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Abstract
Humans can seamlessly reason with circum-
stantial preconditions of commonsense knowl-
edge. We understand that a glass is used for
drinking water, unless the glass is broken or
the water is toxic. Despite state-of-the-art
(SOTA) language models’ (LMs) impressive
performance on inferring commonsense knowl-
edge, it is unclear whether they understand the
circumstantial preconditions. To address this
gap, we propose a novel challenge of reasoning
with circumstantial preconditions. We collect
a dataset, called PaCo, consisting of 12.4 thou-
sand preconditions of commonsense statements
expressed in natural language. Based on this
dataset, we create three canonical evaluation
tasks and use them to examine the capability
of existing LMs to understand situational pre-
conditions. Our results reveal a 10-30% gap
between machine and human performance on
our tasks, which shows that reasoning with pre-
conditions is an open challenge.1

1 Introduction

Improving a system’s ability to reason with com-
monsense knowledge is at the frontier of natural
language processing (NLP) research, as a critical
component in many knowledge-driven tasks such
as question answering (Wang et al., 2019; Talmor
et al., 2019), machine reading comprehension (Sak-
aguchi et al., 2020), narrative cloze (Mostafazadeh
et al., 2016), and dialogue systems (Adiwardana
et al., 2020; Young et al., 2018). Recently, dozens
of systems (Raffel et al., 2019; Khashabi et al.,
2020; Liu et al., 2019; Devlin et al., 2019) and
learning resources (Sap et al., 2019b; Mostafazadeh
et al., 2020; Rudinger et al., 2020; Bhagavatula
et al., 2020) have been proposed, focusing on var-
ious aspects of commonsense knowledge such as
naive physics and naive psychology.

In cognitive studies, the theory of affor-
dance (Gibson, 2000; Chemero, 2003) suggests

1Code and data on https://github.com/luka-group/PaCo

Figure 1: Overview of the PaCo data collection and
instances of the three tasks derived from it.

that understanding the circumstances in which an
action or statement is possible or impossible is a
key aspect of human intelligence. For example,
a glass may be used for drinking water, under an
implicit assumption that the water is at normal tem-
perature, but may not if the glass is shattered. Ac-
cordingly, we argue that for an NLP reasoner to
understand common sense, it should comprehend
the contextual preconditions associated with com-
monsense statements. Such contextual precondi-
tions can naturally be categorized into two classes:
the ones that enable the statements, and the ones
that disable them (Fikes and Nilsson, 1971; Hobbs,
2005).

Causal preconditions may be partially inferred
from text (Mostafazadeh et al., 2020; Kwon et al.,
2020), however: 1) as is the case in many other
aspects of common sense, we rarely write them ex-
plicitly in our text; 2) when mentioned in the text,
it is difficult for models to distinguish whether they
represent causation or correlation. Similar to our
work, Rudinger et al. (2020) collect the precondi-
tions by crowdsourcing. Here, the preconditions
are seen as soft assumptions, namely: weakeners
and strengtheners, which provides a model only
with the relative correlation between statements,
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and is not explicitly testing the model on the un-
derlying preconditions of the statement. Instead,
we propose to define the problem based on the
crisp conditioning of disablers and enablers, which
forces the LM to learn the decisive preconditions of
a statement and facilitates explainability based on
them. In comparison to a hard logical connection
modeled by the crisp condition, although the notion
of weakener is also helpful to the commonsense
reasoner, it raises additional questions like “by how
much?”, or “is the statement still valid?”. Whereas
in the notion of disablers, even though annotations
are more difficult to collect, it can at least take the
system one step forward by sorting out the clutter
of the irrelevant statements.

This paper presents a systematic study on the
problem of situational preconditions expressed in
natural language. As the first contribution, we
define a new problem of reasoning with enabling
and disabling preconditions associated with com-
monsense statements (Section 2). Given a state-
ment, the task is to infer the preconditions that
make the statement possible (enabling) or impossi-
ble (disabling). Understanding such preconditions
of commonsense knowledge would enable reason-
ing systems relying on a commonsense knowledge
base to decide when to use a given commonsense
statement. For example, given the statement “Glass
is used for drinking water” in ConceptNet (Speer
et al., 2017), a system should know that it is only
possible if the “water is not too hot”, and it is im-
possible when “the water is toxic”.

