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Abstract

Detecting out-of-distribution (OOD) instances
is significant for the safe deployment of NLP
models. Among recent textual OOD detection
works based on pretrained language models
(PLMs), distance-based methods have shown
superior performance. However, they esti-
mate sample distance scores in the last-layer
CLS embedding space and thus do not make
full use of linguistic information underlying in
PLMs. To address the issue, we propose to
boost OOD detection by deriving more holistic
sentence embeddings. On the basis of the ob-
servations that token averaging and layer com-
bination contribute to improving OOD detec-
tion, we propose a simple embedding approach
named Avg-Avg, which averages all token rep-
resentations from each intermediate layer as
the sentence embedding and significantly sur-
passes the state-of-the-art on a comprehensive
suite of benchmarks by a 9.33% FAR95 mar-
gin. Furthermore, our analysis demonstrates
that it indeed helps preserve general linguistic
knowledge in fine-tuned PLMs and substan-
tially benefits detecting background shifts. The
simple yet effective embedding method can
be applied to fine-tuned PLMs with negligi-
ble extra costs, providing a free gain in OOD
detection. Our code is available at https:
//github.com/lancopku/Avg-Avg.

1 Introduction

Pretrained language models have achieved remark-
able performance on various NLP tasks under the
assumption that the train and test samples are
drawn from the same distribution (Wang et al.,
2019). However, in real-life applications such as
dialogue systems and clinical text processing, it is
inevitable for models to make predictions on out-of-
distribution (OOD) samples, which may result in
fatally unreasonable predictions (Hendrycks et al.,
2020). Therefore, it is crucial for fine-tuned PLMs
to automatically detect OOD inputs.

Among recent works on textual OOD detection,
distance-based methods have received much atten-
tion due to their superior performance (Podolskiy
et al., 2021; Zhou et al., 2021). They calculate
the sample distance to the training-data distribu-
tion as the uncertainty measure for OOD detec-
tion. In these approaches, the distance scores are
usually calculated in the space of the last-layer
CLS vectors (i.e., the inputs to the classification
head) produced by fine-tuned PLMs. As known,
the CLS embedding space is optimized for the in-
distribution classification task during fine-tuning,
thus not necessarily optimal for OOD detection.

In this paper, we investigate how to derive sen-
tence embeddings suitable for OOD detection from
fine-tuned PLMs. Motivated by the token averag-
ing and layer combination techniques proposed to
enhance unsupervised sentence embeddings (Su
et al., 2021; Huang et al., 2021b), we apply them to
OOD detection and make two intriguing empirical
findings: (1) averaging all token representations
outperforms the standard practice only using the
CLS vector; (2) combining token representations
from all intermediate layers brings further improve-
ments. These observations lead to an extremely
simple yet effective pooling technique: averaging
all token representations in each intermediate layer
as the sentence embedding for OOD detection.

We name the all-layer-all-token pooling technique
Avg-Avg and demonstrate that it consistently up-
lifts the OOD detection performance of BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019)
models on a comprehensive suite of textual OOD
detection benchmarks. Further investigations into
the rationales behind the improvement show that
Avg-Avg effectively helps reserve general linguis-
tic information in the feature space and benefits
detecting background shifts. In summary, our pro-
posal serves as a plug-and-play post-processing
technique to improve the capability of fine-tuned
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PLMs to detect OOD instances and reveals that it
is a promising direction to boost textual OOD de-
tection via deriving more holistic representations.

2 Avg-Avg: Holistic Sentence Embedding
for Better OOD Detection

2.1 Preliminaries

Modern pretrained language models have been
developed based on the Transformer (Vaswani
et al., 2017) architecture. Given a sentence
S = {t1, t2, . . . , tn} as the input, an L-layer
Transformer-based PLM yields a series of hid-
den vectors H = {H0,H1, . . . ,HL}, where Hi =[h1i , h2i , . . . , hni ] (0 < i ≤ L) are the embedding
vectors for each token in S in the i-th Transformer
layer and H0 denotes the static token embeddings.

2.2 Methodology

In the pretraining-finetuning paradigm, the CLS
token is usually put at the beginning of S, and the
corresponding vector produced by the last Trans-
former layer h1L is fed into the classification head
for fine-tuning. In existing works, the CLS vec-
tor h1L is regarded as the sentence representation,
and OOD detection is conducted in the correspond-
ing embedding space (Podolskiy et al., 2021; Zhou
et al., 2021). Such a practice does not fully ex-
ploit linguistic information contained in H. Con-
sequently, we resort to two pooling strategies to
derive more holistic sentence representations:

• Intra-Layer Token Averaging: For the i-th
layer, we average hidden vectors for all to-
kens as the pooled representation Pi, i.e.,
Pi = 1

n ∑n
j=1 hji , to replace the default Pi = h1i .

