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Abstract

Zero-Shot Learning (ZSL) has shown great
promise at the intersection of vision and lan-
guage, and generative methods for ZSL are
predominant owing to their efficiency. More-
over, textual description or attribute plays a
critical role in transferring knowledge from the
seen to unseen classes in ZSL. Such genera-
tive approaches for ZSL are very costly to train
and require the class description of the unseen
classes during training. In this work, we pro-
pose a non-generative gating-based attribute re-
finement network for ZSL, which achieves sim-
ilar accuracies to generative methods of ZSL,
at a much lower computational cost. The re-
fined attributes are mapped into the visual do-
main through an attribute embedder, and the
whole network is guided by the circle loss and
the well-known softmax cross-entropy loss to
obtain a robust class embedding. We refer
to our approach as Circle loss guided gating-
based Attribute-Refinement Network (CAR-
Net). We perform extensive experiments on
the five benchmark datasets over the various
challenging scenarios viz., Generalized ZSL
(GZSL), Continual GZSL (CGZSL), and con-
ventional ZSL. We observe that the CARNet
significantly outperforms recent non-generative
ZSL methods and most generative ZSL meth-
ods in all three settings by a significant margin.
Our extensive ablation study disentangles the
performance of various components and justi-
fies their importance1.

1 Introduction
Humans can recognize samples from unseen
classes by leveraging the visual information of
seen categories and textual descriptions of seen and
unseen classes (Larochelle et al., 2008; Palatucci
et al., 2009; Lampert et al., 2009). Zero-Shot Learn-
ing, inspired by this recognition ability of humans,

*These authors contributed equally to this work
1The source code is available at https://github.com/

Sethup123/CARNet

Figure 1: It can be seen that the attributes "small bird"
and "long black beak" (words in bold) are common in all
three species of the Hummingbird. However, attributes
like "ruby red throat" or "orange bird" (words in red)
distinguish one species from another. Hence the dis-
tinguishing attributes must be given more weight than
the common attributes in the class attribute vector. We
achieve this through the gating unit in the attribute re-
finement network.

learns unseen classes through the textual descrip-
tion (also referred to as side-information or class at-
tribute vector or semantic information) (Xian et al.,
2017). A typical ZSL algorithm does not need
training samples from unseen classes. However,
it requires the class description for both seen and
unseen classes (Zhang and Saligrama, 2015; Reed
et al., 2016).

The generative model has recently been the most
popular approach for ZSL. It uses generators like
VAE (Mishra et al., 2018; Schonfeld et al., 2019)
or GAN (Narayan et al., 2020; Vyas et al., 2020) to
generate synthetic samples for unseen classes using
the class attribute vector. However, despite their
promising results, such methods are not very effi-
cient due to the following reasons: (i) The method
requires the knowledge of the number of unseen
classes and respective attribute vectors during train-
ing which is not always feasible, and (ii) retrain-
ing of the classifier with seen and unseen samples,
with each new unseen classes. On the other hand,
non-generative approaches for ZSL alleviates the

6156

https://github.com/Sethup123/CARNet
https://github.com/Sethup123/CARNet


above problems but shows inferior accuracies. Typ-
ically, the non-generative models learn mapping
in three ways: (i) visual to attribute space (Xian
et al., 2016) or (ii) attribute to visual space (Zhang
et al., 2017; Li et al., 2019), or (iii) joint embed-
ding of attribute and visual space (Cacheux et al.,
2019). It is to be noted that most of the exist-
ing non-generative or embedding-based ZSL ap-
proaches are formulated to learn embedding from
visual to attribute space. They assume that the seen
and unseen classes share the same representational
characteristics and are linked in the attribute space
(Frome et al., 2013; Wang et al., 2019; Chen et al.,
2021a). However, this approach leads to the well-
known hubness problem (Dinu et al., 2014), where
the representations are skewed towards seen classes
(Zhang et al., 2017; Li et al., 2019). Another prob-
lem with this approach is that it implicitly loses the
discriminative power of visual features that are gen-
erally extracted from a powerful pre-trained deep
learning model (like ResNet (Xian et al., 2018a,
2016) and GoogleNet (Song et al., 2018)) but are
then mapped to a different smaller attribute space
(Li et al., 2019, 2018).

Although the aforementioned issues in the non-
generative model are mitigated by mapping the
attribute to visual features (Zhang et al., 2017; Li
et al., 2019; Skorokhodov and Elhoseiny, 2021),
they have lower classification accuracies. In
this work, we propose a non-generative method
with an Attribute-Refinement Network (ARN) that
leverages the gating mechanism. The ARN en-
ables highly robust representation of the descrip-
tion/attribute vector for the seen and unseen classes.
In recent years, the gating mechanism has shown
good performance without any complex architec-
ture in supervised learning tasks (Srivastava et al.,
2015; Dauphin et al., 2017; Sandler et al., 2018;
Wu et al., 2018; Liu et al., 2021). In this paper, we
propose a gating mechanism for refining the tex-
tual description in the ZSL task. The ARN learns
to refine the attribute in a self-weighing manner
from the seen class attribute (Fig.1). These refined
attributes are mapped onto the visual space using
an attribute embedder (AE) to obtain the class pro-
totype vector of each class. The class prototype
vector is then combined with the visual features
in the feature-prototype combiner (FPC) to obtain
classifications. The ARN, AE, and FPC are trained
jointly using the circle loss and standard softmax
cross-entropy in such a way that it minimizes inter-

class and maximizes intra-class similarity. The cir-
cle loss achieves better within-class compactness
and between-class discrepancy compared to triplet
loss and adaptive margin softmax loss, as it unifies
both classification and pair-wise similarity repre-
sentation objectives (Sun et al., 2020). We refer
to our approach as Circle loss guided gating-based
Attribute-Refinement Network (CARNet).

