
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6189 - 6201
December 7-11, 2022 ©2022 Association for Computational Linguistics

Search to Pass Messages for Temporal Knowledge Graph Completion

Zhen Wang1,2 Haotong Du1,2,∗ Quanming Yao3,∗ Xuelong Li2
1School of Computer Science, Northwestern Polytechnical University, China

2School of Artificial Intelligence, Optics and Electronics (iOPEN),
Northwestern Polytechnical University, China

3Department of Electronic Engineering, Tsinghua University, China
w-zhen@nwpu.edu.cn, duhaotong@mail.nwpu.edu.cn

qyaoaa@tsinghua.edu.cn, li@nwpu.edu.cn

Abstract
Completing missing facts is a fundamental
task for temporal knowledge graphs (TKGs).
Recently, graph neural network (GNN) based
methods, which can simultaneously explore
topological and temporal information, have be-
come the state-of-the-art (SOTA) to complete
TKGs. However, these studies are based on
hand-designed architectures and fail to explore
the diverse topological and temporal proper-
ties of TKG. To address this issue, we pro-
pose to use neural architecture search (NAS)
to design data-specific message passing archi-
tecture for TKG completion. In particular, we
develop a generalized framework to explore
topological and temporal information in TKGs.
Based on this framework, we design an ex-
pressive search space to fully capture various
properties of different TKGs. Meanwhile, we
adopt a search algorithm, which trains a super-
net structure by sampling single path for effi-
cient search with less cost. We further conduct
extensive experiments on three benchmark
datasets. The results show that the searched ar-
chitectures by our method achieve the SOTA
performances. Besides, the searched mod-
els can also implicitly reveal diverse proper-
ties in different TKGs. Our code is released
in https://github.com/striderdu/
SPA.

1 Introduction

A temporal knowledge graph (TKG) (Cai et al.,
2022) is a graph-structural data with many time-
sensitive relational facts. The facts can be formed
as qudaruples (subject entity, relationship, ob-
ject entity, timestamp), denoted as (s, r, o, t), e.g.,
(FIFA World Cup, is held in, Qatar, 2022). TKGs
are used extensively in various applications that re-
quire the assistance of temporal knowledge such as
temporal question answering (Saxena et al., 2021),
recommendation systems (Zhao et al., 2022) and
mobility prediction (Wang et al., 2021a).

*Corresponding author.

Notably, similar to static KG, most TKGs are
inherently incompletion, which seriously hampers
their applications in downstream tasks. Therefore,
a great number of works focus on TKG comple-
tion (TKGC) to infer the missing facts in TKGs.
Pioneer embedding-based methods (Leblay and
Chekol, 2018; Dasgupta et al., 2018; Goel et al.,
2020; Lacroix et al., 2020) directly construct time-
aware score functions to evaluate the plausibility
of quadruple. However, embedding-based methods
do not explicitly encode local graph structures in
TKG, which limits their expressiveness.

Recently, based on the success of graph neural
networks (GNNs), some GNN-based methods have
been proposed to solve TKGC. TeMP (Wu et al.,
2020), a typical GNN-based method for TKGC,
discretizes a TKG into multiple static KG snap-
shots and generates dynamic entity representations
along two dimensions: structural neighborhoods
and temporal dynamics. Structural encoder ex-
tracts feature from local node neighborhoods in
each snapshot through message passing and aggre-
gation, while temporal encoder captures feature
evolution over multiple time steps by sequential
models. T-GAP (Jung et al., 2021), views times-
tamps as properties of links between entities, and
proposes the temporal GNN to learn structural and
temporal information on the whole graph. GNNs
have been demonstrated to achieve better perfor-
mance for TKGC tasks, due to their powerful ex-
pressiveness.

However, these GNN-based methods use the
fixed GNN architectures to tackle different TKGs,
failing to explore the diverse topological and tempo-
ral properties of TKGs, which prevents the model
from fully discovering the diverse implicit patterns
in different datasets. More recently, BoxTE (Mess-
ner et al., 2022) has also pointed out this problem.
Therefore, it is critical to design data-specific GNN
architectures for TKGC task.

Neural architecture search (NAS) (Yao et al.,

6189

https://github.com/striderdu/SPA
https://github.com/striderdu/SPA

2018; Hutter et al., 2019) has achieved great suc-
cess in designing data-specific architectures, of
which the performances exceed the architectures
crafted by human experts in various areas, e.g.,
computer vision (Zhang et al., 2022a), natural
language processing (So et al., 2019), and graph
learning (Zhang et al., 2021). More recently, in
static KG completion, there are some works that
adopt NAS techniques for designing the score
function (Zhang et al., 2022b) or GNN architec-
ture (Wang et al., 2021b). However, no one has
made similar attempts on TKG. And designing
data-specific architectures for TKGC task is non-
trivial, because of the demand to simultaneously
explore topological and temporal information.

In this work, we propose a novel method which
tries to Search to PAss messages(SPA), to automat-
ically design data-specific architectures for TKGC.
Firstly, we design a generalized framework to si-
multaneously explore topological and temporal in-
formation in TKGs. From this, we define a novel
and expressive search space, in which different
combinations of operations can capture various pat-
terns of different TKGs. To enable efficient search
on top of the search space, we adopt a flexible and
effective search algorithm, which trains a supernet
by sampling single path uniformly, thus greatly re-
ducing the GPU memory cost. To demonstrate the
effectiveness of SPA, we conduct extensive experi-
ments on three benchmark datasets of TKGC. Ex-
perimental results show that SPA can consistently
achieve state-of-the-art performance by designing
data-specific architectures. Further empirical re-
sults verify the searched models provide implicitly
properties expression for different TKGs.

2 The Proposed Method

As mentioned in the introduction, the GNN-based
method for TKGC should be data-specific. Gener-
ally, TKGs contain both topological and temporal
information. Thus, to design a proper model, we
first define a framework which can model topolog-
ical patterns and temporal contexts jointly. Then,
we introduce our novel search space. Finally, we
describe our search objective and search algorithm.

2.1 The Generalized Framework

To search for data-specific and well-performing
architectures based on GNN, we need to define a
framework which has the ability to model topologi-
cal and temporal information in TKG. Following

43

𝒢

𝒢 -

𝒢 -
⋱

r
?