• Inter-Layer Combination: For given interme-
diate pooled representations P1, P2, . . . , PL,
we perform layer combination to obtain the
final pooled sentence representation P for
OOD detection: P = 1∣M ∣ ∑i Pi, i ∈M , where
M ⊆ {1,2, . . . , L} denotes the subset of inter-
mediate layers for combination.

In our embedding approach Avg-Avg, token averag-
ing is performed for intra-layer pooling; all layers
are chosen for layer combination, in other words,
M = {1,2, . . . , L}. Table 1 shows the rational-
ity of our choice: for a RoBERTa-based model
fine-tuned on the SST-2 sentiment analysis dataset,
Avg-Avg significantly outperforms other pooling
strategies for detecting 20 Newsgroup (20NG) sam-

Intra-Layer Inter-Layer AUROC% Remark

CLS L12 90.48 Default
Avg L12 93.17 -
CLS All Layers 94.34 -
Avg L1+L12 98.65 first-last-avg
Avg All Layers 99.99 Avg-Avg (Ours)

Table 1: The performance of different pooling strategies
on the SST-2 v.s. 20NG benchmark. Mahalanobis dis-
tance (Lee et al., 2018) is the OOD detection method.
Avg denotes token average pooling and L12 denotes
the 12th layer (the last) of the RoBERTa model. These
results are exploratory and the superiority of Avg-Avg
will be further confirmed by following experiments.

ples as OOD data, including the default last-layer
CLS pooling and the first-last-avg pooling used for
unsupervised sentence embedding (Su et al., 2021).

3 Experiments

3.1 Experimental Setup
Benchmarks Following Zhou et al. (2021), we
choose four datasets corresponding to three tasks
as the in-distribution (ID) datasets: SST-2 (Socher
et al., 2013) and IMDB (Maas et al., 2011) for sen-
timent analysis, TREC-10 (Li and Roth, 2002) for
question classification, and 20 Newsgroups (Lang,
1995) for topic classification. Among the four,
any pair of datasets coming from different tasks
is regarded as an ID-OOD. Besides, we use four
additional datasets as OOD test data for each ID
dataset: WMT-16 (Bojar et al., 2016), Multi30k
(Elliott et al., 2016), RTE (Dagan et al., 2005), and
SNLI (Bowman et al., 2015). More details of these
datasets can be found in Appendix A.1.

Model Configuration We build text classifiers
by fine-tuning the RoBERTa-base model (Liu et al.,
2019) (110M parameters) in main experiments.
Our implementation is based on Hugging Face’s
Transformers library (Wolf et al., 2020). Please
refer to Appendix B for more details.

Evaluation Protocol For OOD detection perfor-
mance, we report AUROC and FAR95 following
Zhou et al. (2021). Higher AUROC and lower
FAR95 values indicate better OOD detection per-
formance (specific definitions in Appendix C).

Baselines for Comparison We reimplement a se-
ries of existing OOD detection methods for compar-
ison: MSP (Hendrycks and Gimpel, 2017), Energy
Score (Liu et al., 2020), LOF (Lin and Xu, 2019),
Mahalanobis distance (MD for short) (Lee et al.,
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AUROC↑ / FAR95↓ SST-2 IMDB TREC-10 20NG Avg.

Baselines
MSP (Hendrycks and Gimpel, 2017) 88.10 / 70.00 96.36 / 22.43 94.28 / 24.15 87.96 / 49.95 91.68 / 41.63
LOF (Lin and Xu, 2019) 78.63 / 66.29 89.36 / 54.19 96.37 / 22.11 92.56 / 36.81 89.23 / 44.85
Energy (Liu et al., 2020) 87.47 / 72.43 95.83 / 23.95 95.50 / 19.68 90.37 / 32.31 92.29 / 37.09
MD Baseline (Podolskiy et al., 2021) 91.88 / 48.82 99.19 / 2.86 99.12 / 2.25 96.75 / 15.75 96.74 / 17.42
MD + Lscl (Zhou et al., 2021) 92.16 / 49.04 98.86 / 4.08 98.59 / 4.96 95.47 / 21.56 96.27 / 19.91
MD + Lmargin (Zhou et al., 2021) 95.35 / 29.43 99.93 / 0.15 99.36 / 1.72 96.51 / 18.51 97.79 / 12.45