We evaluate the performance of CARNet in three
scenarios: (a) Conventional Zero-Shot Learning
(ZSL), where only the unseen classes are avail-
able during inference (b) Generalized Zero-Shot
Learning (GZSL), where both the seen and unseen
classes are available during inference and (c) Con-
tinual Generalized Zero-Shot Learning (CGZSL),
where data arrives as a sequence of tasks and only
current task data is available during training, with
the challenge of handling catastrophic forgetting
of the past tasks. The performance of CARNet for
conventional ZSL and GZSL is evaluated on five
standard datasets. The CGZSL method is evaluated
for the challenging CUB and SUN datasets. The
extensive experiment shows that CARNet outper-
forms the recent generative (unlike the generative
model, we do not require the unseen class descrip-
tion during training) and the non-generative model
by a significant margin. Our ablation study empha-
sizes the significance of each component of the pro-
posed learning algorithm. The main contributions
of our work are summarised as follows: (i) We pro-
pose a gating-based attribute-refinement network
(ARN) to enhance the class description/attribute
for zero-shot learning. (ii) The ARN and AE
are guided by circle loss to achieve better within-
class compactness and between-class discrepancy.
(iii) We propose a highly competitive, simple, and
fast non-generative method. Our model achieves
∼ 70× speedup compared to generative ZSL meth-
ods.

2 Related Work
The proposed CARNet is evaluated for the three
kinds of ZSL settings: conventional ZSL, GZSL,
and CGZSL. We provide a brief survey on all these
three settings. ZSL aims to construct the recog-
nition model for the samples from unseen classes
using the textual description (i.e., attribute informa-
tion) of unseen classes. These attribute information
can be obtained through various ways, like human-
annotated attributes (Farhadi et al., 2009), textual
descriptions (Reed et al., 2016), and word vectors
(Socher et al., 2013; Frome et al., 2013). In recent
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years, there has been a surge of interest in this area.
The whole literature of ZSL can be broadly catego-
rized into two parts: generative and non-generative
(i.e., embedding-based) approaches.

The first popular category is the generative ap-
proach, which solves the ZSL problem by synthe-
sizing the unseen class samples. To synthesize
the samples from the unseen classes, models lever-
age on a powerful generative models like condi-
tional variational autoencoder (VAE) (Mishra et al.,
2018; Kumar Verma et al., 2018) or generative ad-
versarial network (GAN) (Vyas et al., 2020; Xian
et al., 2018b; Felix et al., 2018; Keshari et al., 2020;
Verma et al., 2020) or a combination of VAE and
GAN (Xian et al., 2019; Narayan et al., 2020).

Another popular category is the non-generative
approach, and it does not need class attribute in-
formation of unseen classes during training. In
the early ZSL work (Lampert et al., 2009; Farhadi
et al., 2009; Lampert et al., 2013), models directly
predict the attribute confidence from images. Meth-
ods based on this approach can be further divided
into three groups. In the first group, we project
visual feature into attribute (i.e., semantic) space
(Lampert et al., 2013; Socher et al., 2013; Frome
et al., 2013; Akata et al., 2016; Fu and Sigal, 2016).
In the second group, both visual and attribute data
are projected into intermediate space (Akata et al.,
2015; Fu et al., 2014; Lei Ba et al., 2015; Romera-
Paredes and Torr, 2015; Cacheux et al., 2019). In
the third group, visual space is spanned by attribute
to visual mapping (Zhang et al., 2017; Li et al.,
2019; Skorokhodov and Elhoseiny, 2021). ZSL
methods developed based on the projection from
attribute space to visual space approach are more
suitable for mitigating the hubness problem, and re-
cent works (Zhang et al., 2017; Li et al., 2019; Sko-
rokhodov and Elhoseiny, 2021) show promising
results for the ZSL and GZSL setting. Surprisingly,
despite the fast, accurate, and realistic setting, this
approach has not been explored much in the past.
In this work, we consider the non-generative model
for further exploration and learn the mapping from
the attribute space to the visual space similar to (Li
et al., 2019; Skorokhodov and Elhoseiny, 2021).

The above-discussed ZSL methods can handle
data only in an offline setting, and cannot be used
in a setting with a streaming sequence of tasks
(Delange et al., 2021), known as Continual GZSL
(CGZSL). Only a handful of research is available
for CGZSL (Chaudhry et al., 2019a; Wei et al.,

2020; Skorokhodov and Elhoseiny, 2021; Gautam
et al., 2021a, 2020, 2021b). For the extensive evalu-
ation, apart from the conventional ZSL and GZSL,
CARNet is also evaluated on the CGZSL setting as
proposed in Skorokhodov and Elhoseiny (2021).