Spatial
Aggregation

Layer Connection

Spatial
Aggregation

Temporal
Aggregation

Temporal
Aggregation

La
ye

r F
us

io
n

𝐡 ,

𝐡 ,

𝐡 ,
𝐡 ,

𝐡 ,

𝐡 , ,⋯,𝐡 ,

𝐡 , ,⋯,𝐡 ,

𝐳 ,

𝐳 ,

𝐳 ,

s

Figure 1: An illustration of the 2-layer framework. The
temporal aggregation module is placed after each spa-
tial aggregation module in each layer, and the layer fu-
sion module is utilized to incorporate the intermediate
feature representations produced by temporal aggrega-
tion module. The layer connection module is used to
help the feature reuse for each spatial aggregation.

some existing works (Taheri et al., 2019; Sankar
et al., 2020; Manessi et al., 2020; Wu et al., 2020;
Gao et al., 2022; Wang et al., 2022), we firstly dis-
cretize a TKG into multiple static KG snapshots
along the time, and utilize GNNs and sequential
models to generate dynamic entity representations.
The main advantages of this approach include sim-
plicity as well as enabling the use of a wealth of
GNN and sequential model techniques. A large
number of works on temporal graphs also achieve
competitive results with such this approach con-
sisting of combinations of GNNs and recurrent
architectures, whereby the former digest graph in-
formation and the latter handle dynamism.

Based on this motivation, we develop a gener-
alized framework that mainly consists of four key
modules for learning expressive dynamic entity rep-
resentation, including spatial aggregation, tem-
poral aggregation, layer connection, and layer
fusion. In Figure 1, we use a 2-layer architec-
ture as an illustrative example of the generalized
framework. More detailed descriptions of the four
modules are as follows:
1. Spatial Aggregation at the i-th layer is con-

ducted to aggregate information from the neigh-
bors of s in static snapshot Gt and results in
the intermediate representation of entity s, as
follows,

h1
s,t = OSA(Gt,h0

s), (1)

where h0
s ∈ H is the initialized embedding of

entity s, H is the representation matrix contain-
ing embeddings of entities and relations in TKG.

6190

45

⋯

𝐡 𝐡𝒪

𝐡

𝐡

𝐡

𝐡

𝒪

𝒪

𝒪

𝒪

𝒪

𝐙

𝒪

𝒪

Figure 2: The illustration of search space of SPA.

2. Temporal Aggregation at the i-th layer gener-
ates temporal feature zis,t based historical fea-
ture sequences his,t−τ , · · · ,his,t−1 behind, as
follows,

z1
t = OTA(h1

s,t−τ , · · · ,h1
s,t−1,h

1
s,t), (2)

where τ is a hyper-parameter, stands for the
number of input KG snapshots to the model.

3. Layer Connection combines hi−1
s,t with his,t to

form a new representation ĥis,t, as follows,

ĥ1
s,t = OLC(h0

s,h
1
s,t). (3)

4. Layer Fusion generates the final representation
of entity zs,t by fusing temporal features from
temporal aggregation module in different layer,
as follows,

zs,t = OLF(z1
s,t, z

2
s,t). (4)

Based on this generalized framework, we can
search the specific form of each operation to ob-
tain data-specific architecture. An effective search
space can be naturally designed by including
human-designed operations, the details of which
are given in Table 1.

2.2 Search Space
Based on above framework, we design one novel
search space with a set of candidate operations as
shown in Table 1. In the following, we will describe
the details of these operations.
Spatial Aggregation. We choose three widely
used multi-relational GNNs as alternative spatial
aggregation module: RGCN (Schlichtkrull et al.,
2018), RGAT (Busbridge et al., 2019), CompGCN
(Vashishth et al., 2020), which denoted as RGCN,
RGAT, COMPGCN.

Module name Operations

Spatial Aggregation
(OSA)

RGCN, RGAT,
COMPGCN

Temporal Aggregation
(OTA)

GRU, SA,
IDENTITY

Layer Connection
(OLC)

LC_SKIP, LC_SUM,
LC_CONCAT

Layer Fusion
(OLF)

LF_MAX, LF_CONCAT,
LF_SKIP, LF_MEAN

Table 1: The operations used in our search space.

Temporal Aggregation. For the temporal aggre-
gation module, we consider two sequential models
to learn temporal patterns: GRU (Cho et al., 2014)
, Self-Attention (SA) (Vaswani et al., 2017). Be-
sides, we incorporate the operation IDENTITY,
which means using the results of spatial aggrega-
tion directly, i.e., zis,t = his,t, rather than learning
dynamic feature between snapshots.
Layer Connection. It has been well proven in
many literatures (Li et al., 2021) that the use of skip
connections between spatial aggregation modules
can help alleviate over-smoothing and the vanish-
ing gradient issue, and improve the performance
of the model. In our search space, we add three
different skip connection operations to encourage
various feature reuse, i.e., LC_SKIP, LC_SUM,
LC_CONCAT.
Layer Fusion. In static graph learning, some stud-
ies (Xu et al., 2018a) focus on obtaining more
expressive structure-aware representation by se-
lectively fusing the intermediate representation of
spatial aggregation. We borrow this idea to tem-
poral graph learning and provide four fusion op-
erations to integrate the representations of the in-
termediate temporal aggregation layers with the
average, maximum, concatenation and skip, de-
noted as LF_MEAN, LF_MAX, LF_CONCAT and
LF_SKIP, respectively. The search for various fu-
sion operations allows the model to learn to adapt
to different dynamic subgraph structures.

An example of the L-layer search space is shown
in Figure 2. With so many candidate architectures
in the search space, SPA can use efficient search
algorithm to obtain data-specific architectures be-
yond existing human-designed ones.

2.3 Search Objective

Let the training and validation set be Dtra and Dval,
N (WΘ,H;α) be a TKGC model (where WΘ,H

6191

represents model parameters containing model
weights Θ and TKG embedding H, and α is the
model architecture), M be the measurement on
Dval and L be the loss on Dtra. The problem is de-
fined to find an architecture α such that validation
performance is maximized, i.e.,

α∗ = arg maxα∈A M(N (W∗Θ,H;α),Dval),

(5)

s.t. W∗Θ,H = arg minW L(N (WΘ,H;α),Dtra),

(6)

which is a bi-level optimization problem and is non-
trivial to solve. Because the computation cost to
get the optimal parameters W∗Θ,H is generally high.
And the search space is large. Thus, how to effi-
ciently search the architectures is a big challenge.

