xi can be
measured by the change in the hidden vector of the
two perturbations.

Gij = d
(
PLMi(X−{xi}), PLMi(X−{xi,xj})

)
(5)

Where d(·, ·) is the euclidean distance metric.

3.2.3 Gradient-based Structures

The gradient-based method is a standard interpre-
tation approach in neural networks (Dimopoulos
et al., 1995; Li et al., 2016), by calculating partial
derivatives of the prediction function. The scale of
the derivative is correlated with the influence of the
derivative term to the prediction. When applying
it to PLMs, the prediction is MLM objective and
the derivative term is each word. Theoretically it
could identify the words which are important for
predicting entities, and the words which are very
dependent on entities when predicting themselves.

Gradient (Grad) uses the gradient of the MLM
objective function LMLM (X{−xi}) on masked token
xi for token xj as the importance score Gij . With
this definition, the Gij is simply the squared L2-
norm of the prediction function’s gradient w.r.t. the
word embedding, i.e.,

Gij =
∥∥∇xj LiMLM (X{−xi})

∥∥2
2

(6)

Gradient×Input (GInput) A slight variation of
gradient approach uses partial derivatives multi-
plied by the variable’s value (Denil et al., 2014),
considering the effect of different input tokens.
Hence, the importance score Gij is a dot product
of the gradient and the word embedding:

Gij =
(
∇xj LiMLM (X{−xi})

)⊤ · xj (7)

6134



Methods Complexity Num Speed

SpaCy→ Dep O(n) 1 207
UDPipe→ Dep O(n3) 1 46

Attn F L 1675
Rollout 2F L 1436
Flow nLF L 838
PMask n2F 1 25
Grad n(F+B) 1 83
GInput n(F+B) 1 79
GInteg kn(F+B) 1 14

Table 1: Time complexity and number of candidate
structures for different structure mining methods. F or
B denotes the complexity of one forward or backward
propagation, n is the sentence length, L is the number
of layers in a PLM, and k denotes the number of inter-
polations in the GInteg. Bold indicates speed over the
dependency tree.

Integrated Gradients (GInteg) A more recent
variation of gradient approach is called Integrated
Gradients (Sundararajan et al., 2017). It computes
input attribution by aggregating gradients along
a linear path between the input feature and the
baseline feature (usually a zero vector). It offers
two desirable theoretical guarantees motivating its
usage: sensitivity and implementation invariance 3.
Here we use the [MASK] vector as the baseline
vector b. To calculate the importance score Gij ,
we apply a linear interpolation between b and xj
to obtain the integration gradient.

Gij=(xj−b)×
∫ 1

α=0

∂LiMLM
(
X{−xi,−α×xj}

)

∂xj
dα

(8)

where α= 0 means that xj is represented by the
original word vector and α = 1 means that xj is
masked. In the implementation, we calculate Eq 8
by discrete approximation (choose k=10 interpo-
lations evenly).

3.2.4 Comparison
We compare the different structure mining methods
on time complexity and the number of candidate
structures (Table 1). For time complexity, the
attention-based methods can obtain the atten-
tion matrix in one forward propagation, and
notably, the Flow suffers from the maximum
flow algorithm. The occlusion-based method

3Refer to Sundararajan et al. (2017) for more details.

Dataset Train Dev Test #Ent #Rel

ACE05 10051 2424 2050 7 6
SciERC 1861 275 551 6 7

WebNLG 5019 500 703 - 171

Table 2: The statistics of relation extraction datasets.
#Ent and #Rel represent the number of predefined entity
and relation types respectively.

has to do n2 times MLM. The gradient-based
methods have to do n times MLM as well as n
times back-propagation, and in particular, the
GInteg does k extra interpolations. Here we
provide two classical dependency parsers as
references, the transition-based parser SpaCy,
with a linear decoding algorithm, and the graph-
based parser UDPipe, with a maximum span tree
decoding algorithm. Overall, in terms of time costs,
Attn<Rollout<Flow<SpaCy<Grad≈GInput<
UDPipe<PMask<GInteg. Moreover, attention-
based approaches produce one candidate structure
at each layer, while the other approaches produce
only one structure.

4 Relation Extraction Model

RE Model We apply different structures in the
setting of joint entity relation extraction: given an
input, the RE model extracts both entities and re-
lations among the extracted entities. The encoder
part (Figure 1) of our model is a stack of BERT and
GCN layers (with external structures). After obtain-
ing hidden vector representations of each token, we
apply a simple joint extraction procedure from (Sun
et al., 2019). Specifically, the model first performs
a token-level sequence labelling for extracting en-
tities. Then, for each possible pairs of entities, it
builds a representation of the pair by aggregating
representations of left tokens, right tokens and in-
between tokens regarding that pair. The relation
extractor consumes the entity pair representation
and performs a multi-class classification.

Datasets We run experiments on three widely
used datasets: ACE054, SciERC5 and WebNLG6.
Regarding text domains, ACE05 collects texts from
news, SciERC texts are from AI conference pro-
ceedings, and WebNLG are obtained by crowd-
sourcing with DBPedia relation triples as guidance.