To foster research on preconditions of common-
sense knowledge, we develop PaCo, a rich crowd-
sourced dataset with enabling and disabling pre-
conditions of commonsense statements (Section 3),
as the second contribution of this paper. For PaCo,
we start by extracting available commonsense state-
ments. We then design and execute a crowdsourc-
ing task to gather preconditions of the statements
by asking participants: what makes the statement
possible/impossible? for each of the statements.
PaCo contains 12.4K labeled preconditions (6.6K
enabling, 5.8K disabling), corresponding to 3 ∗ 1K
edges from three representative relations in Con-
ceptNet (Speer et al., 2017), covering knowledge
on utility, causality, and motivation. Example pre-
conditions are illustrated in Fig. 1. These tasks for
the first time allow analysis beyond what is done in
prior work that cover enabling preconditions only.
Particularly, they realize a head-to-head compari-

son of enabling and disabling statements which was
not possible before. Besides, they allow analysis
of the impact of the knowledge types (e.g., utility)
on the task difficulty for both humans and neural
language models.

Our third contribution is an extensive NLP
benchmarking based on PaCo. To this end, we
transform PaCo into three tasks on Preconditions:
Natural Language Inference (P-NLI), Multiple-
Choice Question Answering (P-MCQA), and
Generation (P-G). The three canonical tasks seek to
provide a comprehensive evaluation of the ability
of natural language reasoners to understand cir-
cumstantial preconditions (Section 4). These three
tasks examine the understanding of preconditions
of a number of SOTA language models and rea-
soners, such as DeBERTa (He et al., 2020), and
UnifiedQA (Khashabi et al., 2020). Results show
that SOTA methods largely fall behind human per-
formance, therefore indicating the need for further
research in order to improve the comprehension of
contextual preconditions by commonsense reason-
ers (Section 5).

2 Preconditions in Commonsense
Reasoning

Problem Definition. Commonsense statements
describe well-known information about concepts,
and, as such, they are acceptable by people without
need for debate (Sap et al., 2019a; Ilievski et al.,
2020b). A commonsense statement can be formal-
ized as s = (h, r, t), where h and t are head and
tail concepts, and r is the relation type.

Following the notion of “causal complex”
(Hobbs, 2005), we define the precondition Pf as
a collection of eventualities (events or states) that
results in s to happen. Such preconditions contain
eventualities that either allow (p+f ∈ Pf ) or pre-
vent (p−f ∈ Pf ) the statement to happen. Here, to
prevent means to allow the negation of the state-
ment (Fikes and Nilsson, 1971). While enumerat-
ing a priori all such causal eventualities is impossi-
ble, people are still able to reason about them in a
given situation (Hobbs, 2005). Notably, precondi-
tions are implicit, i.e., we usually omit them from
conversation as they are considered obvious (Grice,
1975). Shoham (1990) and Hobbs (2005) distin-
guish between two type of preconditions, based on
causal connections (hard), or material implication
(tends to cause; soft). Here we focus on the more re-
strictive, hard preconditions; for soft preconditions,
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see (Rudinger et al., 2020).
In this work, the problem of reasoning with pre-

conditions is attempted in two ways: discriminative
and generative (cf. Table 1). In the discrimina-
tive setting, given a statement f and a precondi-
tion (p), a model is expected to infer if the fact is
still valid (p ∈ P+

f ) or not (p ∈ P−
f ). In the genera-

tive setting, given only the statement (f ), a model is
requested to compose a reasonable disabling (p−f )
or enabling (p+f ) precondition.