3 Problem Definition

In this section, we define the problem formally
and introduce the notations. The objective of ZSL
is to learn a model that can generalize the novel
classes (i.e., unseen classes) with the help of side
information (attribute/descriptions) without train-
ing data for the novel classes. The attribute vec-
tor of each class is constructed by either using a
word embedding vector generated from a language
model or manually defining the key features like
color, size, shape, pattern, etc. Primarily, the ZSL
setting consists of two sets of classes known as
seen and unseen classes. Let Ds

tr and Dts be the
training and testing data, respectively, for the Cs

seen and Cu unseen classes. We also have set
of seen ({Cs}) and unseen ({Cu}) classes where
{Cs} ∩ {Cu} = ϕ i.e. seen and unseen classes
set are disjoint. It is to be noted that {Cs} and
{Cu} denote the set of seen and unseen classes,
while Cs and Cu denote the number of seen classes
and unseen classes, respectively. Corresponding
to each seen class i (i ∈ {Cs}) and unseen class
j (j ∈ {Cu}), there is a d-dimensional class at-
tribute vector, i.e., As

i ∈ Rd and Au
j ∈ Rd, respec-

tively. In the ZSL training, data is represented as:
Ds

tr = {xi, yi, As
yi}Ni=1 where N is the number of

seen class images and {xi, yi} is the image and
label pair. During inference for conventional ZSL,
we have Dts = {xj}Mj=1 with attribute set A = Au

where ∀j, xj belongs to the unseen class. However,
in GZSL, we have Dts = {xj}Mj=1 with attribute
set A = As ∪ Au where ∀j, xj belongs to either
seen or unseen class. Here As and Au are the seen
and unseen class attribute information, respectively.
Overall, our objective is to develop a model based
on the training dataset Dtr (i.e., seen data), and it
needs to be generalized over all class labels {C}
where {C} = {Cs} ∪ {Cu} and the total number
of classes in {C} is C.

4 Proposed Method

Zero-Shot Learning (ZSL) aims at classification in
the absence of input images for unseen classes, us-
ing textual description, namely attribute vectors. In
this section, we propose the CARNet for zero-shot
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Figure 2: CARNet: circle loss guided gating-based attribute refinement network for ZSL. It primarily consists of
three blocks: (i) ARN, (ii) AE, and (iii) FPC

learning. CARNet refines the class attribute vectors
for better representation with the help of end-to-end
joint loss. Here, a gating-based attribute refinement
network (ARN) is used to refine the class attribute
vectors. These refined class attribute vectors are
mapped through an attribute embedder (AE) to ex-
tract an efficient class prototype vector correspond-
ing to each class. The visual features are extracted
using a pre-trained ResNet-101 model. These vi-
sual features are then combined with the class pro-
totype vectors in the feature-prototype combiner
(FPC) for classification, as shown in Fig. 2. The
ARN, the AE, and the FPC are trained end-to-end
based on the sum of two losses, namely, the cir-
cle loss and the softmax cross-entropy loss. These
two losses guide the gating unit to yield refined at-
tributes, which lead to better class prototype vectors
through AE. In this section, we present a detailed
description of our model CARNet.

4.1 Gating-based Attribute Refinement
Network (ARN)

The class attribute vector plays a very crucial role
in ZSL, as there are no visual samples for unseen
classes during training. Moreover, the attribute
vector is the only information that is available for
both the seen and unseen classes. Therefore, it is
highly important that the attribute representation

has minimal noise and highlights its prime dimen-
sions. The objective of the ARN is to obtain an
accurately representative class attribute vector with
high weight on its key dimensions, as shown in Fig.
2. Let As ∈ RCs×d be the class attribute matrix for
Cs seen classes where each row corresponds to the
d dimensional class attribute vector of the corre-
sponding class. The ARN consists of the following
stack of operations.

We first normalize the input As across the di-
mension d for each class independently using layer-
norm (Ba et al., 2016), as As

L = LayerNorm(As)
Over the layer-norm, we perform the linear pro-
jection followed by the Gaussian error linear unit
(GELU) (Hendrycks and Gimpel, 2016) activation
function as As

P = GELU(As
LW1). Here, the lin-

ear projection helps in the expansion of the cur-
rent dimension of the class attribute vector. Here,
W1 ∈ Rd×h denotes weight for the linear projec-
tion and As

P ∈ RCs×h.

Further, we apply the gating unit, which helps
achieve a better representation of the attribute in-
formation. In the ARN, the gating unit performs
cross-feature learning on the higher dimensional
class attribute information vector (As

P ). For this
purpose, we split the As

P into two parts, each with
half the dimension, i.e. As

P1 ∈ RCs×h/2 and
As

P2 ∈ RCs×h/2. Both halves are processed as
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follows:

As
G = As

P1 ⊙ Conv1D(LayerNorm(As
P2)), (1)

where Conv1D represents 1-D Convolution, which
enables the spatial projection, As

G ∈ RCs×h/2, and
⊙ represents Hadamard product (i.e., element-wise
multiplication) which is a linear gating. Also, we
can interpret this operation as self-weighting on
each dimension of the attribute vector. The im-
portant dimensions will get high weight while the
other has lower weight. The Hadamard product
enables the refinement network to keep both in-
formation (i.e., raw As

P1 and spatial projection of
As

P2) in the output of the gating unit, i.e., As
G. Dur-

ing training, the Conv1D(LayerNorm(As
P2)) is

initialized as an identity matrix. Finally, the output
of the ARN is obtained through residual learning,
as shown below:

As
R = As

GW2 ⊕As (2)

where W2 ∈ Rh/2×d denotes weight for the linear
projection, ⊕ denotes element-wise-addition, and
As

R ∈ RCs×d is the final refined class attribute
information. The linear projection helps As

G to
have the same dimension as As.