To perform TKGC task, we use score function to
measure the plausibility of each candidate quadru-
ple (s, r, o, t). Since our proposed framework can
generate time-aware entity embeddings, we only
need static score function.

Specifically, the score function for quadruple is
defined as follows in SPA:

φ(s, r, o, t) = f(zs,t,hr, zo,t), (7)

where zs,t and zo,t are time-aware representaions
for subject and object entities, while zr is a learned
embedding of the relation r. In this work, we use
ComplEx (Trouillon et al., 2016) as the score func-
tion, which is known to perform well on static KGC
benchmarks.

For the loss function, following the setting of
TeMP, we employ the cross-entropy loss for param-
eter learning. More details about loss function is in
the Appendix A.1.

2.4 Search Algorithm

Based on the proposed framework and the search
space, the search algorithm is used to search opera-
tions from the corresponding operation set.

Inspired by recent advances in NAS, we pro-
pose to solve Equation (5), (6) using one-shot NAS
paradigm, which greatly improves the efficiency
of performance estimation by training only one
supernet.

There are two types of methods in one-shot NAS:
the single-stage method and the two-stage method.
The first one combines supernet training and search
in a single stage. Representative methods include
DARTS (Liu et al., 2019), SNAS (Xie et al., 2019),

Algorithm 1 SPA - Search to PAss messages

Require: Training dataset Dtra, validation dataset
Dval, the epoch T1 for train supernet, the epoch
T2 for search architecture, the search space A.

Ensure: The searched architecture.
1: Random initialize the parameter of supernet

W.
2: while t < T1 do
3: for each minibatch B ∈ Dtrain do
4: Random sample α from A.
5: Calculate the training loss Ltra for α.
6: Update weight subset WΘ,H(α) with
Ltra.

7: end for
8: end while
9: while t < T2 do

10: Random sample α from A.
11: Inherit weight subset W∗

Θ,H(α) from
W∗

Θ,H.
12: Calculate the validation performance for α

in Dval.
13: end while
14: return The searched architecture with the high-

est validation performance.

etc. The single-stage approach requires that the
validation metrics be differentiable to allow super-
net training and architecture search to be jointly
optimized by gradient-based methods, which is in-
appropriate for our task as its metric(i.e. MRR) is
non-differentiable. And the correlation between the
validation loss and the validation metric is unclear.
Using the validation loss to update the architecture
parameters may mislead the search algorithm to
find a sub-optimal architecture.

Moreover, the single-stage approach requires
training the whole supernet, which demands
tremendous GPU memory as the proposed search
space contains spatial encoder and temporal en-
coder. Hence, we adopt the two-stage approach,
which decouples supernet training and architecture
search.

In this paper, we adopt SPOS (Guo et al., 2020),
a typical two-stage method, as it can consume the
GPU memory less and fully train each candidate
operation. Algorithm 1 delineates the full proce-
dure.
Supernet Training. For the solution of Equa-
tion (6), following SPOS, we construct a supernet
structure that each candidate architecture is a sin-
gle path. In each step of optimization, as shown

6192

52

𝐡 𝐡
𝒪

𝐡 𝐙

𝐡

𝐡

𝐡

𝒪

𝒪 𝒪

activated
inactivated

𝒪 𝒪

GRU RGCN

RGAT

COMPGCN SA

IDENTITY

𝐙

𝐙

𝐙
𝒪 𝒪 𝒪

Figure 3: The illustration of the single path supernet.
In the training stage, the weights of the solid line part
(RGAT, GRU) are activated and updated, the dotted por-
tions are masked and inactivated.

in Figure 3. an architecture α (one path, i.e., the
solid part of the figure) is sampled from the search
space in a uniformly distributed manner. It guar-
antees equal expectations of the number of times
each architecture is sampled, thus all architectures
(and their weights) are trained fully and equally.
And then, only the weights corresponding α are
activated and updated. So the GPU memory usage
is efficient.
Architecture Search. After getting the trained op-
timal weights of supernet W∗Θ,H, to solve the prob-
lem in Equation (5), we leverage random search to
find well-performing architectureα. This is simple
but effective for our search space.

Finally, architecture with the highest validation
performance(i.e. validation MRR) in all iterations
will be returned.

3 Experiments

3.1 Experimental Settings

Datasets. We perform evaluation on three
widely used TKG completion datasets, including
ICEWS14 (García-Durán et al., 2018), ICEWS05-
15 (García-Durán et al., 2018) and GDELT (Leetaru
and Schrodt, 2013). ICEWS14 and ICEWS05-15
are two subsets of Integrated Crisis Early Warn-
ing System (ICEWS) database with different time
spans. GDELT is a subset of Global Database of
Events, Language, and Tone (GDELT), which con-
tains facts facts from April 1, 2015 to March 31,
2016. The detailed dataset statistics is presented in
the Appendix A.2.
Evaluation Metrics. We follow (Bordes et al.,

2013) to use the filtered ranking-based metrics, i.e.,
mean reciprocal ranking (MRR) and Hit@1/3/10
for evaluation. For both metrics, the larger value
indicates the better performance.
Baseline Methods. We compare SPA with two
types of baselines: human-designed methods and
NAS methods.

For human-designed methods, we take
TransE (Bordes et al., 2013), Distmult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016) and Sim-
plE (Kazemi and Poole, 2018) to represent static
KG completion methods, and TTransE (Leblay
and Chekol, 2018), TA-Distmult (García-Durán
et al., 2018), HyTE (Dasgupta et al., 2018), DE-
SimplE (Goel et al., 2020), TNTComplEx (Lacroix
et al., 2020), ChronoR (Sadeghian et al., 2021),
TeLM (Xu et al., 2021) and BoxTE (Messner et al.,
2022) to represent state-of-the-art embedding-
based methods designed for TKGC. For the
GNN-based methods, we compare with both
TeMP (Wu et al., 2020) and T-GAP (Jung et al.,
2021) here.

