Abstract

Non-Fungible Tokens (NFTs) are a relatively unexplored class of assets. Designing strategies to forecast NFT trends is an intricate task due to its extremely volatile nature. The market is largely driven by public sentiment and "hype", which in turn has a high correlation with conversations taking place on social media platforms like Twitter. Prior work done for modelling stock market data does not take into account the extent of impact certain highly influential tweets and their authors can have on the market. Building on these limitations and the nature of the NFT market, we propose a novel reach-aware temporal learning approach to make predictions for forecasting future trends in the NFT market. We perform experiments on a new dataset consisting of over 1.3 million tweets and 180 thousand NFT transactions spanning over 15 NFT collections curated by us. Our model (TA-NFT) outperforms other state-of-the-art methods by an average of 36%. Through extensive quantitative and ablative analysis, we demonstrate the ability of our approach as a practical method for predicting NFT trends.

1 Introduction

Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectibles, and in-game items. Public attention towards NFTs exploded in 2021 when their market experienced record sales (NonFungible, 2021), but little is known about the overall structure and evolution of its market. The NFT space is characterized by extreme growth along with highly skewed and uncertain returns that typify speculative markets (White et al., 2022). Little to no work has been done to forecast future trends in the NFT market, and unlike other, more stable assets, investing in NFTs is associated with extremely high amounts of risk (Mazur, 2021a; Nadin et al., 2021) as they are highly volatile (Kong and Lin, 2021). Additionally, social media has emerged as a space for NFT holders and creators to shape community opinion and drive public sentiment about NFT projects (van Slooten, 2022). Therefore, conventional forecasting approaches and contemporary ML models which utilize only numerical historic NFT data fail to capture sufficient information.

Behavioral finance theories (Chu et al., 2019) suggest that people are more likely to make decisions based on overconfidence bias (Slovic and Fischhoff, 1977; Gervais, 2001) and herd behavior (Bikas et al., 2013; Bikhchandani and Sharma, 2000) when faced with uncertainty. The abundance of tweets about various NFT collections help in creating "hype" around them which drives their sales, reinforcing herd behavior. Studies have shown that NFTs valued by experts are more successful (Franceschet, 2020), and that the structure of the NFT co-ownership network is highly centralized, and small-world-like (Barabasi, 2021; Barrat and Weigt, 1999).

As shown in Figure 1, the daily average price of an NFT collection, namely Bored Ape Yacht Club...
Club, reacts immediately to a highly influential individual tweeting positively about it and spikes up. However, numerous challenges arise while analyzing such texts. For instance, there are inherent dynamic timing irregularities (Sawhney et al., 2021d) when influencers or "alpha" users make such tweets and as communities react to them. Simultaneously capturing temporal granularities along with popularity information (Savaş, 2021) is crucial, as more widely the content is shared over time, the greater the user’s impact becomes (Anger and Kittl, 2011).

Therefore, to develop a robust method for predicting NFT trends, we curate a dataset (§3.1), and formulate a new time and popularity aware financial modelling approach, where the influence and reach of individual tweets is captured effectively translating its effects in their market value.

Our contributions can be summarized as:

- We curate a dataset consisting of over 1.3 million tweets and 180 thousand NFT transactions spanning over 15 NFT collections for two downstream tasks, namely daily average price prediction and price movement classification (§3).
- We plan to make this data publicly available and hope that it could further the research in this field. To the best of our knowledge, this will be the first publicly available, large scale dataset on NFTs based on social media "hype" and sentiment.
- We propose a novel tweet based reach-aware temporal attention network to predict NFT trends (§5), and analyze the impact of social media on NFT price prediction.
- Through quantitative (§6.1), ablative (§6.2) and exploratory (§6.3, §6.4) experiments, we build the case for our approach as a practical method for modelling NFT market data.