Ours
token=AVG, layer=L12 93.14 / 41.24 99.67 / 1.09 98.29 / 2.88 97.07 / 14.07 97.04 / 14.82
token=CLS, layer=ALL 93.93 / 34.73 99.53 / 1.35 99.33 / 1.29 96.73 / 15.67 97.38 / 13.26
token=AVG, layer=ALL (Avg-Avg) 97.75 / 10.67 99.87 / 0.21 99.66 / 0.23 99.70 / 1.35 99.25 / 3.12

Table 2: The AUROC / FAR95 results of previous OOD detection methods and ours on four benchmarks. ↑ indicates
larger is better and ↓ indicates lower is better. For each ID dataset, we report the macro average of AUROC /
FAR95 values on all corresponding OOD datasets. All values are percentages averaged over five times with different
random seeds, and the best results are highlighted in bold. Lscl and Lmargin denote the contrastive and margin-based
auxiliary targets proposed by Zhou et al. (2021), respectively.

AUROC ↑ SST-2 IMDB TREC-10 20NG Avg.

ALBERT-base 95.43 (+9.62) 99.51 (+1.10) 98.82 (+0.98) 99.55 (+7.02) 98.33 (+4.68)
DistillRoBERTa-base 97.80 (+7.17) 99.87 (+1.16) 99.17 (+0.93) 99.94 (+4.15) 99.20 (+3.36)
BERT-base-uncased 95.78 (+2.22) 99.51 (+0.45) 98.81 (-0.45) 99.79 (+1.69) 98.45 (+0.95)
RoBERTa-base 97.75 (+5.87) 99.87 (+0.68) 99.66 (+0.54) 99.70 (+2.35) 99.25 (+2.51)
RoBERTa-large 97.49 (+5.13) 99.94 (+1.24) 99.42 (+0.16) 99.97 (+2.88) 99.21 (+2.38)

Table 3: The improvements brought by Avg-Avg com-
pared to the MD baseline (Podolskiy et al., 2021) for
different PLMs. AUROC values are reported (the num-
ber in the bracket is the improvement).

2018; Podolskiy et al., 2021), and MD combined
with contrastive targets (Zhou et al., 2021). See Ap-
pendix D for the introduction and implementation
details of these baseline methods.

3.2 Overall Results

Table 2 gives main results. Except the contrastive-
based tuning method (Zhou et al., 2021), all meth-
ods use the same model vanilla fine-tuned on the
ID training set. Our methods use the Mahalanobis
distance to obtain OOD scores, following Podol-
skiy et al. (2021) (the only difference lies in the
embedding space). We find that compared to the
baseline calculating MD in the last-layer CLS em-
bedding space, both token averaging and layer com-
bination bring improvements on almost all bench-
marks. When the two techniques are combined,
namely Avg-Avg is applied, the performance contin-
ues to grow and exceeds the previous state-of-the-
art (Zhou et al., 2021) that needs extra contrastive
targets in the fine-tuning stage, by a considerable
margin of 9.33% FAR95 averaged on four bench-
marks. Further experiments on other PLM back-
bones also substantiate the enhancement brought
by our method, supported by the results in Table 3.
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Figure 1: Maximum AUROC (averaged over 6 OOD
datasets) values corresponding to sentence embeddings
from a RoBERTa model fine-tuned on SST-2 with differ-
ent numbers of combining layers. The maximum values
are results searched on the test data. Token averaging is
performed for intra-layer pooling.

3.3 Analysis

The Impact of Layer Choice To verify the ra-
tionality of choosing all intermediate layers for
inter-layer combination, we show the maximum
AUROC values corresponding to different numbers
of intermediate layers to derive sentence embed-
dings in Figure 1. As the number of layers grows,
the AUROC metric first increases and then remains
relatively stable when more than four layers are
chosen. Notably, the peak appears when 7 layers
are combined, only 0.3% higher than our Avg-Avg.
Since searching for the best combination of layers
is infeasible due to the unavailability of OOD data,
using all layers is a sensible choice.

Probing Analysis Given that intermediate lay-
ers of PLMs contain a rich hierarchy of linguistic
information (Jawahar et al., 2019), a plausible ex-
planation of the performance lift is that Avg-Avg
leads to an embedding space containing more gen-
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Intra-Layer Inter-Layer Surface Syntactic Semantic Average
SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv

CLS L12 48.63 10.84 26.20 49.31 74.92 83.99 76.68 72.77 57.77 62.17 56.33
CLS AVG 67.74 5.55 27.86 49.53 78.88 85.43 79.75 76.32 57.67 63.45 59.22
AVG L12 61.69 12.22 30.20 51.89 79.21 85.12 78.55 76.68 59.71 62.62 59.79
AVG AVG 91.31 17.42 41.24 74.38 88.42 88.46 84.54 84.54 63.77 69.14 70.32

Table 4: Probing task performance for representations corresponding to different pooling strategies. All values are
percentages averaged over five RoBERTa models fine-tuned with different random seeds.