Motivating Examples. In a preliminary inves-
tigation, we assess the ability of SOTA language
models: GPT2 (Radford et al., 2019), and Uni-
fiedQA (Khashabi et al., 2020), to reason with
preconditions. As shown in Table 1, both mod-
els appear to fall short of reasoning with enabling
and disabling factors of commonsense statements,
regardless of whether the prompt task form is pre-
sented as multiple-choice question answering (row
1), or as text completion (rows 2-4). This observa-
tion is not surprising, considering that reasoning
with preconditions is an under-addressed research
challenge. Yet, it motivates the urgency for this
problem to be studied in depth, which is the goal
of this paper.

3 PaCo

This section introduces the procedure of develop-
ing the PaCo dataset. We start by selecting relevant
commonsense facts (Section 3.1), and crowdsourc-
ing preconditions for each statement (Section 3.2).
Finally, we present the PaCo data statistics (Sec-
tion 3.3).

3.1 Edge Selection
We extracted relevant commonsense facts from
ConceptNet (Speer et al., 2017). We chose Con-
ceptNet due to its breadth of knowledge and popu-
larity in prior research (Feng et al., 2020; Lin et al.,
2019; Ma et al., 2019). ConceptNet is a publicly
available common sense knowledge resource. It
contains 3.4 million English assertions between
concepts (e.g., “Glass”, “Drinking_water”, “Per-
son”), and covers a wide range of knowledge types,
including spatial, physical, and temporal knowl-
edge, as well as social and cognitive knowledge
about everyday situations.

We performed a pilot analysis of different knowl-
edge types in ConceptNet to help us decide which
of them were suitable to be annotated with precon-
ditions. Namely, we sampled 20 random edges

for each relation and checked how well one could
annotate them with preconditions. Our analysis
revealed that not all relations lent themselves natu-
rally for annotation with enabling or disabling pre-
conditions. Specifically, we observed that some re-
lations (e.g., Related To) are underspecified in their
meanings, and others, like IsA, are often truisms.
Our investigation has revealed that it is difficult
to come up with preconditions for these relations.
Furthermore, we observed that some relations, like
CreatedBy, could be easily annotated with enabling
conditions, but not with disabling ones. The oppo-
site was observed for PartOf.

We opted for the relations UsedFor, Causes, and
Desires, because of their suitability for annotation
of preconditions, their relatively high number of
statements, and their representativeness of three
different dimensions of knowledge: utility, tem-
poral, and motivational knowledge (Ilievski et al.,
2021). Following the intuition that not all state-
ments can be annotated with preconditions, e.g.,
(Looking through telescope, Usedfor, viewing heav-
ens), we computed the correlation between a hand-
annotated suitability judgment for the precondi-
tion statements, and the several quantitative scores:
DICE metrics (Chalier et al. 2020; e.g., salience),
LM perplexity, and edge weights in ConceptNet.
However, none of these scores had a strong corre-
lation with the suitability for annotating precondi-
tions (Appendix B.1 contains the calculated corre-
lations for UsedFor). Therefore, we opted for the
relations UsedFor, Causes, and Desires, because
of their suitability for annotation of preconditions,
high number. Also they are representative of three
different dimensions of knowledge: utility, tem-
poral, and motivational knowledge (Ilievski et al.,
2021). We sampled 1K edges from each and lexi-
calized them into human readable sentences using
relation-specific templates (see Appendix A.4).

3.2 Data Collection

Mechanical Turk We used Amazon Mechanical
Turk (Crowston, 2012) to collect data on precondi-
tions for the lexicalized statements as part of Institu-
tional Review Boards (IRB) approved (as exempt)
study. For this, we asked the participants to provide
short responses to the question: “What makes the
statement possible/impossible?” for each of the
lexicalized statements from ConceptNet. Due to fi-
nancial limitations, we restricted our annotations to
3 enabling and 3 disabling judgments for each state-
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Model Input Output
UnifiedQA A net is used for catching fish. What makes this impossible? (A)

You are in water (B) You are in downtown LA
You are in water

UnifiedQA A net is used for catching fish. What makes this impossible? A net is used for catching fish.
GPT2 A glass is used for drinking water only if, the glass is covered in a protective coat or can

be removed with cold water.
GPT2 A glass is used for drinking water only if, the water is acidic, not fresh.