4https://github.com/tticoin/LSTM-ER
5http://nlp.cs.washington.edu/sciIE/
6https://github.com/weizhepei/CasRel

6135

https://github.com/tticoin/LSTM-ER
http://nlp.cs.washington.edu/sciIE/
https://github.com/weizhepei/CasRel


Dataset statistics are shown in the Table 2. More
details are described in Appendix A.

Metrics Following previous works, we evaluate
RE models with micro Precision, Recall, and F1
score. For ACE05 and SciERC, we judge a cor-
rect extraction with strict evaluation criteria (Miwa
and Bansal, 2016; Sun et al., 2019; Wang et al.,
2021b). For WebNLG, we use partial matching cri-
teria (Zeng et al., 2018; Fu et al., 2019; Wei et al.,
2020). The partial matching criteria considers only
the head words of the entity pair and ignores the
full entity span and types.

Choices of PLMs We choose bert-base-cased
(Devlin et al., 2019) for ACE05 and WebNLG, and
scibert-basevocab-cased (Beltagy et al., 2019)
for SciERC 7. The generated structures are fixed
and remain unchanged when fine-tuning the RE
model.

Hyper-parameters We select hyper-parameters
according to F1 score on ACE05 development set
with dependency tree structure (Dep). We keep the
same settings on all datasets and structures. Details
of hyper-parameters are listed in Appendix B. We
run each experiment 3 times and report averaged
F1 scores.

Comparison Settings We design four RE models
as control groups to explore the effects of unsuper-
vised structures.

1. Baseline, models without structural features and
GCN Layers. We note that performances of our
baseline RE model is a little higher than the
reference model ENPAR (Wang et al., 2021a),
and also comparable with other advanced RE
models (Wang et al., 2021b; Shen et al., 2021),
as shown in Table 3.

2. Light structures are self-contained structures
given the input sentence: they don’t rely on
external tools or resources. We consider two
types of light structures,

• Self-Loop, each token connects to itself. It
is easy to see that GCNs with Self-Loop are
equal to Baseline with additional parameters
stacked for classification heads.

7Most RE works use scibert-scivocab-uncased on
SciERC dataset for better performance, however, here
we adopt scibert-basevocab-cased on account of sub-
sequent domain adaptation experiments compared with
bert-base-cased.

Dataset Model Encoder F1

ACE05

TriMF (Shen et al., 2021) BERTB 62.8

UniRE (Wang et al., 2021b) BERTB 64.3

PL-Marker (Ye et al., 2022) BERTB 66.5

ENPAR (Wang et al., 2021a) BERTB 62.2

Baseline BERTB 62.5

SciERC

UniRE (Wang et al., 2021b) SciBERTS36.9

PL-Marker (Ye et al., 2022) SciBERTS41.6

Baseline SciBERTB36.6

WebNLG

HBT (Wei et al., 2020) BERTB 91.8

TPLinker (Wang et al., 2020) BERTB 91.9

PFN (Yan et al., 2021) BERTB 93.6

Baseline BERTB 91.4

Table 3: Relation extraction performance of Base-
line compared with other models. Encoders used in
different datasets: BERTB = BERTBase, SciBERTS =
SciBERTScivocab, SciBERTB = SciBERTBasevocab. Bold
in the table indicates the highest relation F1 for each
dataset.

• Linear, each token points to the next token in
the sequence.

3. Dependency-based structures are described in
Section 3.1.

4. Unsupervised structures are structures described
in Section 3.2.

5 Analyses and Discussions

5.1 Can Unsupervised Structures Help RE
Task? (Unsupervised vs. Baseline)

Our first question is whether unsupervised struc-
tures contain useful information for RE models.
We compare RE models with and without seven
unsupervised structures in Figure 2.

We find that among 21 (7 structures, 3 datasets)
RE models with unsupervised structures, 20/21 of
them improve relation F1 score over RE models
without them. In particular, 15/21 of them out-
perform the baseline even for the worst values in
multiple experiments (see lower bounds of error
bars), suggesting that their effectiveness is consis-
tent. Furthermore, one of Attn structures achieves
the best results on the ACE05 (+1.60 F1) and Sci-
ERC (+0.84 F1), 8 and one of Rollout structures

8We also find that the average results attention-based struc-
tures over 12 layers also outperform baseline. See Table 5 for
average scores of attention-based structures.

6136



62
63
64
65
66

ACE05
Light Dependency Unsupervised Baseline

35

36

37

38

F1
 sc

or
e

SciERC

Self-loop Linear Dep GP-Dep Attn Rollout Flow PMask Grad GInput GInteg
91.0

91.5

92.0

92.5 WebNLG

Figure 2: Visualization of relation extraction performance for all structures. Where the darker part above the baseline
indicates the improvement, and the ones below represents the specific performance. The bar of GP-Dep structure
is filled with slashes (it uses information of gold entities). The two ends of each black vertical line indicates the
minimum and maximum performance of three random seeds, and the height of each bar is the mean. See Table 5 in
Appendix for exact numbers.

achieves the best results on the WebNLG (+0.41
F1). Overall, the general improvement of unsu-
pervised structures over the baseline suggests their
effectiveness in RE tasks.