For NAS methods, since existing methods can-
not learn the data-specific architecture for temporal
graph, we further provide Random search as the
baseline for comparisons based on the proposed
search space in Section 2.2.
Implementation and Hyperparameters. For all
NAS methods (Random baseline and SPA), we de-
rived the candidate GNNs from the search space in
the search process. All the searched candidates are
tuned individually with hyperparameters like learn-
ing rate, weight decay, etc. In this paper, the 3-layer
framework is empirically chosen for all NAS meth-
ods on all datasets. We set the negative sampling
ratio to 500, i.e. 500 negative samples per positive
triple. More details about the implementation and
hyperparamters are given in Appendix A.3.

3.2 Performance Comparison

Table 2 shows the overall result on three bench-
marks. As can be seen, there is no clear win-
ner among the human-designed baselines on all
datasets. Besides, we can see that SPA consistently
outperforms all baselines on all datasets, which
demonstrates the effectiveness of SPA on searching
for data-specific architectures for TKGC.

When it comes to NAS baselines, the perfor-
mance gains of SPA are also significant. On one
hand, the Random baselines achieve considerable
performance gains on all these datasets, which

6193

Type Model ICEWS14 ICEWS05-15 GDELT

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Human-
designed

TransE 0.326 15.4 43.0 64.4 0.330 15.2 44.0 66.0 0.155 6.0 17.8 33.5
DistMult 0.441 32.5 49.8 66.8 0.457 33.8 51.5 69.1 0.210 13.3 22.4 36.5
ComplEx 0.442 40.0 43.0 66.4 0.464 34.7 52.4 69.6 0.213 13.3 22.5 36.6
SimplE 0.458 34.1 51.6 68.7 0.478 35.9 53.9 70.8 0.206 12.4 22.0 36.6
TTransE 0.255 7.4 - 60.1 0.271 8.4 - 61.6 0.115 0.0 16.0 31.8

HyTE 0.297 10.8 41.6 65.5 0.316 11.6 44.5 68.1 0.118 0.0 16.5 32.6
TA-DistMult 0.477 36.3 - 68.6 0.474 34.6 - 72.8 0.206 12.4 21.9 36.5
DE-SimplE 0.526 41.8 59.2 72.5 0.513 39.2 57.8 74.8 0.230 14.1 24.8 40.3

TNTComplEx 0.620 52.0 66.0 76.0 0.670 59.0 71.0 81.0 - - - -
TIMEPLEX 0.604 51.5 - 77.1 0.640 54.5 - 81.8 - - - -

ChronoR 0.625 54.7 66.9 77.3 0.675 59.6 72.3 82.0 - - - -
TeLM 0.625 54.5 67.3 77.4 0.678 59.9 72.8 82.3 - - - -
BoxTE 0.613 52.8 66.4 76.3 0.667 58.2 71.9 82.0 0.352 26.9 37.7 51.1

TeMP-GRU 0.601 47.8 68.1 82.8 0.691 56.6 78.2 91.7 0.275 19.1 29.7 43.7
TeMP-SA 0.607 48.4 68.4 84.0 0.680 55.3 76.9 91.3 0.232 15.2 24.5 37.7

T-GAP 0.610 50.9 67.7 79.0 0.670 56.8 74.3 84.5 - - - -

NAS
Random 0.642 52.8 72.2 84.3 0.701 58.0 78.8 91.7 0.353 27.1 37.9 51.1

SPA 0.658 54.4 73.7 85.7 0.713 58.0 82.0 93.3 0.360 28.2 38.4 51.0

Table 2: Temporal KG completion evaluation results on ICEWS14, ICEWS05-15 and GDELT. The H@1, H@3,
and H@10 metrics are multiplied by 100. Best results are in bold and the second best is underlined. "-" means that
results are not reported in those papers or their code on that data/metric is not available.

demonstrates the effectiveness of the search space.
On the other hand, compared with Random, which
use the designed search space of SPA, the per-
formance gains are from the single path one-shot
search algorithm on obtaining better architectures.

Figure 4 shows the learning curves of GNN-
based methods on ICEWS14 and ICEWS05-15,
including TeMP, T-GAP and the proposed SPA. As
can be seen, the searched architecture not only out-
perform baselines, but also have comparable time
as the other GNN-based methods, which demon-
strates the searched architecture can better capture
diverse topological and temporal properties of dif-
ferent TKGs.

0 5 10 15 20 25 30 35
Time(GPU hours)

0.4
0.45

0.5
0.55

0.6
0.65

Te
st

in
g

M
RR

ICEWS14

SPA
TeMP
T-GAP

0 5 10 15 20 25 30
Time(GPU days)

0.5

0.55

0.6

0.65

0.7

Te
st

in
g

M
RR

ICEWS05-15

SPA
TeMP
T-GAP

Figure 4: Comparison on convergence between the
searched architectures (by SPA) and human-designed
GNN-based methods.

Further, we visualize the searched architectures
on three benchmark datasets in Figure 7, from
which it is clear that different operation combina-
tions of these four modules are obtained, i.e., data-

specific architectures. We will discuss the details
about the searched architectures in Section 3.5.

Therefore, these results demonstrate the need
for data-specific methods for TKGC, and at the
same time, the effectiveness of SPA on designing
adaptive architectures.

3.3 Understanding the Search Algorithm
In this part, we evaluate the search algorithm from
the perspectives of the efficiency of search algo-
rithm, the effectiveness of weight sharing, and the
choice of validation metric.

3.3.1 Efficiency of Search Algorithm
To show the efficiency of the search algorithm, we
compare SPA with Random search baseline. Fig-
ure 5 shows the variation in the number of searched
models during the search process.

0 100 101

Search time(GPU days)
0

100

101

102

103

Se

ar
ch

ed
 m

od
el

s ICEWS14

Random
SPA(train)
SPA(search)

0 100 101 102

Search time(GPU days)
0

100

101

102

103

Se

ar
ch

ed
 m

od
el

s ICEWS05-15

Random
SPA(train)
SPA(search)

Figure 5: Comparison of SPA with Random search dur-
ing the search process.