2 Related Work

Non-Fungible Tokens NFTs are digital assets with relatively recent origins (Nadini et al., 2021). NFT pricing involve more complex valuations in comparison to traditional assets such as equity (Kong and Lin, 2021), and are associated with higher returns along with high volatility (Mazur, 2021a). Existing research on NFTs focus mostly on technical aspects such as components, protocols, standards, & desired properties (Wang et al., 2021) and new blockchain-based protocols to trace physical goods (Westerkamp et al., 2018) and the implications that NFTs have on the art world (Whitaker, 2019; van Haaf ten-Schick and Whitaker, 2021). Furthermore, little to no work has been done to forecast future trends in the NFT market.

NLP in Finance Traditional financial forecasting techniques have been applied in areas such as stock markets (Ariyo et al., 2014; Rundo et al., 2019), currency exchange markets (Kamruzzaman and Sarker, 2003), and energy economics (Bento et al., 2018). Conventional financial models previously relied on numerical features (Nikou et al., 2019) and technical indicators (Shynkevich et al., 2017). These include discrete (Ariyo et al., 2014; Bollerslev, 1986), continuous (Jacquier et al., 2002; Andersen, 2007), and neural approaches (Luo et al., 2018; Kim et al., 2019). Efforts have since shifted towards utilizing textual data such as social media posts (Xu and Cohen, 2018), news reports (Li et al., 2020; Schumaker and Chen, 2009), web searches (Zhong and Raghib, 2019; Liu et al., 2012), etc. These studies confine their analyses to stock markets. Recently, Sawhney et al. (2022) explored cryptocurrency bubble prediction based on user behavior on social media. However, there is a gap in leveraging social media and NLP to analyze and forecast future trends in the NFT market.

Time-Aware Modelling Temporal data is omnipresent in several real-world applications, including healthcare (Baytas et al., 2017a), recommender systems (Rabiu et al., 2020), and finance (Selvin et al., 2017). As a result, sequential neural models such as LSTMs (Hochreiter and Schmidhuber, 1997) have gained popularity due to their ability to capture sequential context dependency (Hu et al., 2018). Time-aware modelling of time series data has shown improvements over conventional sequential neural models on various tasks such as patient subtyping (Baytas et al., 2017a), suicide ideation detection (Sawhney et al., 2020), and disease progression (Gao et al., 2020). Recently, time-aware modelling has been adapted in the realm of financial NLP, such as stock recommendation (Ying et al., 2020), price prediction (Sawhney et al., 2021a), and ranking (Sawhney et al., 2021d). However, these approaches do not take into account the engagement and popularity of social media posts. Hence, such methods do not scale to NFTs, which are more closely correlated with user sentiment and social media "hype" in comparison to traditional asset classes (Bouraga, 2021; Franceschet, 2020). With this work, we seek to explore a promising
research avenue i.e the intersection of NFTs and financial NLP, along with time and hype aware neural modelling.

3 Dataset and Tasks

3.1 Dataset

We utilise two sources, Twitter and Etherscan\(^2\) (Ethereum Blockchain access point) to collect qualitative and quantitative data respectively for 15 NFT collections. We shortlist NFT collections which are launched before January 1\(^{st}\) 2022, and appear among the top 40 collections by all-time sales volume on Opensea\(^3\), the most popular marketplace for NFTs. Using the data described below, we construct two datasets for the tasks described in the subsequent section.

3.1.1 Qualitative Data - Tweets

We collect qualitative data by extracting tweets related to shortlisted NFT collections from Twitter. We search for tweets consisting of the official Twitter handle of the collection, the Twitter handles of its creators, as well as a curated list of most frequently used hashtags and search terms related to each collection. Tweets matching any of the above search criteria are extracted. In addition to the tweet text and engagement information (number of likes, retweets, etc.), we also associate each tweet with information about the user who posted it, such as user bio, followers and friends count etc.

We have a total of 1,354,427 tweets corresponding to 15 NFT collections posted in the one-year period between January 1 2021 to January 31 2022. The median number of tweets over the collections is 65,158 with a maximum of 363,506 corresponding to the NFT collection Cool Cats NFT.