Dominant
Shift ID OOD AUROC

Baseline Ours

Background SST-2
IMDB 69.86 97.57 (+27.70)

CR 75.46 82.26 (+6.80)

Semantic
News Top-5 News Rest 83.41 83.83 (+0.42)

CLINC CLINCOOD 97.58 97.88 (+0.30)

Table 5: Performance (AUROC) on different kinds of
distribution shifts, corresponding to the MD baseline
and our proposed Avg-Avg. All values are percentages
areraged over five different random seeds.

eral linguistic information, where ID and OOD
data are more sharply separated. To verify this, we
evaluate the sentence embeddings produced by the
RoBERTa model fine-tuned on SST-2 correspond-
ing to different pooling strategies on the probing
tasks proposed by Conneau et al. (2018) (details in
Appendix A.3). As shown in Table 4, our proposed
method consistently raises the probing accuracies
of surface, syntactic, and semantic level probing
tasks, suggesting that we obtain more holistic em-
beddings by integrating intermediate hidden states.

Detecting Different Kinds of Shifts OOD texts
can be categorized by whether they exhibit a back-
ground shift or a semantic shift (Arora et al., 2021).
In previous main experiments, ID and OOD data
come from different tasks and both kinds of shifts
exist. To explore the source of the performance
growth, we conduct ablation experiments by eval-
uating our method in settings where background
or semantic shifts dominate. For the semantic shift
setting, we use the News Category (Misra, 2018)
and CLINC (Larson et al., 2019a) datasets (ID and
OOD parts share the same background distribution,
but belong to different classes); for the background
shift setting, we regard SST-2 as ID and IMDB,
Customer Reviews (CR for short) (Hu and Liu,
2004) as OOD (they all belong to the sentiment
analysis task but differ in background features, e.g,
the length and style). Refer to Appendix A.2 for
dataset details. As shown in Table 5, our method
drastically strengthens the capability of detecting
background shifts; in contrast, it only slightly im-
proves detecting semantic shifts, which indicates

Method SST-2 IMDB TREC 20NG Avg.

SBERT 21.02 2.40 19.03 3.63 11.52
SBERTft 35.02 5.65 0.78 12.13 13.40
unsup-SimCSE 42.02 9.51 62.68 0.00 28.55
unsup-SimCSEft 44.43 2.30 2.69 19.56 17.25
sup-SimCSE 32.37 3.16 35.42 0.03 17.75
sup-SimCSEft 38.91 0.59 1.30 15.14 13.99
vanilla+last-cls 48.82 2.86 2.25 15.75 17.42

SBERTft+Avg-Avg 9.70 0.33 0.11 1.67 3.03
unsup-SimCSEft+Avg-Avg 11.36 0.42 0.40 1.13 3.33
sup-SimCSEft+Avg-Avg 7.68 0.18 0.14 0.77 2.19
vanilla+Avg-Avg 10.67 0.21 0.23 1.35 3.12

Table 6: The OOD detection performance (FAR95) of
different embedding approaches (lower FAR95 values
indicate better detection performance). The “ft” sub-
script denotes that the embedding model is fine-tuned
on the in-distribution data for classification.

that the performance gain mainly comes from the
task-agnostic general linguistic information in the
holistic embeddings obtained by our pooling tech-
nique, in line with the probing analysis.

3.4 Comparison with Universal Sentence
Embedding Approaches

Here we further show the advantage of our
method Avg-Avg over two representative universal
sentence embedding approaches, SentenceBERT
(SBERT) (Reimers and Gurevych, 2019) and Sim-
CSE (Gao et al., 2021) on OOD detection. For
SBERT, we test the model trained on NLI (natural
language inference) data (last-layer mean pooling
is adopted as recommended in the original work);
for SimCSE, we test the unsupervised model and
the supervised model trained on NLI data (last-
layer CLS pooling is adopted). The backbone
model is RoBERTa-base in all methods. We also
fine-tune the pre-trained models on the ID data and
use the default pooling ways and our Avg-Avg to
obtain embeddings from fine-tuned models for thor-
ough comparison on OOD detection. As results in
Table 6, when Avg-Avg is applied, it brings consis-
tent improvements and beats both pre-trained and
fine-tuned sentence embedding models using the
default pooling way. These results corroborate the
advantage of Avg-Avg as a specialized embedding
method for OOD detection.
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Figure 2: Visualization of the representations obtained
for positive, negative instances in SST-2 and OOD ones
(20 Newsgroups).