Table 1: Test of language model’s understanding of preconditions

ment. While the goal of PaCo is not to exhaust all
possible preconditions associated with each state-
ment, for some statements we observed duplicate
answers, signaling a near-saturation point.

Further details on the data collection design, in-
cluding annotator qualification, and survey design
details are given in Appendix A. With this pro-
cedure, we collected a total of 18K enabling and
disabling preconditions.

Quality Control We use a mixture of automated
and expert annotations for quality control. The
automated quality control consisted of three rules
that we can programmatically check: 1) not us-
ing negative words like “not”, 2) not using pro-
nouns, and 3) proper sentence lengths. In order to
measure the informativeness and relevance of the
remaining annotations, we use expert annotation.
Specifically, for a subset of the recorded responses
we asked the annotator to classify the response
into three categories, each representing a specific
level of informativeness in the response: 1) Tru-
ism: the response is correct, but it is not specific
to the situation (e.g., being broken/functional or
being available/unavailable); 2) Informative: the
response is correct and is adding information that
is not mentioned in the prompt, while not being
a truism (i.e., is specific); 3) Irrelevant: any re-
sponse that is not placed into the previous two cate-
gories. For PaCo, we remove the answers from the
Irrelevant category, while truism answers could be
removed subsequently if so desired.

3.3 Dataset Statistics
This data collection procedure resulted in a total of
9k enabling and 9k disabling preconditions for each
of the 1k ConceptNet edges selected for UsedFor,
Causes, and Desires relations respectively. After
filtering out responses in low quality and those
marked as Invalid by crowd annotators, PaCo con-
tains 12.4K annotations (6.6K enabling, 5.8K dis-
abling). Our expert annotation on 10% of the 6K
annotations with UsedFor relation showed that in
93% of the crowdsourced responses are informa-
tive, whereas only 5% of the responses are irrele-

ID Instance
P-NLI Hypothesis: A net is used for catching fish

Premise: We are in a desert
Label: Contradiction

P-MCQA Question: A net is used for catching fish. When
is this impossible?
Choices: (A) You are in sea, (B) The boat is
moving, (C) Net has a large hole in it.

P-G Question: A net is used for catching fish. When
is this impossible?
References: (-) Net has a large hole in it, (-)
You are in downtown LA, (-) There are no fish
in the water

Table 2: Example of the three tasks in PaCo.

vant. The quality of the responses is lower for the
two other relations: 70% informative responses for
Causes and 61% for Desires. This shows that the
two relations are semantically more challenging
to human annotators compared to a utility relation
like UsedFor. We also observed that on average it
took the annotators 3.5 times longer to submit a re-
sponses for these two relations, which confirms that
UsedFor is the most suitable of the three relations
for associating preconditions.

4 Tasks

Given the data collected in Section 3, we de-
vise three complementary tasks to showcase the
possible ways one could use the PaCo data to
evaluate the current SOTA models’ understand-
ing of circumstantial preconditions. We select
Preconditions Natural Language Inference (P-
NLI) and Preconditions Multiple-Choice Question
Answering (P-MCQA) as representative discrimi-
native tasks, and Preconditions Generation (P-G)
task as a generative task. Table 2 summarizes the
tasks and provides an example for each of them.
In the rest of this section, we describe each task
in detail and discuss the steps to prepare it from
the raw precondition data. This preparation is fully
automatic, and no human annotation or supervision
signals have been used.

P-NLI Task Natural Language Inference (NLI)
refers to tasks where given a sentence pair com-
posed of a hypothesis and a premise, the system
has to decide whether the hypothesis is true (en-
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tailment), false (contradiction), or undetermined
(neutral) given the premise (Williams et al., 2018).
Each of the preconditions (e.g., “water is clean” or
“water is polluted”) of a statement can directly serve
as a premise in the sense of NLI. Enabling precon-
ditions correspond to entailment cases (e.g., “wa-
ter is clean” entails “water is used for drinking”),
whereas disabling preconditions can be annotated
as contradictions (e.g. “water is polluted” contra-
dicts “water is used for drinking”). The P-NLI task
consists of 12.4K entries, with 6.6K entailment and
5.8K contradiction cases.