As can be seen, random search have to take a

6194

long time to train each candidate architecture from
scratch, while SPA spend most of the time on train-
ing supernet. In the stage of architecture search,
SPA directly picks the corresponding weights from
the trained supernet for the specific architecture
evaluation, which significantly improves the effi-
ciency compared to random search. This is mainly
attributed to the weight-sharing strategy.

3.3.2 Effectiveness of Weight Sharing
To demonstrate the effectiveness of weight sharing,
we empirically visualize the rank correlation of the
validation performance between the weight sharing
strategy and the stand-alone approach, as shown
in Figure 6. For the stand-alone approach, we ran-
domly sample 50 architectures C, train and evaluate
them from scratch. About weight sharing, we in-
herit the corresponding subweights of the trained
supernet for each structure in C and evaluate it.

1 10 20 30 40 50
Rank with weight sharing

1

10

20

30

40

50

Ra
nk

 w
ith

 st
an

d-
al

on
e

Figure 6: Rank correlation between stand-alone and
weight sharing approach.

As can be seen, it is obvious that the rank of
weight sharing validation MRR has near positive
correlation with the rank of stand-alone validation
MRR. And then, most structures that have high
estimated ranks by weight sharing truly have high
ranks using the setting of stand-alone. This demon-
strates that the weight sharing strategy can search
for good structures.

3.3.3 Choice of Validation Metric
In Section 2.4, we discuss the rationality of adopt-
ing the SPOS (Guo et al., 2020) method for search
algorithm. Here, to show the impact of validation
metric for SPOS, we compare the following SPA
variants: (i) SPA(train loss), which uses training
loss rather than valid MRR for evaluating candi-
date architecture in the stage of architecture search;
(ii) SPA(valid loss), which uses validation loss for
evaluating candidate architecture. Moreover, we

adopt two variants of DARTS (Liu et al., 2019)
as search algorithms, including SPA-D(train loss)
and SPA-D(valid loss), which use gradient-based
optimization to update architecture parameters by
minimizing training loss and validation loss, re-
spectively.

Table 3 shows the testing MRRs of different vari-
ants on ICEWS14 and GDELT. As can be seen, the
use of validation MRR can help to select the better
sub-network. The variants associated with DARTS
run out of memory on GDELT with 3 million facts
due to the demand for tremendous GPU memory.
Besides, when using the same validation metric,
the performances of architecture searched by SPOS
consistently outperform that of DARTS, which may
be due to the coupling of supernet weights and ar-
chitecture parameters leading to the selection of
inferior architectures.

Search
algorithm Variant ICEWS14 GDELT

DARTS
SPA-D(train loss) 0.547 OOM

SPA-D(valid loss) 0.615 OOM

SPOS

SPA(train loss) 0.587 0.324

SPA(valid loss) 0.623 0.341

SPA(valid MRR) 0.658 0.360

Table 3: Performance of SPA using different variants
of search algorithm. "OOM" means out of memory.

3.4 Ablation Studies on the Search Space

We conduct ablation studies to show the influ-
ences of the four modules in the search space. For
simplicity, we use two datasets: ICEWS14 and
GDELT, and run SPA over different variants of
search space, for which the results are shown in
Table 4.

3.4.1 Spatial Aggregation Module
To evaluate how the spatial aggregation module
affects the performance, we only search for the
other three modules based on fixed aggregators
RGCN and RGAT, which denoted as SPA-RGCN
and SPA-RGAT, respectively. As shown in Ta-
ble 4, with fixed aggregators, SPA-RGCN and SPA-
RGAT have a performance drop compared with
SPA. This indicatess that the diverse spatial ag-
gregation modules can capture various topological
information in different TKGs and significantly
improve the model performance.

6195

48

𝐡 𝐡RGCN

𝐡

𝐡

𝐡

𝐡

𝐙

LC_CONCAT

RGAT

COMPGCN

LC_CONCAT

SA

IDENTITY

IDENTITY

LF_MEAN

(a) ICEWS14

50

𝐡 𝐡RGCN

𝐡

𝐡

𝐡

𝐡

𝐙

LC_CONCAT

RGCN

COMPGCN

LC_CONCAT

SA

IDENTITY

LF_MEAN

GRU

(b) ICEWS05-15

49

𝐡 𝐡

𝐡

𝐡

𝐡

𝐡

𝐙

LC_CONCAT

RGCN

COMPGCN

LC_SKIP

GRU

GRU

GRU

LF_MEAN

COMPGCN

(c) GDELT

Figure 7: The searched architectures on three benchmark datasets.

Fixed Variant ICEWS14 GDELT

Spatial
Aggregation

SPA-RGCN 0.648 0.347

SPA-RGAT 0.653 0.357

Temporal
Aggregation

SPA-IDENTITY 0.654 0.342

SPA-GRU 0.585 0.358

Layer
Connection SPA-LC_SKIP 0.655 0.356

Layer Fusion SPA-LF_SKIP 0.623 0.349

SPA 0.658 0.360

Table 4: Performance of SPA using different search
spaces. The first column represents the corresponding
module we try to evaluate by fixing it with one OP in
the reduced search space.

3.4.2 Temporal Aggregation Module

To evaluate the importance of searching for tempo-
ral aggregation module, we learn to design archi-
tectures with fixed temporal aggregation module
instead. In Table 4, with the two predefined tem-
poral aggregation operations, the degree of perfor-
mance degradation is inconsistent across different
datasets. To be specific, the performance drop is
evident on SPA-IDENTITY for GDELT. But for
ICEWS14, the performance of SPA-GRU drops
significantly compared to SPA. This observation
shows the importance of including temporal ag-
gregation module in the search space. Meanwhile,
it shows that the temporal aggregation operations
should also be data-specific for TKGC.

3.4.3 Layer Connection and Layer Fusion
Module

In this section, we evaluate the proposed Layer
Connection and Layer Fusion Module, which are
novel compared to existing GNN-based architec-

tures for TKGC. By fixing the skip-connection
function as LC_SKIP, we create the variant SPA-
LC_SKIP, which means that we do not search for
different skip-connection functions. By fixing the
layer fusion function as LF_SKIP, we only pre-
serve the output of last temporal aggregation mod-
ule as entity representation. This variant is denoted
by SPA-LA_SKIP, which means the outputs of in-
termediate layers are not used.