5.2 Are Dependency Trees the Optimal
Structures? (Unsupervised vs. Dep)

After observing unsupervised structures’ effective-
ness on RE tasks, our next question is whether they
are comparable to the widely applied dependency
trees. To this end, we compare unsupervised struc-
tures with Dep structure.

We first find (Figure 2) that regarding the im-
provement over the baseline (models without struc-
tural features), dependency trees are not as effec-
tive as unsupervised structures. In fact, comparing
with the baseline, Dep has a small improvement on
ACE05 and WebNLG, and is even 0.49 F1 lower
than the baseline on SciERC. We guess the rea-
son of such inefficiency might be redundancy in
structures (complete dependency trees may contain
unnecessary syntactic relations and make the learn-
ing process harder (ACE05, WebNLP)), or poor
parsing quality on a different domains (SciERC).
We will return to the domain shifting problem in
Section 5.6.

On the other side, 20/21 unsupervised structures
outperform the complete dependency trees. Specif-

ically, on ACE05, WebNLG and SciERC, the F1
of the best unsupervised structure is 1.42, 1.33 and
0.37 higher than the Dep setting, respectively. Sur-
prisingly, on both ACE05 and SciERC, Attn is
even superior to the “cheating” dependency trees
(GP-Dep), which are pruned based on gold en-
tity sets. These results indicate that unsupervised
structures are promising alternatives of dependency
trees in RE models.

5.3 Do Improvements Come from Bigger
Models? (Unsupervised vs. Light)

Since models with structural features need addi-
tional GCN parameters, we may question whether
performance gains come from the new parameters.
To make a fair comparison, we introduce light struc-
tures. They either add new parameters without
meaningful structure features (Self-Loop), or add
shallow word order features (Linear).

In Figure 2, we indeed observe performance
gains from additional GCN parameters: by com-
paring six (2 structures, 3 datasets) light structure
models with baselines, 5/6 of them are better. More-
over, the effect of adding more parameters could
also surpass the effect of introducing dependency
trees (5/6). Hence, to correctly evaluate structural
features, it is important to make models in the same
scale.

6137



SciERC
36.00
36.25
36.50
36.75
37.00
37.25
37.50
37.75
38.00

WebNLG
90.5
91.0
91.5
92.0
92.5
93.0
93.5

unsupervised
noise
baseline

ACE05
61.5
62.0
62.5
63.0
63.5
64.0
64.5

Figure 3: Comparison of the noise-filled structure, the
non-noise structure (i.e., baseline) and seven partial-
noise (unsupervised) structures on SciERC, WebNLG
and ACE05.

Regarding unsupervised features, 16/21 struc-
tures are better than at least one light structure,
and 12/21 of them perform better than all light
structures. Specifically, on ACE05, Attn and Roll-
out perform better than the best light structure by
0.46 and 0.06 F1, respectively. On SciERC and
WebNLG, almost all unsupervised structures are
much better than all of them. Under the fair com-
parison, we can argue that better relation extraction
results brought by applying unsupervised structures
are due to these structures themselves, rather than
the introduction of extra parameters in GCN mod-
ules.

5.4 How About Noise in Structures? (Noise vs.
Baseline & Unsupervised)

Learned without explicit structure regularities, un-
supervised structures inevitably contain noise infor-
mation. To better understand those structures (and
their roles in RE models), we should understand
noise in them better. However, it is hard to charac-
terize noise given no reference of “clean” structures.
Here, we design a control group which are random
structures (full-noise), that is, complete graphs with
edge weights randomly generated in [0, 1]. Base-
lines are zero-noise models as they don’t include
any structure. Unsupervised structures are partial-
noise models as they both contain noise and use-
ful information. We would compare their perfor-
mances on RE tasks to explore how noise in struc-
tures influence performances (Figure 3).

Firstly, we find that, surprisingly, random struc-
tures do not obviously hurt the RE model and
even outperform zero-noise structure on the two
large datasets (WebNLG and ACE05). We guess
that it is partly because of the new GCN param-
eters (like light structures), and partly because in
large datasets, RE models could also benefit from
random noise structure as a regularization (like
dropout). Secondly, unsupervised structures gener-

ally outperform random structures, where the best
structure delivers a significant improvement (+0.87,
+0.24, +1.30 on SciERC, WebNLG, ACE05 respec-
tively). Therefore, if we can cancel the effect of
noise by comparing against random structures, we
would think that information left in unsupervised
structures is indeed helpful for RE tasks.

5.5 Which Unsupervised Structure Should We
Choose? (Unsupervised vs. Unsupervised)

One practical problem is how to choose unsuper-
vised structure for RE models. Here, we focus on
comparing unsupervised structures and analyzing
where the differences come from (Figure 2).