3.5 Embedding Visualization

To demonstrate the influence of the studied pooling
strategies on the embedding space, we fine-tune
the RoBERTa-base model on SST-2 and visual-
ize instance embeddings corresponding to different
pooling strategies from the SST-2 test set (ID) and
an OOD test set (20 Newsgroups) using t-SNE
(Van der Maaten and Hinton, 2008). As plotted in
Figure 2, in the representation space produced by
Avg-Avg (Figure 2(b)) where is almost no overlap
between ID and OOD instances, ID and OOD sam-
ples are more sharply separated than in the space
of default last-layer CLS embeddings (Figure 2(a)).
This further supports our claim that Avg-Avg is bet-
ter suited for OOD detection.

4 Related Works

4.1 Textual OOD Detection

OOD detection aims to detect abnormalities that
come from a different distribution from the train-

ing set (Hendrycks and Gimpel, 2017). Compared
with the widely studied OOD image detection prob-
lem (Liang et al., 2018; Lee et al., 2018; Liu et al.,
2020; Huang et al., 2021a; Fort et al., 2021; Yang
et al., 2021), textual OOD detection remains under-
explored. Hendrycks et al. (2020) first showed
that pretrained Transformers improved OOD de-
tection using the maximum softmax probability
(Hendrycks and Gimpel, 2017). Afterward, Podol-
skiy et al. (2021) used the Mahalanobis distance
approach (Lee et al., 2018) for PLM-based OOD
detection and achieved superior performance. Fol-
lowing this, Zhou et al. (2021) further raised the
performance by utilizing contrastive auxiliary tar-
gets in the fine-tuning stage.

4.2 Unsupervised Sentence Embedding

Unsupervised sentence embedding is a well-
established area (Kiros et al., 2015; Pagliardini
et al., 2017; Li et al., 2020; Reimers and Gurevych,
2019; Gao et al., 2021). Relevant to our work, Su
et al. (2021) and Huang et al. (2021b) proposed
to obtain better sentence embeddings via averag-
ing token representations, layer combination, and
a whitening operation. It is noteworthy that these
embedding approaches are mainly studied for sen-
tence matching and retrieval tasks. As far as we
know, we are the first to study novel embedding
ways to replace the default last-layer CLS pooling
for boosting textual OOD detection.

5 Conclusion

In this work, we focus on how to derive sentence
embeddings suitable for OOD detection from fine-
tuned PLMs. Specifically, we introduce token aver-
aging and layer combination to derive more holistic
representations and substantially improve the capa-
bility of PLMs to detect OOD inputs. Moreover,
our analysis shows that our approach helps preserve
general linguistic information and benefits detect-
ing background shifts. Overall, our work points out
a new perspective that textual OOD detection can
be enhanced by obtaining high-quality sentence
embeddings, and we hope to extend this idea to
training-time methods in future work.

Limitations

The contemporary solution Avg-Avg is primarily
motivated by empirical observations and its effec-
tiveness is confirmed by extensive experiments on
different PLMs and benchmarks. Currently, its su-
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periority lacks strict theoretical justifications and
there is still a small performance gap between our
method and the ideal upper bound as shown in
Figure 1. In future work, we plan to explore theory-
guaranteed embedding approaches to further boost
the OOD detection ability of PLMs.

Ethical Considerations

Our work presents an efficient embedding method
to enhance the OOD detection ability of NLP mod-
els. We believe that our proposal will help reduce
security risks resulting from OOD inputs to NLP
models deployed in the open-world environment.
In addition, all experiments in this work are con-
ducted on open datasets and our code is publicly
available. While we do not expect any direct nega-
tive consequences to the work, we hope to continue
exploring more efficient and robust sentence em-
bedding approaches for textual OOD detection in
future work.
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Dataset #Classes #Train #Dev #Test L

SST-2 2 6920 872 1821 19
IMDB 2 23000 2000 25000 230
TREC-10 6 4907 545 500 10
20 Newsgroups 20 10182 1132 7532 289

Table 7: Statistics of in-distribution text datasets. L
denotes the average length of samples.