Overall, the refinement network stacks the above-
mentioned operations one after the other, as shown
in Fig. 2, and this set of operations can be repeated
multiple times. As the set of operations can be
repeated multiple times for better attribute refine-
ment, it can cause the vanishing gradient problem
that is very common in typical gating units. How-
ever, the residual learning in Eq. (2) helps to allevi-
ate this issue.

4.2 Attribute Embedder (AE)

After getting the refined attribute for seen classes,
we perform attribute to visual mapping using the
AE (as shown in Fig. 2) to obtain the class proto-
type matrix P s for the Cs seen classes, where each
row corresponds to the class prototype vector psc of
the respective seen class c ∈ {Cs}.

P s = AE(As
R), P s ∈ RCs×f , (3)

Overall, the AE is a simple 3-layered multi-layer
perceptron (MLP) architecture, which is used to
perform the attribute-to-visual mapping. Here, f
denotes the dimension of the visual feature vector.

4.3 Feature-Prototype Combiner (FPC)

The visual features V s
tr ∈ RN×f are extracted

by passing the images of the seen classes (Ds
tr)

through a pretrained ResNet-101 model (no fine-
tuning). These visual features are combined with
the class prototype vectors in the FPC through
scaled cosine similarity between the P s and the V s

tr

(Skorokhodov and Elhoseiny, 2021). The scaled
cosine similarity (scos) scales and normalizes the
class prototype vectors and the extracted visual fea-
tures before computing the dot product between
them as follows:

scos(vstr, p
s
c) =

(
β · vstr

∥vstr∥

)⊤(
β · psc

∥psc∥

)
,

(4)
where vstr ∈ V s

tr is the f -dimensional extracted vi-
sual feature for a sample, psc is the class prototype
vector of class c ∈ {Cs}, β is the scaling hyper-
parameter, which has the same impact as setting
a high temperature of β2 in softmax (Liu et al.,
2018). Here, normalization reduces the variance of
the class prototype vectors and the visual features,
which helps in achieving better performance.

4.4 Training of the CARNet using only Seen
Classes

The CARNet is trained by minimizing the circle
loss and the softmax cross-entropy loss over the
end-to-end network comprising the ARN and the
AE. We present these loss functions and the learn-
ing algorithm of CARNet in this subsection. With-
out loss of generality, let us assume that vstr ∈ V s

tr

be the extracted visual feature of a sample, which
belongs to the seen class k ∈ {Cs}.

Circle Loss: Generally, two kinds of losses are
involved in the literature: one kind of losses, like
L2-softmax, AM-softmax, and angular softmax are
good candidates for classification, while the other
kind of losses, like triplet loss, N-pair loss, con-
trastive loss, and the margin loss are good candi-
dates for pair-wise similarity. The circle loss (Sun
et al., 2020) aims to unify both classification and
pair-wise similarity representation. Hence, it is a
good candidate for optimizing ARN, AE, and FPC.
Moreover, it enhances the feature learning and bet-
ter separability by using flexible optimization and
definite convergence target (Sun et al., 2020). The
main objective of feature learning is to increase
within-class similarity sp while reducing between-
class similarity sn. The circle loss unifies both
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class-level labels and pair-wise similarity with K
within-class similarity scores (sp) and L between-
class similarity scores (sn) and is defined as:

Lcircle = log
[
1 +

L∑

j=1

exp(γαj
n(s

j
n −∆n))

K∑

i=1

exp(−γαi
p(s

i
p −∆p))

]
,

(5)

where αi
p = [1 +m− sip]+, and αj

n = [sjn +m]+

are weighting factors, αj
n > 0, αi

p > 0, and γ is
a scaling factor. Here [.]+ denotes cut-off at Zero.
∆n = m and ∆p = 1 −m are the between-class
and within-class margins, respectively.

In CARNet, we use the sample vstr as the anchor
and the corresponding class prototype vector psk of
class k as the positive sample and the remaining
class prototype vectors psj of the seen classes as
negative samples. The cosine similarity is used to
determine the positive similarity sp and negative
similarity sn as follows:

skp =
vstr.p

s
k

∥vstr∥∥psk∥
(6)

sjn =
vstr.p

s
j

∥vstr∥∥psj∥
, where k, j ∈ {Cs} and k ̸= j

(7)

Hence, the circle loss in Eq. (5) is modified in
CARNet as:

Lcircle = log
[
1 + exp(−γαk

p(s
k
p −∆p))∑

j∈{Cs}
k ̸=j

exp(γαj
n(s

j
n −∆n))

]
(8)

Softmax Cross-Entropy Loss: To improve the

classification, the softmax cross-entropy loss
(Lsoft−ce) is applied over the computed scaled co-
sine similarity in Eq. (4), as shown below:

Lsoft−ce = − log
escos(v

s
tr,p

s
k)

∑
i∈{Cs} e

scos(vstr,p
s
i )

(9)

Thus, the training of the CARNet is achieved by
learning the weights of the ARN and the AE using
the losses in Eq. (8) and Eq. (9), as shown below:

LCARNet = Lsoft−ce + λLcircle (10)

Thus, the loss in Eq. (10) is optimized during
training. It is to be noted that only the seen class in-
formation (Ds

tr, {Cs}, As) is used during training.

4.5 Inference: Seen and Unseen Classes
The proposed CARNet method is based on the fixed
body and dynamic head (classification layer) archi-
tecture. As the model is trained with only seen
classes, the classification layer has neurons corre-
sponding to the seen classes only, i.e., Cs neurons.
Further, we simply modify the output head and en-
able it for unseen classes ({Cu}) using its class
attribute information (Au) as per the following pro-
cedure:

1. Pass the unseen class attribute information Au

to the trained ARN and get the output Au
R.