P-MCQA Task PaCo can also be directly con-
verted to a multiple-choice question answering
(MCQA) task in three steps. First, for each state-
ment, each enabling (disabling) response is paired
with three disabling (enabling) responses from the
same statement. These three responses naturally
act as negative samples (distractors), allowing us to
have high-quality and fair questions. The question
of the MCQA instance is then formed by append-
ing “What makes this possible?” or “... impossi-
ble?” to the lexicalized statement. Second, in order
to have more distractors and increase the number
of multiple-choice instances we applied the two
negative sampling methods used by Zhang et al.
(2020b): Cosine Similarity Filtering, and Ques-
tion/Answer Shuffling. Finally, in order to remove
the annotation artifacts from the data, hence trivial
instances, and prevent the models to exploit these
artifacts instead of answering the questions, we
used the Lite variation of the Adversarial Filtering
method, which has been introduced in Sakaguchi
et al. (2020) and formalized in Bras et al. (2020).
This resulted in a P-MCQA task with 47K multiple
choice questions, each with 4 choices.

P-G Task Despite our adversarial strategies, it
remains possible that reasoning systems may iden-
tify annotation artifacts (Gururangan et al., 2018)
in the data and solve the discriminative tasks with-
out correctly performing the logical inference, as a
result of those artifacts (Bras et al., 2020). Hence,
we provide a third formulation as a generative com-
monsense reasoning task. In this task, we present
the system with the exact question that has been
presented to the human annotators, thereby mim-
icking the human annotation task of writing down
the precondition as a natural language sentence.
We then evaluate the model’s response using the
human responses as references. After removing

the low-quality and Invalid responses from PaCo,
the P-G task consists of 5.2K instances, with an
average of 2.4 reference sentences per instance.

5 Experiments

This section pitches SOTA language models against
the three tasks derived from PaCo (Section 5.1),
dives deep into the tuning process to pinpoint time
of comprehension (Section 5.2), investigates how
LMs react to different relation types (Section 5.3),
and finally revisits the distinction between soft and
hard preconditions (Section 5.4).

5.1 Evaluating SOTA on PaCo Tasks
We assess our benchmark through evaluating rep-
resentative NLP systems on the three tasks. This
part starts with details about experimental setups
(Section 5.1.1), followed by result analysis for the
three tasks (Sections 5.1.3).

5.1.1 Experimental Setup
For each task, we start from available pretrained
models and evaluate their performance on the test
set in zero-shot and fine-tuned setups. To cre-
ate the test set, we use a uniform random split of
the statements that each task’s instance is stemed
from. For the split we use the [0.45, 0.15, 0.40]
ratio of the data for train/dev/test. The rationale
for splitting based on the statements instead of the
task instances is to prevent data leakage into the
test sets through shared edges. The experiments
are conducted on a commodity workstation with
an Intel Xeon Gold 5217 CPU and an NVIDIA
RTX 8000 GPU . For all the tasks, we use al-
lennlp (Gardner et al., 2018) library for the Textual
Entailment (TE) model (Parikh et al., 2016) and
use huggingface (Wolf et al., 2020) for the rest of
them.

For the human evaluations of P-NLI and P-
MCQA, we used a small (100) sample from test
subset of each task and asked a CS graduate stu-
dent to answer them. We then report the respective
evaluation metric based on the task, as detailed
below.

5.1.2 Evaluation Protocols
For P-NLI, we use F1-Macro score on the ground-
truth labels and report the results on the unseen test
split of the data.

For P-MCQA, we evaluate the systems’ perfor-
mance based on their default evaluation protocols
as discussed below. For RoBERTa (Liu et al.,

6814



Model 0-Shot Tuned
AllenNLP TE 0.34 0.85
RoBERTa-large-MNLI 0.47 0.90
BART-large-MNLI 0.48 0.90
DeBERTa-base-MNLI 0.37 0.91
DeBERTa-large-MNLI 0.36 0.94
DeBERTa-xl-MNLI 0.37 0.91
Expert Human 0.99 -
Random Baseline 0.5 -

Table 3: F1-Macro results of SOTA systems on P-NLI
task based on PaCo. Best values are highlighted .