3.1.2 Quantitative Data - Transactions

We gather quantitative data for 15 NFT collections from Etherscan which is an Ethereum blockchain explorer. We filter out confirmed NFT sales and extract all relevant data for each transaction comprising of the seller and buyer address, transaction timestamp, amount and meta-data of the NFT sold/purchased.

We have a total of 188,535 transactions over the one year time span for 15 NFT collections. A detailed breakdown of the dataset is given in Appendix B.

3.2 Tasks

We aim to predict future NFT trends based on historic tweets about an NFT collection.

Daily Average Price Prediction We regress the future daily average price of an NFT collection \(n\) given as, \(\theta = \frac{\sum_{k=1}^{L} s_{kd}}{t_d}\), where \(s_{kd}\) is the transaction value of the \(k^{th}\) NFT sale on day \(d\) and \(t_d\) is the number of sales on that day. Given \(L\) historic tweets for a collection, we aim to predict the average price of the NFT collection on the next day. It is evaluated using mean squared error loss.

Price Movement Classification We formulate movement prediction as a binary classification task. For an NFT collection \(n\), label \(y_k = 1\) if \(s_k > s_{k-1}\), \(y_k = 0\) otherwise. Thus \(y_k\) refers to the price movement of the NFT collection since \(s_{k-1}\)th transaction. We evaluate the model performance on this task using macro F1 score.

4 Experimental Setup

Preprocessing Following (Nguyen et al., 2020), we use NLTK to preprocess tweets by converting mentions (@) and URLs to special tokens @USER and HTTPURL. We treat emoticons by converting them to strings using emoji Python package.

Training Setup We perform all our experiments on a Tesla T4 GPU. We use Optuna (Akiba et al., 2019) to find optimal hyperparameter values based on the validation MSE/Macro F1 scores by performing 25 search trials. We explored the lookback window length \(L \in [2, 40]\) and the hidden state dimensions \(\in [64, 768]\). We use 10%, 10% and 80% of the samples for testing, validation and training respectively for both tasks. We use learning rate \(\in [1e^{-5}, 1e^{-2}]\) and train the models using Adam as our optimizer for 2,150 seconds and 10,845 seconds for daily average price prediction and price movement classification tasks, respectively.

Evaluation Metrics We evaluate methods using Mean Squared Error (MSE) loss for daily average price prediction task and Macro F1-score (M.F1) for price movement classification task.
4.1 Baseline Models

- **Prophet** A decomposable time-series model utilising interpretable model components (Taylor and Letham, 2017)
- **ARIMA** A moving average based autoregressive model that uses past prices as input (Adediji et al., 2014).
- **MLP** A simple Multi-Layer Perceptron that uses averaged BERT embeddings of tweet sequences as input.
- **LSTM** Utilizes an LSTM (Hochreiter et al., 1997), which is capable of learning long term dependencies, to encode textual streams.
- **FastText + CNN** A CNN based architecture (Kim, 2014) with a convolution layer on top of FastText (Joulin et al., 2016) embeddings.
- **FAST** A time-aware LSTM capable of modelling temporally irregular text stream data (Sawhney et al., 2021d).

5 Methodology

5.1 Features

Text Embeddings We use Bidirectional Encoder Representations from BERTweet (Nguyen et al., 2020) to encode each preprocessed tweet p_k to features $m_k = \text{BERTweet}(p_k) \in \mathbb{R}^d$ where $d = 768$, obtained by taking the [CLS] token output from the final layer.

User Feature Vector We use the Twitter user metadata for each tweet p_k, to construct a user feature vector $u_k \in \mathbb{R}^d$ where $d = 5$, normalised column-wise. This vector contains essential information about the author of the tweet like the number of followers, whether the author is verified or not, their status count, their favourites count, and friends count. This helps the model learn not only from the contextualized BERT representations but also find potential correlations between user meta data and the tweet's influence on NFT valuation.