2. Pass the Au
R to the trained AE and get the unseen

class prototype vectors P u ∈ RCu×f for Cu

unseen classes.
3. The unseen class prototype vectors (P u) are

stacked with seen class prototype vectors (P s)
as follows:

P =

[
P s

P u

]
, (11)

where P ∈ RC×f .

After computation of P , we compute the scaled
cosine similarity score scos(vts, pi) as follows:

scos(vts, pi) =

(
β · vts

∥vts∥

)⊤(
β · pi

∥pi∥

)
,

(12)
where pi ∈ P is the class prototype vector of class
i ∈ {Cs} ∪ {Cu}, and vts ∈ V s

ts ∪ V u
ts . Here,

V s
ts and V u

ts are the extracted visual features using
pretrained Resnet-101 model for the test images
of seen and unseen classes, respectively. Finally,
we perform a traditional way of classification and
choose the class based on the highest cosine simi-
larity score.

5 Experiments

We conduct extensive experiments on five bench-
mark ZSL datasets (description given in Table 5
in appendix) to evaluate the performance of ZSL
in two settings, i.e., conventional ZSL and GZSL.
In conventional ZSL, test samples only consist
of unseen classes, and we compute Top-1 accu-
racy for unseen classes (Acc) during inference. In
GZSL, test samples consist of both seen and unseen
classes, and we compute Top-1 accuracy for both
seen (SA) and unseen (UA) classes. Further, we
compute its corresponding harmonic mean (HM )
using SA and UA, which is defined as HM . We
also evaluate the model on the continual GZSL
(CGZSL) setting.
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Methods

SUN CUB AWA1 AWA2 APY
ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL APY GZSL

Acc UA SA HM Acc UA SA HM Acc UA SA HM Acc UA SA HM Acc UA SA HM

G
en

er
a

ti
v
e

M
et

h
o

d
s

SGAL (Yu and Lee, 2019) - 42.9 31.2 36.1 - 47.1 44.7 45.9 - 52.7 75.7 62.2 - 55.1 81.2 65.6 - - - -
DASCN (Ni et al., 2019) - 42.4 38.5 40.3 - 45.9 59.0 51.6 - 59.3 68.0 63.4 - - - - - 39.7 59.5 47.6

CIZSL (Elhoseiny and Elfeki, 2019) - - - 27.8 - - - - - - - - - - - 24.6 - - - -
TF-VAEGAN (Narayan et al., 2020) - 45.6 40.7 43.0 - 52.8 64.7 58.1 - - - - - 59.8 75.1 66.6 - - - -
F-VAEGAN-D2 (Xian et al., 2019) 64.7 45.1 38.0 41.3 61.0 48.4 60.1 53.6 - - - - 71.1 57.6 70.6 63.5 - - - -

CADA-VAE (Schonfeld et al., 2019) - 47.2 35.7 40.6 - 51.6 53.5 52.4 - 57.3 72.8 64.1 - 55.8 75.0 63.9 - - - -
EPGN (Yu et al., 2020) - - - - - 52.0 61.1 56.2 - 62.1 83.4 71.2 - 52.6 83.5 64.6 - - - -

LsrGAN (Vyas et al., 2020) - 44.8 37.7 40.9 - 48.1 59.1 53.0 - - - - - 54.6 74.6 63.0 - - - -
ZSML (Verma et al., 2020) - 21.7 45.1 29.3 - 60 52.1 55.7 - 57.4 71.1 63.5 - 58.9 74.6 65.8 - - - -

IZF (Shen et al., 2020) 68.4 52.7 57 54.8 67.1 52.7 68 59.4 74.3 61.3 80.5 69.6 74.5 60.6 77.5 68.0 44.9 42.3 60.5 49.8
FREE (Chen et al., 2021b) - 47.4 37.2 41.7 - 55.7 59.9 57.7 - 62.9 69.4 66.0 - 60.4 75.4 67.1 - - - -

N
o

n
-g

n
er

a
ti

v
e

M
et

h
o

d
s

DEVISE (Frome et al., 2013) 56.5 16.9 27.4 20.9 52.0 23.8 53.0 32.8 54.2 23.8 53.0 32.8 59.7 17.1 74.7 27.8 39.8 4.9 76.9 9.2
ESZSL (Romera-Paredes and Torr, 2015) 54.5 11.0 27.9 15.8 53.9 12.6 63.8 21.0 58.2 6.6 75.6 12.1 58.6 5.9 77.8 11.0 38.3 2.4 70.1 4.6

LATEM (Xian et al., 2016) 55.3 14.7 28.8 19.5 49.3 15.2 57.3 24.0 55.1 7.3 71.7 13.3 55.8 11.5 77.3 20.0 35.2 0.1 73.0 0.2
SYNC (Changpinyo et al., 2016) 56.3 7.9 43.3 13.4 55.6 11.5 70.9 19.8 54.0 8.9 87.3 16.2 46.6 10.0 90.5 18.0 23.9 7.4 66.3 13.3

SAE (Kodirov et al., 2017) 40.3 8.8 18.0 11.8 33.3 7.8 54.0 13.6 53.0 1.8 77.1 3.5 54.1 1.1 82.2 2.2 8.3 0.4 80.9 0.9
DEM (Zhang et al., 2017) 40.3 20.5 34.3 25.6 51.7 19.6 57.9 29.2 68.4 32.8 84.7 47.3 67.2 30.5 86.4 45.1 35.0 11.1 75.1 19.4