On ACE05 and SciERC, Attn achieves the high-
est F1, while the gradient family has limited over-
all improvements. For WebNLG, all unsupervised
structures perform well and do not differ signifi-
cantly due to the strong RE baseline (91.44 F1). In
general, the attention-based structures always bring
improvements to RE tasks, while occlusion-based
and gradient-based methods do not provide a con-
sistent improvement. Specifically, although Roll-
out and Flow are variants of Attn with advanced
consideration on interpretability, we only observe a
slight improvement for the RE task (on WebNLG).
While for gradient-based structures, GInput and
GInteg try to improve interpretability over the
basic Grad, they also improve RE performances
against Grad on RE tasks.

According to existing researches on model inter-
pretability, which methods are better is still under
debate (Serrano and Smith, 2019; Jain and Wallace,
2019; Wiegreffe and Pinter, 2019) , and it remains
a challenge to fully investigate differences among
unsupervised structures. Here we speculate that un-
supervised structures’ difference on the RE task is
mainly attributed to the faithfulness of the structure
generation approach to PLMs (Jacovi and Gold-
berg, 2020). Attention-based structures are based
on attention matrices, and thus are more likely to be
faithful to syntactic or semantic structure induced
from large-scale unsupervised training. While the
other two kinds of structures, occlusion-base and
gradient-based, depend on mask language model
objectives and require manually designed interven-
tions and approximations (e.g., Taylor expansions
in gradient-based methods). The faithfulness of
their importance scores assumes that approxima-
tions are faithful, which may not be true in RE
scenarios.

6138



Attn*12 @ BERT Attn*12 @ SciBERT

35

36

37

38

Baseline
Dep

1

2

3

4

5
6

78
9
1011

12

1

2

3
4
5
6

7

8
9
1011

12

SciERC

Figure 4: Performance of 12 layers Attn structures
generated from SciBERT (blue points) compared to
that generated from BERT (red points) on the SciERC
dataset. The number inside the point represents the ID
of the layer. The grey areas depict their distribution
characteristics, where SciBERT has a lower variance
and a higher mean. The SciBERT we used is obtained
by continuous fine-tuning BERT on a large scale of
plain texts in the scientific domain.

In summary, for practitioners, we would recom-
mend the attention-based structures for getting a
better RE performance scores. If one also takes
efficiency into account, the Attn structure is the
fastest (8 times faster than Dep).

5.6 Adapting to New Domains (SciBERT vs.
BERT)

It is known that off-the-shelf trained dependency
parsers may perform poorly when meeting texts
with different domains to Treebanks. In fact, our
experiments on SciERC also witness their poor
domain adaptation ability (Section 5.2). To adapt
dependency parsers to new domains, one may need
new dependency tree annotations of new domains,
which are expensive to obtain. On the other side,
the adaptation of PLMs only require raw text data.
Therefore, it is interesting to check whether un-
supervised structures inherit this nice property.
In other words, whether unsupervised structures
mined from adapted PLMs enjoy better domain
adaptation performances than those mined from
original PLMs.

Here, we use SciERC to study this problem.
9 We compare structures mined from BERT and
those mined from SciBERT, which is obtained by
fine tuning BERT on additional scientific texts. The
results are shown in the Figure 4. We see that 7/12
of runs, structures from SciBERT have better per-
formances than those from BERT. Therefore, an ap-
proach for improving adaptability of unsupervised
structures is simply adding raw texts in the specific

9For simplicity, here we only do the comparison on the
Attn structure of 12 layers in unsupervised structures.

domain to fine tune PLMs, and then the adaptability
of structures are automatically enhanced.

5.7 Case Study

To provide more proof of the effectiveness of un-
supervised structures, we conduct some case study
10, and show the different focus between the depen-
dency tree and unsupervised structures.

Exampe 1: unsupervised structures ignore
strong syntactic relations For the sentence,
‘Asked who should govern Iraq, Al-Douri said:“ I
have nothing to do with that,” ’ the model with
Dep predicts a relation: (“who”, “Iraq”, ORG-
AFF), while the unsupervised structure Attn pre-
dicts nothing. In the dependency tree, (“govern”,
“who”), (“govern”, “Iraq”) are two valid arcs which
give strong support for the wrong relation (“who”,
“Iraq”, ORG-AFF), while in Attn, linking scores
(0.007 and 0.008) of the two arcs are weak (as a
comparison, linking scores of (“who”, “,”) is 0.122,
(“Iraq”, “,”) is 0.13), thus the strong syntactic rela-
tions which are ignored by the unsupervised struc-
ture. It has been shown that PLMs sometimes place
more attentions to special tokens (period, comma,
SEP) than syntactic heads, and we think that in IE
tasks, it also helps filtering suspicious relations.

Example 2: unsupervised structures spot long
distance relations For the sentence, ‘Beside
meeting with Annan, Al-Douri spent several hours
during the late morning and afternoon meeting
with ambassadors and diplomats in the Delegate’s
Lounge.’ the model with Dep predicts nothing,
while the unsupervised structure Attn predicts a re-
lation: (“Al-Douri”, “Delegate’s Lounge”, PHYS).
The two entities in the gold relation are distant
both in sentences (17) and in the dependency tree
(the path connecting them has a length of 7), while
in Attn, the linking score (0.112) between them
is very high (as a comparison, linking scores of
“Al-Dour” with other tokens are less than 0.002).
Therefore, unsupervised structures may incorporate
new structural features for IE tasks.