From Table 4, we can see that
• The performance drop of SPA-LC_SKIP means

that the spatial aggregation module can benefit
from skip-connection, which have been shown
in previous works (Li et al., 2021; Li and King,
2020).

• The performance drop of SPA-LA_SKIP means
that the outputs of intermediate layers are impor-
tant for the final representation in temporal graph
learning. Thus, it demonstrates the importance
of the proposed Layer Fusion Module.
Taking all results in Table 4 into consideration,

we can see that it is important for TKGC to search
for combinations of operations from the four es-
sential modules by SPA, which demonstrates the
contribution of the proposed framework and the
designed search space.

3.5 Case Study
We visualize the searched architectures on three
benchmark datasets in Figure 7. Especially, the
searched temporal aggregation modules contain
more IDENTITY operations in ICEWS14, while
in GDELT more SA operations are searched. This
observation implies that for the ICEWS14 dataset,
capturing complex temporal context may not be
necessary in comparison to GDELT.

To verify above conjecture, we compare the dif-
ferences in temporal properties between ICEWS14

6196

and GDELT. From the perspective of temporal
properties, as shown in Figure 8, the activity fre-
quency of entities on GDELT is much higher than
ICEWS14. This means that we do not need to
design architectures with complicated sequential
models for ICEWS14, but it is useful for GDELT.
This result confirms our conjecture and the impor-
tance of designing data-specific architectures for
TKGC.

Taking into consideration these experimental re-
sults from Figure 7 and 8, it indicates the effective-
ness of our method in finding data-specific archi-
tectures for TKGC.

0 2000 4000 6000
Entity ID

0%
20%
40%
60%
80%

100%

Pe
rc

en
ta

ge

ICEWS14

0 100 200 300 400 500
Entity ID

0%
20%
40%
60%
80%

100%

Pe
rc

en
ta

ge

GDELT

Figure 8: Difference in temporal property between two
datasets. The figure represents the proportion of times-
tamps when the entity is active1to the total timestamps.
As can be seen, entities in GDELT are much more ac-
tive than those in ICEWS14.

4 Related Works

4.1 Temporal Knowledge Graph Completion
(TKGC)

In the literature, existing methods for TKGC
can be roughly divided into two categories: the
embedding-based method and the GNN-based
method. Embedding-based methods (Leblay and
Chekol, 2018; Dasgupta et al., 2018; Goel et al.,
2020; Lacroix et al., 2020; Messner et al., 2022)
design time-aware score functions to measure the
correctness of quadruples in TKGs. Although
embedding-based methods well capture the seman-
tic patterns in TKGs, they fail to capture the more
complex topological patterns.

Recently, with the success of graph neural net-
works (GNNs), GNN has achieved significant
progress in temporal knowledge graph completion.
TeMP (Wu et al., 2020), uses structural encoder
to obtain entity representations including multi-
hop neighbor information and relies on temporal
encoder to incorporate structural and temporal in-
formation into entity representation. T-GAP (Jung
et al., 2021) designs one temporal GNN to learn

1An entity is active at a timestep if it has at least one
neighboring entity in the same KG snapshot (Wu et al., 2020).

structural and temporal information on TKG, and
another GNN to dynamically expand and prune the
inference subgraph from the query entity eq by at-
tention flow (Xu et al., 2018b). However, existing
GNN-based methods use predefined structure and
temporal encoder, which are difficult to adapt to
various datasets.

4.2 Graph Neural Architecture Search
Neural architecture search (NAS) aims to automat-
ically find suitable neural architecture for the given
dataset, which has been demonstrated as a promis-
ing technique in many research fields such as com-
puter vision and neural language processing.

More recently, some works focus on automati-
cally designing GNNs by NAS. GraphNAS (Gao
et al., 2021), AGNN (Zhou et al., 2019) learn to
design aggregation operation. AutoGraph (Li and
King, 2020) learns to select the connections in each
intermediate layer. SNAG (Zhao et al., 2020) and
SANE (Zhao et al., 2021) search to select and fuse
the features of intermediate layers in the output
node. AutoGEL (Wang et al., 2021b) focuses on
designing intra-layer and inter-layer message pass-
ing GNN architectures automatically. However, no
work applies NAS technique to design GNN for
dynamic graphs or temporal knowledge graphs. To
the best of our knowledge, SPA is the first method
to learn data-specific GNN architectures for TKG
completion.

5 Conclusion

In this paper, we propose a novel method SPA to
automatically design data-specific architectures for
TKGC task. We define a novel and expressive
search space, in which different combinations of
operations can capture various patterns of differ-
ent TKGs. To enable efficient search on top of
the search space, we adopt a flexible and effec-
tive search algorithm, which trains a simplified
supernet in that each architecture is a single path,
thus greatly reducing the GPU memory cost. To
demonstrate the effectiveness of SPA for TKGC,
we conduct extensive experiments on three datasets.
The experimental results show that SPA can search
SOTA data-specific architectures for TKGC.

For future work, we will explore more advanced
NAS approaches to further improve the search effi-
ciency of SPA. Besides, a promising direction is to
explore how to efficiently search network architec-
tures and hyper-parameters simultaneously.

6197

Limitations

There are two limitations for SPA. (1) SPA is fo-
cused on method design rather than system design.
In the future, we will co-design the algorithm and
the system to further improve the efficiency. (2) At
present, SPA only search for data-specific architec-
tures, while hyper-parameters are also important
for TKGC. A promising direction is to explore
how to efficiently search network architectures and
hyper-parameters simultaneously.

Acknowledgements

We thank the anonymous reviewers for their valu-
able comments. This work was supported in part
by the National Key Research and Development
Project of China (No. 2020AAA0107704), the
National Natural Science Foundation of China
(Nos. U1803263, U22B2036), the National Sci-
ence Fund for Distinguished Young Scholarship
of China (No. 62025602), Fok Ying-Tong Ed-
ucation Foundationm China (No. 171105), Key
Technology Research and Development Program
of Science and Technology-Scientific and Techno-
logical Innovation Team of Shaanxi Province (No.
2020TD-013), and the XPLORER PRIZE.