5.2 Model Components

In this section we present the architecture of our framework, TA-NFT: Time and Reach Aware Network for NFT Price Prediction, designed to forecast NFT prices based on social media trends by explicitly modelling the temporal irregularities and engagement of tweets.

Reach Aware Temporal Network Fine-grained timing irregularities play a crucial role in modelling online text stream data. For instance, the time interval between two tweets about an NFT collection can vary widely, from a few minutes to several days. Therefore, its influence on the value of the NFT collection may drastically vary overtime. There is a decay or increase in the influence of the tweet in relation to other tweets about the collection. Furthermore, every tweet does not have the same reach. The reach/engagement of two consecutive tweets about the same collection may vary by thousands of likes and retweets. In addition to this, the sentiment polarity between tweets may also vary drastically.

Thus, in order to capture these reach, polarity and time dependent complexities, we modify Time-aware LSTM (Baytas et al., 2017b) into reach-aware temporal network (RTN(·)). Intuitively, the greater the time elapsed between tweets, the lesser the impact, and the greater the reach, the higher the impact in the direction of sentiment polarity. Thus, for a given day and time k, RTN applies a decaying function over Δk, the elapsed time between two tweets $[p_{k-1}, p_k]$. It also applies a function over the number of likes l, retweets r and polarity s of a tweet, transforming the reach, polarity and time differences into weights:

$$C_{k-1}^s = \tanh(W^d C_{k-1} + b^d)$$
$$\hat{C}_{k-1}^s = C_{k-1}^s \ast g(\Delta k) \ast q(l, r, s)$$

(Discounted short-term memory)

$$C_{k-1}^l = C_{k-1} - C_{k-1}$$

(Long term memory)

$$\hat{C}_{k-1}^l = C_{k-1} + \hat{C}_{k-1}$$

(Adjusted previous memory)

where C_{k-1}^s is the previous cell memory, W^d, b^d are the network parameters, $q(\cdot)$ is a heuristic decaying function. Following (Baytas et al., 2017b) we set $g(\cdot)$ as,

$$g(\Delta k) = 1/\Delta k$$

and $q(\cdot)$ as,

$$q(l, r, s) = \begin{cases} s \ast (l + r) & \text{if } s \neq 0 \\ \zeta \ast (l + r) & \text{if } s = 0 \end{cases}$$

where $\zeta \approx 0$.

Using the adjusted previous memory C_{k-1}^s, we define the current hidden state and current memory states for RTN as:

$$\tilde{c}_k = \tanh(W^c h_{k-1} + U^c m_k + b^c)$$
$$C_k = i_k \ast \tilde{c}_k + f_k \ast C_{k-1}$$

(Current memory)

$$h_k = o_k \ast \tanh(C_k)$$

(Current hidden state)
Figure 2: An overview of TA-NFT - Reach Aware Temporal Network. TA-NFT feeds tweet embeddings to a reach-aware temporal network (RTN). User-features are concatenated to the output of RTN and fed to a GRU, followed by a Hawkes Attention layer. Finally, the aggregated representation is passed to an MLP for prediction.

where $W^c; U^c; b^c$ are the learnable parameters, $i_k; f_k; o_k$ are input, forget and output gates. Finally, given tweets $[p_k, \ldots p_T]$ over a lookback length L, we define the update rule of RTN as,

$$h_k = \text{RTN}(m_k, \Delta k, h_{k-1}); \quad k \in [1, T] \quad (1)$$

where, h_k represents the hidden states of RTN.

The hidden states obtained from RTN are then updated by concatenating the user feature vectors u_k to it,

$$h_k = h_k \oplus u_k \quad (2)$$

to obtain feature vectors $\in \mathbb{R}^d$ where $d=773$.