Dataset #Test L

Multi30k 1014 13
WMT16 2000 22
RTE 3000 48
SNLI 2000 21

Table 8: Statistics of out-of-distribution text datasets. L
denotes the average length of samples.
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A Dataset Statistics and Introduction

A.1 Datasets Used in Main Experiments

The statistics of in-distribution (ID) and out-of-
distribution (OOD) textual datasets in main experi-
ments (Section 3.1 and 3.2), including the number
of classes, the dataset size, and the average length
of samples, are given in Table 7 and 8, respec-
tively. Here is a brief introduction to these datasets:
Multi30k (Elliott et al., 2016) and WMT16 (Bo-
jar et al., 2016) are parts of the English side data
of English-German machine translation datasets;
RTE (Dagan et al., 2005) and SNLI (Bowman et al.,
2015) are the concatenations of the precise and re-
spective hypotheses from NLI datasets.

A.2 Datasets Used In the Distribution Shift
Analysis

Arora et al. (2021) categorized the distribution
shifts in natural language data into two main types:
background shifts and semantic shifts. We fol-
low their division and study OOD detection per-
formance under the setting where either kind of
shift dominates in Section 3.3. The statistics of
extra datasets used in the distribution shift analysis
are given in Table 9. Here is a brief introduction to
these datasets.

Background Shift Setting. Background shifts re-
fer to the shift of background features (e.g., formal-
ity) that do not depend on the label. We consider
domain shifts in sentiment classification datasets.
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Dataset # Classes # Train # Dev # Test L

Customer Reviews (OOD) 2 - - 1000 20
News Top-5 (ID) 5 68859 8617 8684 30
News Rest (OOD) 36 - - 11402 29
CLINC (ID) 150 15000 3000 4500 8
CLINCOOD (OOD) - - - 1000 9

Table 9: Statistics of extra datasets introduced for the
distribution shift analysis. L denotes the average length
of each sample.

SST-2 contains short movie reviews by the audi-
ence, while IMDB contains longer and more pro-
fessional movie reviews. Customer Reviews (Hu
and Liu, 2004) contains reviews for different kinds
of commercial products on the web, representing a
domain shift from SST-2. So the IMDB and Cus-
tomer Reviews test data can be regarded as OOD
samples for the model fine-tuned on SST-2.

Semantic Shift Setting. In this setting, OOD
data are from the same task as ID data and share
similar background characteristics, but belong to
classes unseen during training. We use the News
Category (Misra, 2018) and the CLINC (Larson
et al., 2019b) datasets to create two ID/OOD pairs
under the setting. Following Arora et al. (2021),
we use the data from the five most frequent classes
of the News Category as ID (News Top-5) and the
data from the remaining 36 classes as OOD (News
Rest). In the CLINC dataset for intent classifica-
tion, there is a 150-class ID subset and an OOD test
set CLINCOOD composed of utterances belonging
to actions not supported by existing ID intents.

A.3 Probing Benchmarks

To probe the linguistic information contained in
sentence embeddings, we use the probing tasks pro-
posed by Conneau et al. (2018), which are grouped
into three categories. For surface information, we
use SentLen (sentence length) and WC (the pres-
ence of words); for syntactic information, we use
BShift (sensitivity to word order), TreeDepth (the
depth of the syntactic tree), and TopConst (the se-
quence of top-level constituents); for semantic in-
formation, we use Tense (tense), SubjNum and Ob-
jNum (the subject/direct object number in the main
clause), SOMO (the sensitivity to random replace-
ment of a noun/verb), and CoordInv (the random
swapping of coordinated clausal conjuncts). Each
probing dataset contains 100k training samples,
10k validation samples, and 10k test samples. We
use the SentEval toolkit (Conneau and Kiela, 2018)

along with the recommended hyperparameter space
to search for the best probing classifier according to
the validation accuracy and report test accuracies.

B Details of Pretrained Language Model
Fine-tuning

B.1 Vanilla Fine-tuning

We use the RoBERTa-base pretrained model (Liu
et al., 2019) as the backbone to build text classifiers
by fine-tuning it on the ID training data. We use
a batch size of 16 and fine-tune the model for 5
epochs. The model is optimized with the Adam
(Kingma and Ba, 2015) optimizer using a learn-
ing rate of 2e-5. We evaluate the model on the ID
development set after every epoch and choose the
best checkpoint as the final model. The setting is
the same for other pretrained Transformers studied
in the paper (RoBERTa-large, BERT-base-uncased,
DistilRoBERTa-base, and ALBERT-base). Distil-
RoBERTa (Sanh et al., 2019) is a light distilled
RoBERTa and ALBERT (Lan et al., 2019) is a lite
BERT with factorized embedding parameterization
and cross-layer parameter sharing.