6 Related Work

Dependency Trees for RE Many studies (Xu
et al., 2015; Miwa and Bansal, 2016; Zhang et al.,
2018; Guo et al., 2019; Fu et al., 2019; Mandya

10Sentences used in the examples are from ACE05 dataset,
and from all unsupervised structures we choose the most rep-
resentative one Attn here.

6139



et al., 2020; Tian et al., 2021) conclude the useful-
ness of syntactic information for the improvement
of RE, e.g., the dependency tree. Because they be-
lieve that it can capture long-range dependency, so
as to help a model better understand the context.
However, dependency trees also contain lots of use-
less edges for RE task as much noise. To reduce
it, variety of pruning methods on dependency trees
are proposed.

Xu et al. (2015) only model the information
along the shortest dependency path (SDP) be-
tween two entities by LSTM. Miwa and Bansal
(2016) prune the whole dependency tree into a sub-
tree, which root is the lowest common ancestor
(LCA) of two entities. While Zhang et al. (2018)
adopt GCN and make a trade-off between them,
by reserving edges in LCA subtree which are in-
volved or directly connected to the SDP. Based
on that, Mandya et al. (2020) study three sub-
graphs separately, which consist of SDP and edges
directly connected to each entity respectively. The
methods mentioned above are all “hard-pruning”,
which deletes edges completely. Whereas another
way considers that much hasty, and applies “soft-
pruning” by learning how to prune with additional
parameters. Fu et al. (2019) employ another learn-
ing stage on relational graph which is the output
of studying the whole dependency tree by GCN.
Guo et al. (2019) use multi-head attention mech-
anism (Vaswani et al., 2017) to learn the weight
for every edge. And Tian et al. (2021) also in-
troduce the type information of each dependency
edge, besides pruning by self-attention.

Besides the noise, the cost of human-annotated
labels for dependency trees are quite expensive.
Meanwhile, models of generating dependency trees
perform unstably on different domains. Therefore,
we expect to turn to PLMs for a more easily avail-
able structure of some use.

Probe Structures in PLM Representations The
success of PLM for many NLG downstream tasks,
catches many attentions to the reason of its high
performance. Some works probe the representa-
tions produced by PLMs, and find that the existing
of syntactic knowledge maybe a big reason. For
example, Tenney et al. (2019) construct a broad
suite of probing tasks to analyse what PLM has
learned on huge unsupervised corpus, and discover
that there are strong syntactic phenomena in PLM
representations. Moreover, Wu et al. (2020) re-
cover syntactic trees from PLM by probing on its

representations, and reach a comparable result with
dependency trees when applying for fine-grained
sentiment classification task.

Based on the above, we propose to extract useful
structures in a more efficient way, that is directly
from PLM instead of probing the representations,
for downstream RE task.

7 Conclusion

We propose to study the performance of RE mod-
els with variety of unsupervised structures mined
from PLMs. We conducted a series of experiments
on RE to verify the effectiveness of them, and
analyze their internal compositions and domain
adaptation respectively. The main conclusion we
reached is unsupervised structures are beneficial to
RE, and perform competitive or even better than
dependency trees. We also find that unsupervised
structures can enhance domain adaptation ability by
simply adding raw texts during finetuning PLMs.

Limitations

In this paper, we reach a conclusion that unsuper-
vised structures in PLMs are helpful in relation
extraction task. However, there are still some limi-
tations as listed below:

• More theoretical methods are needed to give a
accurate explanation for the good performance
of unsupervised structures in RE.

• Despite attention-based structures performing
best of all unsupervised structures in RE, there
are still absent of simple but effective methods on
how to choose between different attention layers
for using.

• The domain adaptation experiments (Section 5.6)
we conducted on unsupervised structures are lim-
ited by hardware and time, and still lacking of
more systematic studies.

• Although spaCy is a common parser, using dif-
ferent parsers can make our conclusions related
to dependency trees more reliable.

Acknowledgement

The authors wish to thank all reviewers for their
helpful comments and suggestions and Yufang Liu
for her comments on the writing. The correspond-
ing author is Yuanbin Wu. This research was (par-
tially) supported by National Key R&D Program of
China (2021YFC3340700) and NSFC(62076097).

6140



References

Samira Abnar and Willem H. Zuidema. 2020. Quanti-
fying attention flow in transformers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 4190–4197. Association for Com-
putational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of bert’s attention. In Proceed-
ings of the 2019 ACL Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
BlackboxNLP@ACL 2019, Florence, Italy, August 1,
2019, pages 276–286. Association for Computational
Linguistics.

Misha Denil, Alban Demiraj, and Nando de Freitas.
2014. Extraction of salient sentences from labelled
documents. CoRR, abs/1412.6815.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Yannis Dimopoulos, Paul Bourret, and Sovan Lek. 1995.
Use of some sensitivity criteria for choosing networks
with good generalization ability. Neural Process.
Lett., 2(6):1–4.