Q. Yao is sponsored by CCF-Baidu Open Fund
and Tsinghua University-Foshan Institute of Ad-
vanced Manufacturing.

References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-

Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing
Systems-Volume 2, pages 2787–2795.

Dan Busbridge, Dane Sherburn, Pietro Cavallo, and
Nils Y Hammerla. 2019. Relational graph attention
networks. arXiv preprint arXiv:1904.05811.

Borui Cai, Yong Xiang, Longxiang Gao, He Zhang,
Yunfeng Li, and Jianxin Li. 2022. Temporal knowl-
edge graph completion: A survey. arXiv preprint
arXiv:2201.08236.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha Talukdar. 2018. HyTE: Hyperplane-based
temporally aware knowledge graph embedding. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2001–2011, Brussels, Belgium. Association for
Computational Linguistics.

Chao Gao, Junyou Zhu, Fan Zhang, Zhen Wang, and
Xuelong Li. 2022. A novel representation learning
for dynamic graphs based on graph convolutional
networks. IEEE Transactions on Cybernetics, pages
1–14.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and
Yue Hu. 2021. Graph neural architecture search. In
Proceedings of the Twenty-Ninth International Con-
ference on International Joint Conferences on Artifi-
cial Intelligence, pages 1403–1409.

Alberto García-Durán, Sebastijan Dumančić, and
Mathias Niepert. 2018. Learning sequence encoders
for temporal knowledge graph completion. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4816–
4821, Brussels, Belgium. Association for Computa-
tional Linguistics.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2020. Diachronic embedding
for temporal knowledge graph completion. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 3988–3995.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. 2020. Sin-
gle path one-shot neural architecture search with uni-
form sampling. In European Conference on Com-
puter Vision, pages 544–560. Springer.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren.
2019. Automated machine learning: methods, sys-
tems, challenges. Springer Nature.

Jaehun Jung, Jinhong Jung, and U Kang. 2021. Learn-
ing to walk across time for interpretable temporal
knowledge graph completion. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining, pages 786–795.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pages
4289–4300.

Timothée Lacroix, Guillaume Obozinski, and Nicolas
Usunier. 2020. Tensor decompositions for temporal
knowledge base completion. In International Con-
ference on Learning Representations.

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference
2018, pages 1771–1776.

6198

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/D18-1225
https://doi.org/10.18653/v1/D18-1225
https://doi.org/10.1109/TCYB.2022.3159661
https://doi.org/10.1109/TCYB.2022.3159661
https://doi.org/10.1109/TCYB.2022.3159661
https://doi.org/10.18653/v1/D18-1516
https://doi.org/10.18653/v1/D18-1516

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979–
2012. In ISA annual convention, volume 2, pages
1–49. Citeseer.

Guohao Li, Matthias Mueller, Guocheng Qian,
Itzel Carolina Delgadillo Perez, Abdulellah Abual-
shour, Ali Kassem Thabet, and Bernard Ghanem.
2021. Deepgcns: Making gcns go as deep as cnns.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1.

Yaoman Li and Irwin King. 2020. Autograph: Auto-
mated graph neural network. In International Con-
ference on Neural Information Processing, pages
189–201. Springer.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2019. Darts: Differentiable architecture search. In
International Conference on Learning Representa-
tions.

Franco Manessi, Alessandro Rozza, and Mario Manzo.
2020. Dynamic graph convolutional networks. Pat-
tern Recognition, 97:107000.

Johannes Messner, Ralph Abboud, and Ismail Ilkan
Ceylan. 2022. Temporal knowledge graph com-
pletion using box embeddings. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 7779–7787.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: an imperative style,
high-performance deep learning library. In Proceed-
ings of the 33rd International Conference on Neural
Information Processing Systems, pages 8026–8037.

Ali Sadeghian, Mohammadreza Armandpour, Anthony
Colas, and Daisy Zhe Wang. 2021. Chronor: Ro-
tation based temporal knowledge graph embedding.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 6471–6479.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang,
and Hao Yang. 2020. Dysat: Deep neural represen-
tation learning on dynamic graphs via self-attention
networks. In Proceedings of the 13th International
Conference on Web Search and Data Mining, pages
519–527.

Apoorv Saxena, Soumen Chakrabarti, and Partha
Talukdar. 2021. Question answering over temporal
knowledge graphs. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6663–6676, Online. Associa-
tion for Computational Linguistics.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

David So, Quoc Le, and Chen Liang. 2019. The
evolved transformer. In International Conference on
Machine Learning, pages 5877–5886. PMLR.

Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf.
2019. Learning to represent the evolution of dy-
namic graphs with recurrent models. In Companion
Proceedings of The 2019 World Wide Web Confer-
ence, page 301–307.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning, pages 2071–
2080. PMLR.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2020. Composition-based multi-
relational graph convolutional networks. In Interna-
tional Conference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. volume 30.

Huandong Wang, Qiaohong Yu, Yu Liu, Depeng Jin,
and Yong Li. 2021a. Spatio-temporal urban knowl-
edge graph enabled mobility prediction. Proceed-
ings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 5(4):1–24.

Zhen Wang, Chunyu Wang, Xianghua Li, Chao Gao,
Xuelong Li, and Junyou Zhu. 2022. Evolutionary
markov dynamics for network community detection.
IEEE Transactions on Knowledge and Data Engi-
neering, 34(3):1206–1220.

Zhili Wang, Shimin Di, and Lei Chen. 2021b. Autogel:
An automated graph neural network with explicit
link information. In Advances in Neural Informa-
tion Processing Systems, volume 34, pages 24509–
24522. Curran Associates, Inc.

Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and
William L. Hamilton. 2020. TeMP: Temporal mes-
sage passing for temporal knowledge graph comple-
tion. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5730–5746, Online. Associa-
tion for Computational Linguistics.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
2019. Snas: stochastic neural architecture search.
In International Conference on Learning Represen-
tations.

Chengjin Xu, Yung-Yu Chen, Mojtaba Nayyeri, and
Jens Lehmann. 2021. Temporal knowledge graph
completion using a linear temporal regularizer and
multivector embeddings. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2569–2578.