B.2 Contrastive Auxiliary Targets

Zhou et al. (2021) introduced two alternatives of
contrastive loss to boost textual OOD detection,
i.e., the supervised contrastive loss and the margin-
based contrastive loss. For a classification task
with C classes, given a batch of training examples{xi, yi}Mi=1, where xi is the input and yi is the label,
the supervised contrastive loss term Lscl and the
final optimization target L can be formulated as:

Lscl = M∑
i=1

−1
M ∣P (i)∣ ∑p∈P (i) log

ez
⊺
i zp/τ

∑a∈A(i) ez⊺i za/τ ,
L = Lce +Lscl

(1)

where A(i) = {1, ...,M} ∖ {i} is the set of all an-
chor instances, P (i) = {p ∈ A(i) ∶ yi = yp} is
the set of anchor instances from the same class
as i, τ is a temperature hyper-parameter, z is the
L2-normalized CLS embedding before the softmax
layer, Lce is the cross entropy loss, and λ is a posi-
tive coefficient. Following Zhou et al. (2021), we
use τ = 0.3 and λ = 2.

The margin-based loss term Lmargin and the final
optimization target L can be formulated as:
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Lpos = M∑
i=1

1∣P (i)∣ ∑p∈P (i) ∥hi −hp∥2 ,
Lneg = M∑

i=1
1∣N(i)∣ ∑n∈N(i) (ξ − ∥hi −hn∥2)+ ,

Lmargin = 1

dM
(Lpos +Lneg ) ,

ξ = M
max
i=1 max

p∈P (i) ∥hi −hp∥2 ,
L = Lce + λLmargin.

(2)

Here N(i) = {n ∈ A(i) ∶ yi ≠ yn} is the set of an-
chor instances from other classes than yi,h ∈ Rd

is the unnormalized CLS embedding before the
softmax layer, ξ is the margin, d is the number of
dimensions of h, and λ is a positive coefficient. We
use λ = 2 following Zhou et al. (2021).

Except for the loss term, we use the same hyper-
parameters for these two tuning methods as vanilla
tuning. Table 10 gives test accuracies on four
ID datasets for the RoBERTa models tuned with
vanilla cross-entropy loss (Lce), supervised con-
trastive loss (Lce + Lscl), and margin-based con-
trastive loss (Lce +Lmargin), where are not signifi-
cant differences.

B.3 Hardware Requirements
All the experiments (fine-tuning and inference) in
this paper are conducted on a single NVIDIA TI-
TAN RTX GPU, except that the fine-tuning of the
RoBERTa-large model needs 4 TITAN RTX GPUs.

C Definition of Evaluation Metrics for
OOD Detection

For an input instance x, the output of an OOD de-
tector is the confidence score S(x) (a higher confi-
dence score). A higher confidence score indicates
that the detector tends to regard x as a normal ID
sample. In real applications, system users need to
choose a threshold γ and treat the OOD detection
module as a binary classifier:

G(x) = ⎧⎪⎪⎨⎪⎪⎩
in, if S(x) ≥ γ
out, if S(x) < γ (3)

Following previous works (Hendrycks and Gimpel,
2017; Zhou et al., 2021), we use the following two
threshold-free metrics for evaluation:

Loss SST-2 IMDB TREC 20NG

Lce 93.96 94.56 95.88 84.52Lce +Lscl 94.23 94.53 96.36 84.65Lce +Lmargin 93.69 94.21 95.76 84.63

Table 10: Test accuracies on four ID datasets for
RoBERTa-base models tuned with three different fine-
tuning strategies. All values are percentages averaged
over five times with different random seeds.

AUROC is short for the area under the receiver op-
erating curve. It plots the true positive rate (TPR)
against the false positive rate (FPR) and can be in-
terpreted as the probability that the model ranks a
random positive(ID) example more highly than a
random negative (OOD) example. A higher AU-
ROC indicates better OOD detection performance.

FAR95 is the probability for a negative example
(OOD) to be mistakenly classified as positive (ID)
when the TPR is 95%. A lower value indicates
better detection performance.