Tsu-Jui Fu, Peng-Hsuan Li, and Wei-Yun Ma. 2019.
Graphrel: Modeling text as relational graphs for joint
entity and relation extraction. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
1409–1418. Association for Computational Linguis-
tics.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Attention
guided graph convolutional networks for relation ex-
traction. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 241–251. Association for
Computational Linguistics.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, Septem-
ber 17-21, 2015, pages 1373–1378. The Association
for Computational Linguistics.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we
define and evaluate faithfulness? In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4198–4205, On-
line. Association for Computational Linguistics.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Jiwei Li, Xinlei Chen, Eduard H. Hovy, and Dan Ju-
rafsky. 2016. Visualizing and understanding neural
models in NLP. In NAACL HLT 2016, The 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA,
June 12-17, 2016, pages 681–691. The Association
for Computational Linguistics.

Angrosh Mandya, Danushka Bollegala, and Frans Co-
enen. 2020. Graph convolution over multiple depen-
dency sub-graphs for relation extraction. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, COLING 2020, Barcelona,
Spain (Online), December 8-13, 2020, pages 6424–
6435. International Committee on Computational
Linguistics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark,
September 9-11, 2017, pages 1506–1515. Associa-
tion for Computational Linguistics.

Makoto Miwa and Mohit Bansal. 2016. End-to-end
relation extraction using lstms on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Vol-
ume 1: Long Papers. The Association for Computer
Linguistics.

6141

https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
http://arxiv.org/abs/1412.6815
http://arxiv.org/abs/1412.6815
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1007/BF02309007
https://doi.org/10.1007/BF02309007
https://doi.org/10.18653/v1/p19-1136
https://doi.org/10.18653/v1/p19-1136
https://doi.org/10.18653/v1/p19-1024
https://doi.org/10.18653/v1/p19-1024
https://doi.org/10.18653/v1/p19-1024
https://doi.org/10.18653/v1/d15-1162
https://doi.org/10.18653/v1/d15-1162
https://doi.org/10.18653/v1/d15-1162
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/n16-1082
https://doi.org/10.18653/v1/n16-1082
https://doi.org/10.18653/v1/2020.coling-main.565
https://doi.org/10.18653/v1/2020.coling-main.565
https://doi.org/10.18653/v1/d17-1159
https://doi.org/10.18653/v1/d17-1159
https://doi.org/10.18653/v1/d17-1159
https://doi.org/10.18653/v1/p16-1105
https://doi.org/10.18653/v1/p16-1105
https://doi.org/10.18653/v1/p16-1105


Sofia Serrano and Noah A. Smith. 2019. Is attention in-
terpretable? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2931–2951, Florence, Italy. Association for
Computational Linguistics.

Yongliang Shen, Xinyin Ma, Yechun Tang, and Weim-
ing Lu. 2021. A trigger-sense memory flow frame-
work for joint entity and relation extraction. In WWW
’21: The Web Conference 2021, Virtual Event / Ljubl-
jana, Slovenia, April 19-23, 2021, pages 1704–1715.
ACM / IW3C2.

Changzhi Sun, Yeyun Gong, Yuanbin Wu, Ming Gong,
Daxin Jiang, Man Lan, Shiliang Sun, and Nan Duan.
2019. Joint type inference on entities and relations
via graph convolutional networks. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
1361–1370. Association for Computational Linguis-
tics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 3319–3328. PMLR.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Yuanhe Tian, Guimin Chen, Yan Song, and Xiang Wan.
2021. Dependency-driven relation extraction with
attentive graph convolutional networks. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 4458–4471. Associa-
tion for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Yijun Wang, Changzhi Sun, Yuanbin Wu, Hao Zhou,
Lei Li, and Junchi Yan. 2021a. ENPAR: enhancing
entity and entity pair representations for joint entity
relation extraction. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, EACL
2021, Online, April 19 - 23, 2021, pages 2877–2887.
Association for Computational Linguistics.

Yijun Wang, Changzhi Sun, Yuanbin Wu, Hao Zhou,
Lei Li, and Junchi Yan. 2021b. Unire: A unified label
space for entity relation extraction. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 220–231. Association
for Computational Linguistics.

Yucheng Wang, Bowen Yu, Yueyang Zhang, Tingwen
Liu, Hongsong Zhu, and Limin Sun. 2020. Tplinker:
Single-stage joint extraction of entities and relations
through token pair linking. In Proceedings of the
28th International Conference on Computational Lin-
guistics, COLING 2020, Barcelona, Spain (Online),
December 8-13, 2020, pages 1572–1582. Interna-
tional Committee on Computational Linguistics.

Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, and
Yi Chang. 2020. A novel cascade binary tagging
framework for relational triple extraction. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 1476–1488. Association
for Computational Linguistics.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not
not explanation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 11–20, Hong Kong, China. Association for
Computational Linguistics.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for an-
alyzing and interpreting BERT. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 4166–4176. Association for Computa-
tional Linguistics.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long short
term memory networks along shortest dependency
paths. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 1785–1794. The Association for Com-
putational Linguistics.