6199

https://doi.org/10.1109/TPAMI.2021.3074057
https://doi.org/10.18653/v1/2021.acl-long.520
https://doi.org/10.18653/v1/2021.acl-long.520
https://doi.org/10.1109/TKDE.2020.2997043
https://doi.org/10.1109/TKDE.2020.2997043
https://proceedings.neurips.cc/paper/2021/file/cd3afef9b8b89558cd56638c3631868a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/cd3afef9b8b89558cd56638c3631868a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/cd3afef9b8b89558cd56638c3631868a-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.462
https://doi.org/10.18653/v1/2020.emnlp-main.462
https://doi.org/10.18653/v1/2020.emnlp-main.462

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomo-
hiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. 2018a. Representation learning on graphs
with jumping knowledge networks. In International
Conference on Machine Learning, pages 5453–5462.
PMLR.

Xiaoran Xu, Songpeng Zu, Chengliang Gao, Yuan
Zhang, and Wei Feng. 2018b. Modeling attention
flow on graphs. arXiv preprint arXiv:1811.00497.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. 2015. Embedding entities
and relations for learning and inference in knowl-
edge bases. In Proceedings of the International Con-
ference on Learning Representations (ICLR) 2015.

Quanming Yao, Mengshuo Wang, Yuqiang Chen,
Wenyuan Dai, Yu-Feng Li, Wei-Wei Tu, Qiang Yang,
and Yang Yu. 2018. Taking human out of learning
applications: A survey on automated machine learn-
ing. arXiv preprint arXiv:1810.13306.

Hui Zhang, Quanming Yao, James T. Kwok, and Xi-
ang Bai. 2022a. Searching a high performance fea-
ture extractor for text recognition network. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, pages 1–15.

Yongqi Zhang, Quanming Yao, and James. T Kwok.
2022b. Bilinear scoring function search for knowl-
edge graph learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1.

Ziwei Zhang, Xin Wang, and Wenwu Zhu. 2021. Au-
tomated machine learning on graphs: A survey. In
Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI-21, pages
4704–4712. International Joint Conferences on Ar-
tificial Intelligence Organization. Survey Track.

Huan Zhao, Lanning Wei, and Quanming Yao. 2020.
Simplifying architecture search for graph neural net-
work. arXiv preprint arXiv:2008.11652.

Huan Zhao, Quanming Yao, and Weiwei Tu. 2021.
Search to aggregate neighborhood for graph neural
network. In 2021 IEEE 37th International Confer-
ence on Data Engineering (ICDE), pages 552–563.
IEEE.

Yuyue Zhao, Xiang Wang, Jiawei Chen, Yashen Wang,
Wei Tang, Xiangnan He, and Haiyong Xie. 2022.
Time-aware path reasoning on knowledge graph for
recommendation. ACM Transactions on Informa-
tion Systems (TOIS).

Kaixiong Zhou, Qingquan Song, Xiao Huang, and
Xia Hu. 2019. Auto-gnn: Neural architecture
search of graph neural networks. arXiv preprint
arXiv:1909.03184.

A Appendix

A.1 Loss Function
To train our TKGC model using score function, the
model parameters are learned using gradient-based
optimization in mini-batches. Specifically. for each
quadruple η = (s, r, o, t) ∈ D+, we sample a neg-
ative set of entities D−η,o = {o′|(s, r, o′, t) 6∈ D+}.
Then, we apply the cross-entropy loss function for
object queries to train the model:

Lobj = −
∑

(s,r,o,t)∈D+

exp(φ(s, r, o, t))∑
o′∈D−η,o exp(φ(s, r, o′, t))

.

(8)
Similarly, we can also obtain the loss for subject

queries Lsub. The final training loss is the sum of
losses for two types of queries: L = Lsub + Lobj.

A.2 Dataset Statistics and Characteristics
The dataset statistics are summarized in Table 5.

A.3 Implementation Details
All the experiments are implemented in Python
with the PyTorch framework (Paszke et al., 2019)
and run on a single NVIDIA RTX 3090 GPU with
24GB memory.

For Random, we use the Adam optimizer, set
learning rate is 0.001, dropout rate = 0.1, and L2
norm to 0.0005. We randomly sample 100 architec-
tures from the designed search space and train them
from scratch. After training finished, we select one
candidate with the highest validation performance.

For SPA, we set the epoch T1 for supernet train-
ing is 800 and the epoch T2 for architecture search-
ing is 1000. in each minibatch sample single path
to train supernet. After training process is finished,
we derive the candidate architecture with the high-
est validation performance from the supernet by
random search. Repeat 5 times with different seeds,
we can get 5 candidates.

Other hyperparameters settings for NAS meth-
ods during the search process are shown in Table 6.

The searched candidates are finetuned individu-
ally with the hyper-parameters shown in Table 7.
In the stage of fine-tuning, we use the ReduceL-
ROnPlateau scheduler. Each method candidates 30
hyper steps. In each hyper step, a set of hyperpa-
rameters will be sampled from Table 7 based on
Hyperopt, and then generate final performance on
the testing data.

6200

https://doi.org/10.1109/TPAMI.2022.3205748
https://doi.org/10.1109/TPAMI.2022.3205748
https://doi.org/10.1109/TPAMI.2022.3157321
https://doi.org/10.1109/TPAMI.2022.3157321

Dataset # entities # relations # time steps Ntrain Nvalid Ntest Ntotal

ICEWS14 7,128 230 365 72,826 8,941 8,963 90,730
ICEWS05-15 10,488 251 4017 386,962 46,275 46,092 479,329

GDELT 500 20 366 2,735,685 341,961 341,961 3,419,607

Table 5: Statistics of ICEWS14, ICEWS05-15 and GDELT datasets.

Dataset Batch size τ Head number of
spatial module

Head number of
temporal module

Embedding
size

Hidden
size

Gradient
clipping

ICEWS14 8 8 4 4 100 100 1

ICEWS05-15 8 8 4 4 100 100 1

GDELT 2 4 4 4 100 100 1

Table 6: Other hyperparameters setting for SPA during the search process.

Hyperparameter Value range

Head number
of spatial module

{2, 4, 8}

Head number
of temporal module

{2, 4, 8}

Weight decay [10−5, 10−3]

Table 7: Hyperparameters we used during the fine-
tuning stage.

6201