Hawkes Attention Layer Existing work show that all historical sequence features are not equally informative and have a varied influence over the predictions (Sawhney et al., 2021c). We use a temporal attention mechanism (Luong et al., 2015) to emphasize sequence features likely to have substantial influence. This mechanism learns attention weights β_k for each hidden state $h_k \in \bar{h} = [h_1, \ldots, h_T]$ as,

$$\beta_k = \text{Softmax}(h_k^T(W^a\bar{h})) \quad (3)$$

where, W denotes learnable weights.

Next, we enhance the temporal attention using the Hawkes process (Mei and Eisner, 2017) with a Hawkes attention mechanism. The Hawkes process is a temporal point process that models a sequence of arrival of features over time. Each feature item "excites" the process in the sense that the chance of a subsequent arrival is increased for some time. Studies (Zuo et al., 2020; Sawhney et al., 2021b) show that the Hawkes process can be used to model sequences from social media and discourses. The Hawkes attention mechanism learns an excitation parameter ϵ corresponding to excitation induced by tweet p_k and a decay parameter α to learn the decay rate of this induced excitement. Formally, we use a weighted average to aggregate hidden states \bar{h} via Hawkes process as,

$$u = \text{TA-NFT}(\{p_k, t_k\}_{k=1}^T) = \sum_k \frac{\beta_k q_k}{\sum_\tau \beta_\tau q_\tau} q_k \quad (4)$$

$$q_k = \beta_k * h_k + \epsilon * (\text{ReLU}(h_k)) * e^{-\alpha \Delta k} \quad (5)$$

6 Results

6.1 Performance Comparison

Table 1 shows a comparison of TA-NFT against baselines spanning commonly used approaches for asset price prediction tasks. We observe that our model outperforms most baselines by an average of 36%. ARIMA (Adebiyi et al., 2014) and Facebook Prophet (Taylor and Letham, 2017), being time-series models using only historical price
<table>
<thead>
<tr>
<th>Model</th>
<th>Price Pred. MSE</th>
<th>Mov. Pred. M.E.</th>
<th>M.F1 ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophet (Taylor and Letham, 2017)</td>
<td>0.4084</td>
<td>0.2576</td>
<td></td>
</tr>
<tr>
<td>ARIMA (Adebiyi et al., 2014)</td>
<td>0.1510</td>
<td>0.3278</td>
<td></td>
</tr>
<tr>
<td>LSTM (Hochreiter et al., 1997)</td>
<td>0.1287</td>
<td>0.3914</td>
<td></td>
</tr>
<tr>
<td>FastText + CNN (Kim, 2014)</td>
<td>0.1630</td>
<td>0.3076</td>
<td></td>
</tr>
<tr>
<td>FAST (Sawhney et al., 2021d)</td>
<td>0.1253</td>
<td>0.4032</td>
<td></td>
</tr>
<tr>
<td>TA-NFT (Ours)</td>
<td>0.0914*</td>
<td>0.4618*</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Performance comparison with baselines. * indicates improvement over SOTA is significant (p < 0.01) under Wilcoxon’s signed rank test.

data, are unable to capture sufficient information. FastText+CNN (Kim, 2014) applies Convolutional Neural Networks on text embeddings from tweets, and FAST (Sawhney et al., 2021d) is a time-aware model using both text and historical features. We postulate that our model’s superior performance over them is due to, 1) time-aware Hawkes attention mechanism, 2) incorporation of tweets’ reach, polarity and timing based irregularities, and 3) accounting for author influence on the impact of individual tweets. TA-NFT outperforms other time-aware networks due to the Hawkes attention mechanism, tweet meta data and user information which serve as proxies for the popularity of the NFT on Twitter. These observations reveal that a combination of these features contribute towards NFT valuation, and by capturing all these features, our model is practically applicable for NFT average price prediction and price movement classification.