Zhiheng Yan, Chong Zhang, Jinlan Fu, Qi Zhang, and
Zhongyu Wei. 2021. A partition filter network for
joint entity and relation extraction. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 185–197. Association for
Computational Linguistics.

Deming Ye, Yankai Lin, Peng Li, and Maosong Sun.
2022. Packed levitated marker for entity and relation
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics

6142

https://doi.org/10.18653/v1/P19-1282
https://doi.org/10.18653/v1/P19-1282
https://doi.org/10.1145/3442381.3449895
https://doi.org/10.1145/3442381.3449895
https://doi.org/10.18653/v1/p19-1131
https://doi.org/10.18653/v1/p19-1131
http://proceedings.mlr.press/v70/sundararajan17a.html
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.18653/v1/2021.acl-long.344
https://doi.org/10.18653/v1/2021.acl-long.344
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2021.eacl-main.251
https://doi.org/10.18653/v1/2021.eacl-main.251
https://doi.org/10.18653/v1/2021.eacl-main.251
https://doi.org/10.18653/v1/2021.acl-long.19
https://doi.org/10.18653/v1/2021.acl-long.19
https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.18653/v1/2020.coling-main.138
https://doi.org/10.18653/v1/2020.acl-main.136
https://doi.org/10.18653/v1/2020.acl-main.136
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/d15-1206
https://doi.org/10.18653/v1/d15-1206
https://doi.org/10.18653/v1/d15-1206
https://doi.org/10.18653/v1/2021.emnlp-main.17
https://doi.org/10.18653/v1/2021.emnlp-main.17
https://aclanthology.org/2022.acl-long.337
https://aclanthology.org/2022.acl-long.337


(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 4904–4917. Association for
Computational Linguistics.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu,
and Jun Zhao. 2018. Extracting relational facts by an
end-to-end neural model with copy mechanism. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 506–514. Association for Com-
putational Linguistics.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 2205–2215.
Association for Computational Linguistics.

6143

https://doi.org/10.18653/v1/P18-1047
https://doi.org/10.18653/v1/P18-1047
https://doi.org/10.18653/v1/d18-1244
https://doi.org/10.18653/v1/d18-1244


A Datasets

Table 2 contains the statistics of three used datasets:
ACE05, SciERC and WebNLG. Notably, origi-
nal WebNLG dataset have 246 predefined relation
types without any entity labels, and 171 here is
the number of our adopted version ((Wang et al.,
2020)). For the generated seven unsupervised struc-
tures, we will make them publicly available for
download. In addition, due to file size constraints,
we only upload the development set on SciERC as
supplementary material.

B Hyper-parameters

As mentioned in the main body, we tune all hyper-
parameters on ACE05 dataset, then keep the same
settings on SciERC and WebNLG. Where the ba-
sic network remains consistent with previous work
(Sun et al., 2019), we have only tuned the hyper-
parameters for the GCN layer. Table 4 shows the
value of each hyper-parameter of our relation ex-
traction model for all datasets.

C Complete Experimental Results

Table 5 and 6 describe our complete experimental
results on relation extraction task, including P, R
and F1 score for each structure we used in this
paper.

As mentioned in the main text, we totally com-
pare the relation extraction performance between
four types: Baseline, Light, Dependency and Un-
supervised. And the left Random structure is pro-
posed mainly to simulate the effect of noise in the
complete graph. From the Table 5, it is clearly that
unsupervised structures reach the best at all evalu-
ations, ignoring the “cheating” structure GP-Dep.
Moreover, if considering it, Unsupervised struc-
tures still achieve the best on 2 of 3 datasets. These
all convincingly demonstrate the effectiveness of
unsupervised structures.

D Results on All PLMs Layers

In this part, we illustrate the entity and relation
extraction performance of all layers for attention-
based unsupervised structures on ACE05, SciERC
and WebNLG datasets, by a scatter chart, as shown
in Figure 5. To better depict the performance
change of 12 layers for each structure, we use the
quadratic curve to fit it.

From those figures, we can clearly see that most
of curves are U-shape, i.e., a drop is always oc-

Hyper-parameters Default

Epoch {100, 200∗}
Batch 32
Optimizer Adam
Learning Rate 2.5e-5
Warm Up Rate 0.2
Scheduler StepLR
Learning Rate Decay 0.9
Word Embeddings 100
Char Embeddings 50
BERT Dropout 0.01
Hidden Size 768
POS Dimension 15
GCN Layer {0, 1, 2∗, 3}
GCN Dropout {0, 0.1∗, 0.2, 0.3}
Adj Dropout { 0∗, 0.1, 0.2, 0.3}

Table 4: Our default hyper-parameters settings on
ACE05, SciERC and WebNLG, where the results of
our hyper-parameter search are in brackets {. . . } and
the ∗ mark the final choice of values.

curred in the mid. This indicates that the first
and last layers of attention-based structures, are
generally outperforming middle layers. Besides,
regardless of the shape for each curve, the first lay-
ers especially the Layer 1, perform comparable or
equal to the best among 12 layers. Therefore, if
attention-based structures are expected to apply in
the relation extraction task, we recommend the first
layer most.