2019), we use the LM coupled with a linear regres-
sion layer as classification head. In this method, the
LM is tasked with embedding each question/answer
pair, and the classification head assigns a score to
the pair. Later for each MC instance, the ques-
tion/answer pair with the highest score is selected
as the output choice. We report the accuracy score
(code from (Pedregosa et al., 2011)) based on the
output choices from the model. For UnifiedQA, we
follow the original setting by Khashabi et al. (2020)
to let the model conduct sequence-to-sequence gen-
eration based on the question. Here, the question
and all choices are feed to the model, and it is ex-
pected to generate the correct choice’s text. We
then report the f1 score by selecting the one that is
closest to the generated answer from the candidate
choices.

For P-G, to automatically evaluate the machine-
generated answers of the models, we use Bleu-
2 (Papineni et al., 2002) (code from (Bird
et al., 2009)) and ROUGE-2 (Lin, 2004) (code
from (Wolf et al., 2020)) metrics. We do not use
methods with large n-gram match (e.g., Bleu-4) for
two reasons. First, the small number of reference
sentences (at most 3) made most of model’s output
not matching any reference sentence. Second, rela-
tively short reference sentences leads to no 4-gram
match and mostly zero Bleu-4 scores.

For the human evaluation score of the machine
generated responses, we sample 100 responses and
use a method similar to quality control method in
Section 3.2 (here we consider the Truism responses
as Informative), and report the percentage of infor-
mative responses from tuned models.

5.1.3 Results and Discussions
We hereby separately discuss the performance of
SOTA models on the three tasks in details.

(1) P-NLI Results As shown in Table 3, all sys-
tems tend to get near-random results in the zero-
shot setup. In case of the BART-large-MNLI model,
although the zero-shot F1-Macro score is higher,

Model 0-Shot Tuned
RoBERTa-base 0.24 0.42
RoBERTa-large 0.22 0.22
UnifiedQA-small 0.32 0.50
UnifiedQA-base 0.23 0.59
UnifiedQA-large 0.28 0.68
Expert Human 0.92 -
Random Baseline 0.25 -

Table 4: Accuracy results of SOTA systems on P-MCQA
task based on PaCo. Best values are highlighted .

it is far from human-level score (1.00). We ob-
serve that even models that are trained on large and
diverse learning resources (e.g. MNLI (Williams
et al., 2018)) are not able to perform well on the
P-NLI in a zero-shot fashion.

This high scores after fine-tuning can be at-
tributed to systems’ exploiting the annotation ar-
tifacts of data instead of learning to reason with
preconditions. This claim will be further supported
by the P-MCQA results.

(2) P-MCQA Results The P-MCQA has all the
intricacies of the original precondition data absent
from the simple annotation artifacts that make it
a better alternative to evaluate systems. As pre-
sented in Table 4, there is a significant gap be-
tween the ideal and machine performance in the
P-MCQA benchmark that further supports the nov-
elty of PaCo and tasks stemming from it.

After investigating the answers, we observe that
even the promising large models tend to confuse
the enabling v.s. disabling cases. For example the
UnifiedQA-Large model, mistakenly chooses a dis-
abling response “Your car is out of fuel” for the en-
abling question “Gas are typically used for provid-
ing energy. What makes this possible?”. This might
be explained by the statement that LMs tend to fo-
cus more on correlation of lexical occurrences and
statistical patterns (e.g., gas and car/fuel), rather
than the actual question. In addition, similar to
Zhou et al. (2020), we observe that LMs lack under-
standing of linguistic permutations like negations,
and lean toward positive words.

(3) P-G Results As summarized in Table 5, the
automatic evaluation results, BLEU and ROUGE,
are close to zero for all models. This shows that the
models fall short in generating similar to reference
precondition even after fine-tuning. On the other
hand, the human annotation sheds more light on
the results and show the relative comparison of the
models.