6.2 Ablation Study

We account for the importance of various components of TA-NFT in Table 2. First, we observe that replacing the standard LSTM (Hochreiter et al., 1997) with Time-aware LSTM (Baytas et al., 2017b) leads to significant performance improvement. This validates that incorporating the time irregularities helps in modelling the NFT market. Further improvement is noted on modifying it into Reach-aware T-LSTM which accounts for the reach of individual tweets. Enriching the temporal network with Hawkes process leads to performance boosts. This is possibly due to the ability of the Hawkes attention layer to capture excitations caused by influential tweets. Finally enriching the tweet embeddings with user feature vector in combination with reach-aware temporal network and Hawkes attention layer leads to best results, indicating that capturing the author’s influence is significantly advantageous to understand the full extent of a tweet’s impact on the NFT market.

6.3 Impact of Lookback Length

We study the impact of varying the lookback length L, referring to the number of historical tweets used as input for each data point, on our model’s performance for average price prediction task. We observe that with no historical context, both models perform the worst. As we increase the lookback length L, the model performance improves up to an optimal point, indicating that the naturally decaying impact of past tweets on NFT valuation is being captured by the model. As we further increase L beyond the optimal value, we observe a gradual drop in performance. This is possibly due to the noise introduced by older tweets, which are

Table 2: Ablation study over TA-NFT (mean of 10 runs). *,† indicate improvements are significant (p < 0.01) under Wilcoxon’s signed rank test.

![Image of performance comparison](image-url)
Figure 4: Qualitative analysis of Tweets about 0N1 Force NFTs and performance of TA-NFT on price movement prediction task with temporal, reach and token level attention visualised.

<table>
<thead>
<tr>
<th>Model</th>
<th>Avg. Price Pred.</th>
<th>Movement Pred. MSE ↓</th>
<th>Movement Pred. M.F1 ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>0.1943</td>
<td>0.3414</td>
<td></td>
</tr>
<tr>
<td>T-LSTM</td>
<td>0.1781</td>
<td>0.3536</td>
<td></td>
</tr>
<tr>
<td>T-LSTM + Hawkes</td>
<td>0.1702</td>
<td>0.3819</td>
<td></td>
</tr>
<tr>
<td>TA-NFT (Ours)</td>
<td>0.1627*</td>
<td>0.4117*</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Performance comparisons in a zero shot setting. * indicates improvement over SOTA is significant ($p < 0.01$) under Wilcoxon’s signed rank test.

relatively insignificant to model the temporal state of the community around the NFT collection. The short term dependence of NFT valuation on tweets indicates the fast-moving and volatile nature of the NFT space.

6.4 Zero-shot Transfer Analysis

We compare the performance of our model in a zero-shot setting in Table 3, where we train the models on a set of collections and test them on a set of previously unseen collections. Our model outperforms other text-based and temporal models. This shows that it is able to effectively generalize better for unseen collections. Further, it indicates that NFT collections share some inherent characteristics and have overlapping latent representations that can be learnt using online text streams.

6.5 Impact of Visual Features

We perform a study to account for the impact of the contents of NFTs, i.e., images, towards its valuation. We compare the performance of our modelling approach with and without visual features in Table 4. We pretrain the Barlow Twins model (Zbontar et al., 2021) on all NFT images, minimizing the redundancy between the embeddings of two identi-
cal networks in order to produce information rich representations for the images. We take the output of the last fully connected layer of the model as the vector representation \(v_i \in \mathbb{R}^d \) where \(d = 1000 \) for each image. Further, we concatenate these visual features with text features and carry out training and evaluation as usual. We also explore different approaches to reduce/select feature dimensions, namely Principal Component Analysis and Boruta (Kursa et al., 2010). We observe that utilising visual features does not lead to any improvements, but rather degrades the model performance. This observation suggests that visual features do not provide any useful information for NFT valuation and induce noise to the data. We hypothesize that this could be possibly due to inter-collection and intra-collection content similarities spawned by the market responsiveness to the success of a collection (Nadini et al., 2021).

6.6 Qualitative Analysis

We conduct a qualitative study in an attempt to interpret the predictions of TA-NFT by taking examples of tweets about 0N1 Force NFT collection as shown in Figure 4 for two cases.