6144



1 2 3 4 5 6 7 8 9 10 11 12
62.00
62.25
62.50
62.75
63.00
63.25
63.50
63.75
64.00

ACE05

1 2 3 4 5 6 7 8 9 10 11 12
Layer ID

35.50
35.75
36.00
36.25
36.50
36.75
37.00
37.25
37.50

SciERC

Attn Rollout Flow

1 2 3 4 5 6 7 8 9 10 11 12
91.2
91.3
91.4
91.5
91.6
91.7
91.8

WebNLG

Figure 5: RE performance of attention-based structures for different layers.

Type Structure ACE05 SciERC WebNLG
P R F1 P R F1 P R F1

Baseline - 67.00 58.50 62.46 37.44 35.83 36.61 91.37 91.51 91.44

Light Self-Loop 67.05 60.53 63.62 37.91 36.12 36.98 91.41 91.42 91.42
Linear 66.82 58.99 62.66 38.82 35.24 36.94 91.76 91.45 91.60

Dependency
Dep 66.03 59.63 62.66 37.08 35.20 36.12 91.25 91.71 91.48
DP-Dep 67.28 59.75 63.28 37.87 33.69 35.63 91.54 91.74 91.64
GP-Dep‡ 69.25 58.99 63.70 38.88 36.11 37.43 92.37 92.05 92.21

Unsupervised

Attn 68.41 60.27 64.08 38.41 36.58 37.45 91.46 92.10 91.78
Rollout 67.67 60.15 63.68 39.13 35.59 37.25 91.78 91.92 91.85
Flow 66.71 60.64 63.53 38.85 35.98 37.35 91.87 91.80 91.84
Attn† 66.94 59.62 63.06 37.91 35.72 36.75 91.68 91.50 91.59
Rollout† 66.76 59.59 62.96 37.87 35.45 36.60 91.74 91.48 91.61
Flow† 66.72 59.37 62.82 38.22 35.17 36.60 91.75 91.55 91.65
PMask 67.14 59.28 63.14 37.76 35.98 36.84 91.67 91.92 91.80
Grad 66.79 58.68 62.47 37.04 35.45 36.22 91.78 91.88 91.83
GInput 66.33 59.69 62.81 38.13 35.31 36.66 91.72 91.94 91.83
GInteg 67.31 59.57 63.21 38.09 35.09 36.53 91.86 91.61 91.73

Noise Random 67.02 59.08 62.78 37.91 35.38 36.58 91.57 91.54 91.61

Table 5: The overall relation extraction results of four types of structures. Baseline indicates that no additional
structure is added. Bold marks the highest in each column of a block excluding the “cheating “ structure GP-Dep.
The ‡ marker indicates “cheating” dependency parsing, which is not comparable with other structures. The † marker
indicates the average of all layers, rather than the best layer.

6145



Type Structure ACE05 SciERC WebNLG
P R F1 P R F1 P R F1

Baseline - 87.74 88.28 88.00 68.75 69.43 69.09 97.43 98.19 97.81

Light Self-Loop 87.73 88.19 87.96 69.82 69.10 69.46 97.43 98.17 97.8
Linear 87.81 88.42 88.11 69.32 69.06 69.18 97.49 98.25 97.87

Dependency
Dep 87.60 88.09 87.84 69.34 68.56 68.95 97.3 98.37 97.83
DP-Dep 87.76 89.17 88.20 69.50 68.05 68.76 97.34 98.28 97.81
GP-Dep‡ 88.40 88.56 88.48 71.77 70.69 71.22 98.47 98.80 98.63

Unsupervised

Attn 87.61 88.35 87.98 69.51 69.43 69.47 97.27 98.40 97.83
Rollout 87.81 87.96 87.87 70.16 69.41 69.78 97.45 98.32 97.88
Flow 88.07 88.42 88.25 69.62 68.93 69.27 97.43 98.40 97.92
Attn† 87.65 88.06 87.86 69.10 69.42 69.16 97.39 98.16 97.77
Rollout† 87.71 88.06 87.88 68.80 69.15 69.45 97.43 98.18 97.8
Flow† 87.74 88.10 87.92 68.95 69.15 69.27 97.38 98.22 97.80
PMask 87.49 88.12 87.80 69.75 69.39 69.57 97.39 98.28 97.83
Grad 87.74 88.18 87.96 68.63 67.97 68.30 97.21 98.26 97.73
GInput 87.63 88.16 87.89 69.48 69.28 69.38 97.28 98.19 97.73
GInteg 87.66 88.25 87.96 69.15 69.18 69.17 97.50 98.23 97.87

Noise Random 87.73 88.18 87.96 69.28 69.00 69.14 97.34 98.22 97.78

Table 6: The overall entity extraction results of four types of structures. Baseline indicates that no additional
structure is added. Bold marks the highest in each column of a block excluding the “cheating “ structure GP-Dep.
The ‡ marker indicates “cheating” dependency parsing, which is not comparable with other structures. The † marker
indicates the average of all layers, rather than the best layer.

6146