ZSKL (Zhang and Koniusz, 2018) - 20.1 31.4 24.5 - 21.6 52.8 30.6 - 18.3 79.3 29.8 - 18.9 82.7 30.8 - 10.5 76.2 18.5
DCN (Liu et al., 2018) 61.8 25.5 37.0 30.2 56.2 28.4 60.7 38.7 65.2 - - - - 25.5 84.2 39.1 43.6 14.2 75.0 23.9

SP-AEN (Chen et al., 2018) 59.2 24.9 38.6 30.3 55.4 34.7 70.6 46.6 - - - - 58.5 23.3 90.9 37.1 24.1 13.7 63.4 22.6
CDL (Jiang et al., 2018) - 21.5 34.7 26.5 - 23.5 55.2 32.9 - - - - - - - - - 19.8 48.6 28.1

PSR (Annadani and Biswas, 2018) 61.4 20.8 37.2 26.7 56.0 24.6 54.3 33.9 - - - - 63.8 20.7 73.8 32.2 38.4 13.5 51.4 21.4
RelNet (Sung et al., 2018) - - - - 55.6 38.1 61.4 47.0 68.2 31.4 91.3 46.7 64.2 30.9 93.4 45.3 - - - -

COSMO (Atzmon and Chechik, 2019) - 44.9 37.7 41.0 - 44.4 57.8 50.2 - - - - - - - - - - - -
CRNet (Zhang and Shi, 2019) - 34.1 36.5 35.3 - 45.5 56.8 50.5 - 52.6 78.8 63.1 - 58.1 74.7 65.4 - 32.4 68.4 44.0

MLSE (Ding and Liu, 2019) - 20.7 36.4 26.4 - 22.3 71.6 34.0 - - - - - 23.8 83.2 37.0 - 12.7 74.3 21.7
DLFZRL (Tong et al., 2019) - - - 24.6 - - - 37.1 - - - - - - - 45.1 - - - 31.0

Triplet (Cacheux et al., 2019) - 47.9 30.4 36.8 - 55.8 52.3 53.0 - - - - - 48.5 83.2 61.3 - - - -
CVC-ZSL (Li et al., 2019) 62.6 36.3 42.8 39.3 54.4 47.4 47.6 47.5 70.9 62.7 77.0 69.1 71.1 56.4 81.4 66.7 26.5 26.5 74.0 39.0

APNet (Liu et al., 2020) 62.3 35.4 40.6 37.8 57.7 48.1 55.9 51.7 68.0 59.7 76.6 67.1 68.0 54.8 83.9 66.4 41.3 32.7 74.7 45.5
DAZLE (Huynh and Elhamifar, 2020) - 52.3 24.3 33.2 - 56.7 59.6 58.1 - - - - - 60.3 75.7 67.1 - - - -

DVBE (Min et al., 2020) - 45.0 37.2 40.7 - 53.2 60.2 56.5 - - - - - 63.6 70.8 67.0 - 32.6 58.3 41.8
CNZSL (Skorokhodov and Elhoseiny, 2021) - 44.7 41.6 43.1 - 49.9 50.7 50.3 - 63.1 73.4 67.8 - 60.2 77.1 67.6 - - - -

HSVA (Chen et al., 2021c) 63.8 48.6 39.0 43.3 62.8 52.7 58.3 55.3 70.6 59.3 76.6 66.8 - 56.7 79.8 66.3 - - - -

CARNet (Ours) 63.1 49.4 40.5 44.5 73.1 65.0 59.6 62.2 75.0 69.5 74.7 72.0 73.7 65.7 79.7 72.0 45.3 39.9 65.9 49.7

Table 1: ZSL and GZSL results (%) on the ZSL benchmark datasets. The best, the second best, and the third best
results are made as bold. The best results are underlined. ’-’ denotes that results are not available in the paper.

5.1 Comparison with Baseline Methods

In this section, the performance of CARNet is eval-
uated against strong baseline models for three ZSL
settings. Results for both the ZSL settings are pro-
vided in Table 1.

Conventional ZSL: From Table 1, it is observed
that the proposed CARNet outperforms all non-
generative ZSL methods in conventional ZSL set-
ting, by 10.3%, 4.1%, 2.6%, 1.7% and 1.3% abso-
lute gain for CUB (Welinder et al., 2010), AWA1
(Lampert et al., 2009), AWA2 (Lampert et al.,
2013), and aPY (Farhadi et al., 2009) and SUN (Pat-
terson and Hays, 2012) datasets, respectively. Also,
in comparison to generative methods of ZSL, the
proposed approach shows 6% and 0.4% absolute
gain over CUB and AWA1 datasets, respectively.