Here the automatic evaluation methods do not
sufficiently distinguish between the models as the
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Model BLEU ROUGE HUM
0-Shot Tuned Tuned Info.

UnifiedQA-small 0.007 0.157 0.064 0.12
UnifiedQA-base 0.006 0.303 0.115 0.28
UnifiedQA-large 0.029 0.330 0.128 0.48
BART-base 0.046 0.091 0.140 0.19
BART-large 0.041 0.058 0.117 0.11
GPT2 0.097 0.133 0.067 0.36
Expert Human - - - 1.0

Table 5: BLEU-2, ROUGE-2, and human evaluation
Information score for results of SOTA systems on the
P-G task. Zero-shot ROUGE scores are omitted to save
space as they are negligible and do not add additional
insight beyond the zero-shot BLEU-2. Best values are
highlighted .

difference among them are negligible. Hence,
the comparison rather provides complementary
insights to the two discriminative tasks. This is
consistent with similar generation tasks (Rudinger
et al., 2020), due to the small number of reference
responses and relatively large space of correct re-
sponses that makes automatic evaluation of such
machine responses an unresolved problem (Chen
et al., 2020).

Upon analyzing the results we noticed several
patterns in the generated responses. First, models
tend to generate simple answers mostly discussing
the existence or availability of the subject. For ex-
ample, BART-base frequently generated patterns
such as “ <head> is closed” or “You have <head>”
some of which were informative. Second, similar
to the P-MCQA task, the models tend to confuse
enabling and disabling preconditions. For example,
BART-large generated the enabling precondition
“The clothes are dirty” instead of disabling precon-
dition for the statement “Washing clothes are used
for making fresh again”.

5.2 Diving in the Tuning Process

In the above evaluation on P-NLI, we observe that
all models get higher scores after fine-tuning. Here,
we investigate the fine-tuning process to find at
what point the model understands the requirements
of the task.

Experimental Setup We focus on the RoBERTa-
large-MNLI (Liu et al., 2019) model in the P-NLI
task. The experimental setup is similar to sec-
tion 5.1.1. We evaluate the model’s performance
on the test split of P-NLI in checkpoints during
the tuning process instead of just at the end of it.
Checkpoints are based on the amount of tuning data
the model has observed (10%, 20%, · · · , 100%).

Figure 2: F1-Score of fine-tuning RoBERTa-large-
MNLI with increasing amounts of training (tuning) data
from P-NLI.

Results Figure 2 plots the changes of score of
the model as it gets more tuning data. The slow
saturation of the F1 score here suggests that the
instances in P-NLI are not trivial for the model and
it actually has to see a lot of instances to be able to
perform the task. Considering that the RoBERTa-
large-MNLI has been pre-trained on a vast corpus,
our result shows the novelty and uniqueness of the
PaCo data.

5.3 Discussion on Different Relation Types

Given that PaCo consists of three relations types,
we next pose the question of how well the LMs can
handle each relation type. Here, we break down the
results presented in Section 5.1 per relation type
and discuss the model performance on each type.

Experimental Setup Due to simplicity of auto-
matic evaluation, we on focus on the two discrimi-
native tasks, P-NLI and P-MCQA. The experimen-
tal setup here is similar to section 5.1.1, except that
for both zero-shot and fine-tuned settings where we
measure the dissected results based on the relation
types as well as their aggregation.

Results On the P-NLI task, similar to the chal-
lenges for human annotators (Section 3.2), all NLI
models tend to get lower accuracy on instances
derived from Causes and Desires relations, com-
pared to Usedfor. For instance, the DeBERTa-large-
MNLI, has a 6% gap between the performance on
UsedFor and Causes instances. In the P-MCQA
task, we observe a similar pattern between Causes
and Desires relations on one hand, and Usedfor on
the other hand. For instance, the UnifiedQA-large
mode shows a 13% gap between instances with
Usedfor and Desires relations. The detailed P-NLI
and P-MCQA performance results dissected based
on relation types are provided in Tables 9 and 10
in the Appendix section.
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5.4 Hard and Soft Preconditions

In this work, we argued for the use of hard pre-
conditions as opposed to soft preconditions used in
previous works. Although semantically different,
one may argue that using soft preconditions may
help the models learn the task of reasoning with
preconditions with already existing data. In this
section we test this hypothesis.