Following a series of positive tweets with significant reach, we observe an upward movement in the price of 0N1 Force NFT collection. Similarly, a downward movement appears to be caused by a series of relatively negative tweets with lower reach. This suggests NFTs follow hype-driven pricing where more wide-reaching social media traffic and positive sentiment leads to an upward trend and vice-versa. Our modelling approach (TA-NFT) is able to contextualize the impact of social media hype by accounting for the reach of individual tweets as well as the influence of its authors in addition to the timing irregularities. Thus, it is able to correctly classify the price movement in both cases as opposed to strictly time-aware modelling techniques. Unlike traditional assets like stocks and gold, the intensity and polarity of public sentiment on social media platform drives price fluctuations (Semenova and Winkler, 2021) which is in turn affected by influential individuals.

7 Conclusion

Building on the rising popularity and hype-driven dynamics of NFT markets, we curate a dataset for forecasting NFT trends through two downstream tasks consisting of daily average price prediction and price movement classification. We introduced TA-NFT, a time and reach-aware neural network for modelling temporal granularities and engagement dynamics of NFT discourse on social media. Through extensive experiments, we show that TA-NFT empirically outperforms other SOTA models by an average of 36%, and present TA-NFT as a practical modelling approach and a strong benchmark for forecasting NFT trends. We hope the proposed dataset can enable more academic progress in the field of financial NLP.

Ethical Considerations

While the predictive power of models like TA-NFT relies on data, we work within the purview of acceptable privacy practices to avoid coercion and intrusive treatment. We utilize publicly available data in a purely observational and non-intrusive manner. Although informed consent of each user was not sought as it may be deemed coercive, we follow all ethical regulations set by our data sources. Since financial markets are transparent (Bloomfield and O’Hara, 1999) and heavily regulated (Edwards, 1996), we discuss the ethical considerations and potential risks pertaining to our work.

Potential risks: Our contributions are meant as an exploratory research in the financial domain and no part of the work should be treated as financial advice. All financial investments decisions are subject to market risk (Mazur, 2021b; Antonakakis et al., 2019; Campbell, 1996) and should be made after extensive testing. Practitioners should check for various biases (demographic, modelling, randomness) before attempting to use the provided code/data/methods for real-world purposes.

Intended use of data artifacts: Our dataset will be made available to use for research purposes. The intended use of financial datasets is to enable investors to take informed financial decisions (Cooper et al., 2016), research and development to foster progress of AI methods and financial modeling for public good (Veloso et al., 2021).

We additionally follow Cooper et al. (2016) and focus on the following ethical considerations for automated trading systems:

Blocking Price Discovery Trading systems should not block price discovery, nor interfere with the ability of other market participants to add to their own information (Angel and McCabe, 2013). Examples of such scenarios include Quote Stuffing (Egginton et al., 2016) and Wash Trading (von
TA-NFT does not block price discovery in any manner.

Circumventing Price Discovery A trading system should not hide information, such as by participating in dark pools or placing hidden orders (Zhu, 2014). While we evaluate our approach only on public data, it is possible for TA-NFT, just as any other automated trading system, to be exploited to hinder market fairness (Sako et al., 2021). We follow broad ethical guidelines to design TA-NFT and encourage readers to follow both regulatory and ethical considerations pertaining to the market.

Limitations

While our dataset has been curated using data for the entire year of 2021, the NFT market is fast paced, new and ever-changing, which may lead to the need of adapting newer approaches. Apart from this, there are 1000s of NFT collections, and we conduct our analysis on only 15 of them, which might leave out a lot of independent NFT collections and related trends. We also acknowledge the presence of demographic bias in our study as the tweeted data is limited to English, and thus our approach may not directly generalize to non-English settings. Additionally, there is a vast scope for future work accounting for the influence of buyer/seller network, correlation between the NFT and Cryptocurrency market, other sources of qualitative data like news, blogs, Reddit etc. and NFT metadata attributes/value proposition.