On the remaining datasets, the model outperforms
all the generative models but shows competitive
performance to IZF IZF (Shen et al., 2020).
Generalized zero-shot learning: In this setting,
the proposed non-generative CARNet model out-
performs all non-generative ZSL methods with
the absolute gain of 1.2%, 4.1%, 2.9%, 4.4%,
and 4.2% for SUN, CUB, AWA1, AWA2, and
aPY datasets, respectively. Moreover, CARNet
yields the best HM compared to all generative/non-
generative methods for CUB, AWA1, and AWA2
datasets and better/similar HM on aPY dataset.
The performance of CARNet is outperformed by
IZF (Shen et al., 2020) on the SUN dataset. It
should be noted that IZF is an invertible flow-
based generative model which learns from the bi-
directional mapping between the visual and the
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Methods
CUB SUN

mUA mSA mHM mUA mSA mHM

Seq-CARNet 4.5 11.3 5.9 4.3 11.8 6.1

Seq-CNZSL (Skorokhodov and Elhoseiny, 2021) - - 23 - - 14

Seq-CVAE (Mishra et al., 2018) 8.6 24.7 12.2 11.4 16.9 13.4

Seq-CADA-VAE (Schonfeld et al., 2019) 14.4 40.8 21.1 16.2 25.9 20.1

CNZSL-AGEM (Skorokhodov and Elhoseiny, 2021) - - 23.8 - - 14.2

CNZSL-EWC-online (Skorokhodov and Elhoseiny, 2021) - - 23.3 - - 14.3

CNZSL-MAS-online (Skorokhodov and Elhoseiny, 2021) - - 23.8 - - 14.2

GRCZSL (Gautam et al., 2021a) 14.1 41.9 20.5 11.5 17.7 13.7

CZSL-CV+res (Gautam et al., 2020) 13.5 44.9 20.2 14.1 24.0 17.6

CZSL-CA+res (Gautam et al., 2020) 32.8 44.0 36.1 21.7 27.1 22.9

Tf-GCZSL (Gautam et al., 2021b) 32.4 46.6 36.3 24.7 28.1 24.8

CARNet-ER (Ours) 43.0 45.8 43.4 23.3 30.3 25.6

CARNet-ER+CBR (Ours) 43.4 47.4 44.2 23.6 30.9 26.0

Table 2: Continual Generalized Zero-shot Learning Results
attribute space, enabling it to have better perfor-
mances than other generative ZSL methods. How-
ever, CARNet outperforms IZF for CUB, AWA1,
and AWA2 by a significant margin of 2.8%, 2.4%,
3.7%, respectively, and yields similar result for aPY
dataset (only a difference of 0.1%). In addition to
performance gains, the proposed approached CAR-
Net is characteristically advantageous over gener-
ative ZSL approaches in that, while the CARNet
uses only the attribute vectors of seen classes dur-
ing training, the generative ZSL methods use the
attribute vectors of both seen and unseen classes
during training which is not a realistic scenario in
a dynamic environment.

Table 3 presents the computational time required
to train the various ZSL methods. It can be ob-
served from this table that the CARNet is at least
68×, 68×, 21×, and 31× times faster than genera-
tive methods for SUN, CUB, AWA1, and AWA2,
as observed in Table 3. This can be attributed to
the fact that CARNet only needs to process class
attribute vectors through ARN and AE.

Thus, the proposed CARNet is a desirable candi-
date for conventional and generalized ZSL, owing
to its performance, data requirements and compu-
tational speed.
Continual generalized zero-shot learning
(CGZSL): While ZSL assumes data for all tasks to
be available apriori, data may arrive in a sequential
manner in real-world, and collecting all the data
in memory is cumbersome. Hence, we further
evaluate the performance of CARNet for the
highly challenging CGZSL setting proposed in
Skorokhodov and Elhoseiny (2021). This setting
assumes that the data arrives in a sequence of

tasks and only the current task data is available
for training. Thus, after training for a sequence of
[1, . . . , t] tasks, all classes in the [1, . . . , t] tasks
are considered as seen classes and classes from
(t + 1) onward are considered as unseen classes.
As experience replay-based methods generally
outperform regularization-based methods in the
literature (Delange et al., 2021), CARNet is
equipped for CGZSL using experience replay
(ER) (Chaudhry et al., 2019b) strategy with class-
balanced reservoir (CBR) sampling (Chrysakis and
Moens, 2020). We measure the performance of
CGZSL method using SA, UA, and HM at each
task. Further, we compute the mean of SA, UA,
and HM of overall tasks and denote it as mSA,
mUA, and mHM (Skorokhodov and Elhoseiny,
2021). We present the CGZSL results in Table 2,
along with the state-of-the-art CGZSL methods.
Our method outperforms all existing methods
by an absolute gain of 7.1% and 0.4% for CUB
and SUN datasets, respectively. We also provide
the performance of CARNet with CBR sampling
(CARNet-ER+CBR) and without CBR sampling
(CARNet-ER) in Table 2.

5.2 Ablation Study: Significance of Individual
Components in CARNet

In this section, to emphasize the significance of
individual components of CARNet, we perform an
extensive ablation study over all the components
and hyperparameters.

We study the effect of individual components
of the CARNet, namely, (i) ARN (ii) AE (iii) cir-
cle loss (iv) softmax cross-entropy loss (v) scaled
cosine similarity or Dot Product. We present the
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Methods SUN CUB AWA1 AWA2

RelNet (Sung et al., 2018) - 25 min 40 min 40 min

DCN (Liu et al., 2018) 40 min 50 min - 55 min

CIZSL (Elhoseiny and Elfeki, 2019) 3 Hr 2 Hr 3 Hr 3 Hr

CVC-ZSL (Li et al., 2019) 3 Hr 3 Hr 1.5 Hr 1.5 Hr

LsrGAN (Vyas et al., 2020) 1.1 Hr 1.25 Hr - 1.5 Hr

TF-VAEGAN (Narayan et al., 2020) 1.5 Hr 1.75 Hr - 2 Hr

CNZSL (Skorokhodov and Elhoseiny, 2021) 20 sec 20 sec 30 sec 30 sec

CARNet (Ours) 35 sec 22 sec 110 sec 77 sec

Table 3: Training time comparison. CNZSL (Skorokhodov and Elhoseiny, 2021) is a non-generative model and
remaining are generative models.

results of this study in Table 4. The softmax cross-
entropy loss is an imperative loss for the model, as
the proposed CARNet has to perform classification.
Therefore, we kept it in all cases in the component
analysis of Table 4. It is very evident from the re-
sults that attribute refinement significantly boosts
the performance of CARNet. Moreover, the scaled-
cosine similarity is another important component,
and helps to outperform the model with another
potential candidate, namely, dot product by a large
margin.