D OOD Detection Baselines

D.1 MSP

MSP (Hendrycks and Gimpel, 2017) is a classical
baseline using the maximum softmax probability
in the prediction outputs of the classifier as the
confidence score, i.e., S(x) =maxy∈Υ py(x).
D.2 Energy Score

Liu et al. (2020) proposed using free energy as a
scoring function for OOD detection. For a clas-
sification problem with C classes, a multi-class
classifier f(x) ∶ X → RC can be interpreted from
an energy-based perspective by viewing the logit
output fyi(x) corresponding to class yi as an en-
ergy function E(x, yi) = −fyi(x). The free en-
ergy function E(x) for an input x is E(x) =∑C

i=1 efyi(x), and S(x) = −E(x).
D.3 LOF

Lin and Xu (2019) proposed identifying unknown
user intents by feeding feature vectors to the
density-based novelty detection algorithm, local
outlier factor (LOF) (Breunig et al., 2000). We use
the last-layer CLS vectors produced by the fine-
tuned RoBERTa models as the input and train a
LOF model following the implementation details
of Lin and Xu (2019) on the ID training set and use
the local density output as S(x).
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AUROC↑ / FAR95↓ SST-2 IMDB TREC-10 20NG Avg

Maha Baseline 91.88 / 48.82 99.19 / 2.86 99.12 / 2.25 96.75 / 15.75 96.74 / 17.42
SE, token=CLS 94.68 / 26.09 99.94 / 0.05 99.75 / 0.19 99.47 / 2.62 98.45 / 7.24
SE, token=AVG 97.19 / 13.58 99.84 / 0.33 99.50 / 0.38 99.82 / 0.83 99.09 / 3.78
Avg-Avg (Ours) 97.75 / 10.67 99.87 / 0.21 99.66 / 0.23 99.70 / 1.35 99.25 / 3.12

Table 11: Comparison between score ensemble (SE) and Avg-Avg.The setting of backbone models and ID/OOD
benchmarks is the same as that in Table 2.

D.4 Mahalanobis Distance
Mahalanobis distance score (Lee et al., 2018) is a
representative distance-based OOD detection algo-
rithm, which uses the sample distance to the nearest
ID class in the embedding space as the OOD uncer-
tainty measure. For a given feature extractor ψ, the
Mahalanobis distance score is defined as: S(x) =
maxc∈Υ − (ψ(x) − µc)T Σ−1 (ψ(x) − µc), where
ψ(x) is the embedding vector of the input x, µc is
the class centroid for a class c, and Σ is the covari-
ance matrix. The estimation of µc and Σ is defined
as follows:

µc = 1

Nc
∑

x∈Dc
in

ψ(x),
Σ = 1

N
∑
c∈Υ ∑

x∈Dc
iin

(ψ(x) − µc) (ψ(x) − µc)T , (4)

where Dc
in = {x ∣ (x, y) ∈ Din, y = c} denotes the

training samples belonging to the class c, N is the
size of the training set, and Nc is the number of
training instances belonging to class c.

E Comparison with Score Ensemble

Apart from the layer combination technique stud-
ied in the paper, there is another way to utilize
intermediate representations for OOD detection:
estimating the sample distance score in the embed-
ding space of each intermediate layer and taking
their sum as the final OOD score. For the Maha-
lanobis distance score, the final ensemble score
S(x) is defined as:

Sℓ(x) =max
c∈Υ − (ψℓ(x) − µℓ

c)T Σ−1ℓ (ψℓ(x) − µℓ
c) ,

S(x) =∑
ℓ

αℓS
ℓ(x), (5)

where ψℓ(x) denotes the output features at the ℓth-
layer of neural networks, and µℓ and Σℓ are the
class mean and the covariance matrix, correspond-
ingly. The layer-wise weighting hyperparameter is

αℓ. In the original work (Lee et al., 2018), αℓ is
tuned on a small validation set containing both ID
and OOD for each OOD dataset, which is impracti-
cal in the setting of unsupervised OOD detection
followed by recent works (OOD data is not avail-
able). Following Hsu et al. (2020), we use uniform
weighting, i.e., S(x) = ∑ℓ S

ℓ(x), in the baselines
for comparison.

We compare the performance of SE (score ensem-
ble) and Avg-Avg and show the results in Table
11. We observe that SE also brings consistent im-
provements over the baseline using only last-layer
CLS vectors. Without token averaging, SE slightly
surpasses Avg-Avg on IMDB and TREC-10, but
underperforms Avg-Avg significantly on SST-2 and
20NG; when token averaging is performed, SE
only beats Avg-Avg on 20NG but underperforms on
other three benchmarks, especially remarkably on
SST-2. In view of the average performance on the
four benchmarks, we can get Avg-Avg > SE (AVG)
> SE (CLS). Considering that the class mean µℓ

and the inverse of covariance matrix Σ−1ℓ need to
be estimated and stored for each layer in SE, Avg-
Avg is also more convenient for deployment. So
compared with SE, Avg-Avg enjoys both simplicity
and advantages in performance.
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