References

Ayodele Adebiyi, Aderemi Adewumi, and Charles Ayo. 2014. *Stock price prediction using the arima model.*

Leif BG Andersen. 2007. Efficient simulation of the heston stochastic volatility model. *Available at SSRN 946405.*

Sean J Taylor and Benjamin Letham. 2017. Forecasting at scale.

A Experimental Setup

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizer</td>
<td>Adam</td>
</tr>
<tr>
<td>Learning Rate</td>
<td>2e-4</td>
</tr>
<tr>
<td>Batch Size</td>
<td>64</td>
</tr>
<tr>
<td>$\beta_1, \beta_2, \epsilon$</td>
<td>0.9, 0.999, 1e-6</td>
</tr>
<tr>
<td># Epochs</td>
<td>20</td>
</tr>
<tr>
<td>Evaluation Metric</td>
<td>MSE/Macro F1</td>
</tr>
<tr>
<td>Base Model</td>
<td>BERTweet</td>
</tr>
<tr>
<td>Classifier (over architecture)</td>
<td>Linear layer</td>
</tr>
<tr>
<td>Number of Parameters</td>
<td>4,817,035</td>
</tr>
<tr>
<td>Hardware</td>
<td>Nvidia Tesla T4</td>
</tr>
</tbody>
</table>

Table 5: Model and training setup for TA-NFT.

B Dataset Details

A detailed collection-wise breakdown of the collected data is given in Table 6. In addition to this, Table 7 gives task-wise distribution (number of data points) for the tasks defined above.

Table 6: NFT-collection wise data distribution.

<table>
<thead>
<tr>
<th>Collection</th>
<th># of NFTs</th>
<th># of tweets</th>
<th># of transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0N1 Force</td>
<td>7,777</td>
<td>11,153</td>
<td>8,473</td>
</tr>
<tr>
<td>Bored Ape Yacht Club</td>
<td>10,000</td>
<td>28,651</td>
<td>19,472</td>
</tr>
<tr>
<td>Cool Cats NFT</td>
<td>9,933</td>
<td>363,506</td>
<td>16,890</td>
</tr>
<tr>
<td>Cryptoadz by GREMLIN</td>
<td>7,025</td>
<td>134,339</td>
<td>9,408</td>
</tr>
<tr>
<td>CyberKongz</td>
<td>5,000</td>
<td>298,710</td>
<td>4,357</td>
</tr>
<tr>
<td>DeadFellaz</td>
<td>9,999</td>
<td>65,158</td>
<td>14,489</td>
</tr>
<tr>
<td>FLUF World</td>
<td>10,000</td>
<td>67,379</td>
<td>10,059</td>
</tr>
<tr>
<td>Hashmasks</td>
<td>16,370</td>
<td>92,903</td>
<td>16,642</td>
</tr>
<tr>
<td>Loot</td>
<td>7,779</td>
<td>393</td>
<td>6,642</td>
</tr>
<tr>
<td>Mutant Ape Yacht Club</td>
<td>17,961</td>
<td>5,154</td>
<td>14,819</td>
</tr>
<tr>
<td>Meebits</td>
<td>20,000</td>
<td>108,237</td>
<td>13,221</td>
</tr>
<tr>
<td>Pudgy Penguins</td>
<td>8,888</td>
<td>2,017</td>
<td>15,997</td>
</tr>
<tr>
<td>SupDucks</td>
<td>10,001</td>
<td>169,909</td>
<td>12,965</td>
</tr>
<tr>
<td>VOX Collectibles</td>
<td>8,888</td>
<td>2,190</td>
<td>11,787</td>
</tr>
<tr>
<td>World of Women</td>
<td>10,000</td>
<td>4,728</td>
<td>13,314</td>
</tr>
<tr>
<td>Total</td>
<td>159,621</td>
<td>1,354,427</td>
<td>188,535</td>
</tr>
</tbody>
</table>

Table 7: Task-wise data distribution.