LSoft−ce " " " " "

ARN " " "

LCircle " " "

Scaled-
Cosine
Similarity

" " " "

Dot-
product

"

SUN 43.1 43.9 43.4 37.8 44.5
CUB 58.1 58.8 59.4 42.7 62.2
AWA1 67.4 71.2 70.1 27.4 72.0
AWA2 69.6 70.5 70.0 17.3 72.0
APY 43.9 45.2 47.3 17.3 49.7

Table 4: Component Analysis

6 Conclusion

In this work, we developed the circle loss guided
gating-based attribute-refinement network for han-
dling ZSL, GZSL, and continual-GZSL tasks.
CARNet refines the attribute through a gating unit

where it improves the attribute representation by
learning a self-weight on each attribute dimension
in a projected space. These refined attributes im-
prove the embedding, which helps to overcome the
model bias towards the seen classes. The whole
model is guided by the circle loss along with the
standard softmax cross-entropy loss, which maxi-
mizes the inter-class separability and intra-class
similarity. Also, unlike the generative method,
CARNet does not require the attribute vector of
the unseen classes during training. The proposed
method is quite fast, as the attribute refinement net-
work and the attribute embedder need to process
only the class attribute vectors during training. This
work shows that a simple MLP-based architecture
can outperform various highly computationally ex-
pensive ZSL methods. This approach needs to be
explored with generative methods and other ap-
plications of ZSL, like zero-shot for sketch-based
image retrieval, action recognition, and natural lan-
guage processing.

7 Limitations

One major limitation is that the inference data
must be from the same domain, as the proposed
model cannot handle data from the other domains
on which the model is not trained. Another lim-
itation of the proposed method is that it requires
task id during training in the CGZSL setting, with-
out which CARNet cannot optimize the proposed
model properly. However, in realistic scenarios, it
is not necessary for the data to arrive with well-
defined task-boundaries. Hence, the requirement
of task id during training is a drawback of our pro-
posed model.
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A Appendix

A.1 ZSL Datasets

Five common benchmark datasets used in ZSL
are Scene UNderstanding (SUN) dataset, Caltech-
UCSD Birds (CUB) dataset, Animals With At-
tributes (AWA1, AWA2) dataset and Attribute Pas-
cal and Yahoo (aPY) dataset. A brief description
of these datasets is provided in Table 5.

A.2 Continual Learning Setup

In a continual learning setup, all the classes (both
seen and unseen classes) of a given dataset are
grouped together and split into T tasks. Further, all
classes up to the current task t are taken as seen
classes. All classes of the remaining tasks, namely
t+1 to T, are taken as unseen classes. At task t,
the input consists of training images for all classes
in task t. During testing, the test data consists of
images belonging to all classes of tasks 1 to T. The
Task split for the CUB and SUN dataset are as
follows:

1. The CUB dataset consists of 200 classes. The
dataset is split into 20 tasks with 10 classes in
each task.

2. The SUN dataset consists of 717 classes. The
dataset is split into 15 tasks, with 47 classes in
the first 3 tasks and 48 classes in the remaining
12 tasks.

A.3 Implementation Details

We use ResNet-101 as a pretrained model, which is
pretrained on ImageNet as the backbone for visual
feature extraction. CARNet is trained using the
Adam optimizer with a learning rate of 0.001 for
APY and 0.0005 for all remaining datasets. Fur-
ther, weight decay of 0.001 for APY and SUN,
and 0.0001 for other datasets are used. We choose
β = 5 across all datasets for computing scaled co-
sine similarity and m, γ, λ are taken as shown in
Table 6. We performed all our experiments on RTX
2080 GPU with i7 processor and 32 GB RAM.

A.4 Impact of Hyper-parameters (γ and m)

In Fig. 3, we provide three 3-D plots for HM , SA,
and UA on AWA2 dataset to study the effects of m
and γ on CARNet. From the figure, it is seen that
HM , SA, and UA vary only 3%, 2%, and 4% with
changes in m and γ, and still outperforms most
generative and all non-generative ZSL methods.
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Dataset Attribute
Dimen-
sion

#Seen
Classes

#Unseen
Classes

Total
Classes

Description

SUN 102 645 72 717 Fine-grained
CUB 1024 150 50 200 Fine-grained

AWA1 85 40 10 50 Coarse-grained
AWA2 85 40 10 50 Coarse-grained
aPY 64 20 12 32 Coarse-grained

Table 5: Zero-shot learning benchmark datasets
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Figure 3: Impact of hyperparameters on proposed CARNet model for AWA2 dataset on GZSL setting with λ = 0.8

Thus, it can be observed that the CARNet is robust
to large changes in the γ and m.

Hyperparameter SUN CUB AWA1 AWA2 APY
m 0.4 0.1 0.3 0.4 0.2
γ 0.5 0.9 1.0 0.5 1.0
λ 1.2 0.7 0.2 0.5 1.0

Table 6: Values taken by the Hyperparameters for dif-
ferent datasets
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