Experimental Setup Using the approach pre-
sented in Section 4, we created an NLI re-
source from two available resources with soft
preconditions: Rudinger et al. (2020) and
ATOMIC2020 (Hwang et al., 2020) (Details in Ap-
pendix B.3). We focused on the RoBERTa-large-
MNLI (Liu et al., 2019) model, fine-tuned in on
the two resources, and evaluate on the test set of
P-NLI. The experimental setup here is similar to
Section 5.1.1.

Results Although these resources have an or-
der of magnitude more data (88K instances in
ATOMIC2020 (Hwang et al., 2020) and 236K in-
stances in Rudinger et al. (2020)), there is more
than 10% gap between the performance of the
model tuned on them in the P-NLI task compared to
a model exposed to PaCo data. Table 11, presents
the detailed results of tuning RoBERTa-large-MNLI
model on each of the NLI-style datasets, while be-
ing evaluated on P-NLI’s test subset.

6 Related Work

Resources of Preconditions. A few resources
have provided representations for preconditions
of statements. ConceptNet (Speer et al., 2017)’s
HasPrerequisite relation, ATOMIC (Sap et al.,
2019a)’s xNeed relation, and CauseNet (Heindorf
et al., 2020) data can express concept dependencies,
such as, e.g., before one bakes bread, they need to
buy ingredients and go to a store. Instead of adding
new edges, our work annotates existing edges with
contextual preconditions, which helps reasoners
understand when to use an edge and when not to.
ASER (Zhang et al., 2020a) and ASCENT (Nguyen
et al., 2021) extract edges from unstructured text
together with their associated context. As such,
their knowledge is restricted by information avail-
able in text, and they do not express disabling
preconditions. It is also unclear to which extent
their contextual edges express enabling precondi-
tions, rather than coincidental information. GLU-
COSE (Mostafazadeh et al., 2020) comes closer

to our work, as they also extract enabling pre-
conditions (e.g., Possession state that enables X)
via crowdsourcing. Similarly, PeKo (Kwon et al.,
2020) extract enabling preconditions between event
pairs from available text and use it to propose pre-
condition identification and generation tasks be-
tween pair of sentences. However focusing only on
causal relations in available text hinders the extent
of their tasks. Both GLUCOSE and PeKo do not
explore disabling preconditions.

Reasoning with Preconditions. Few efforts have
been made on evaluating commonsense reasoning
with preconditions. Rudinger et al. (2020) focus
on modeling weakeners and strengtheners of com-
monsense statements. Their work adds a utility sen-
tence to the hypothesis-premise pair in NLI-style
tasks and ask whether it weakens or strengthens
the relationship of the pair. Similarly, Hwang et al.
(2020)’s Hindered by and Causes also focuses on
similar relationship for events with focus on pre-
senting a knowledge resource.

Our work differs as we focus on a crisp condition
of enabling/disabling that can be particularly useful
in logic-like reasoning tasks (as opposed to proba-
bilistic inference). In addition, our task allows the
reasoning to be processed as canonical NLI and
can benefit from existing NLI architectures instead
of modifying them.

7 Conclusions and Future Work

We presented, PaCo, a dataset of 12.4K collected
enabling and disabling preconditions of everyday
commonsense statements from ConceptNet. We
utilize this resource to create three tasks for evaluat-
ing the ability of systems to reason over circumstan-
tial preconditions, namely: P-NLI, P-MCQA, and
P-G. Our evaluation shows that SOTA reasoners
largely fall behind human performance, indicat-
ing the need for further investigation to develop
precondition-aware systems.

Future work should cover the inclusion of
preconditions in logical reasoning of the neuro-
symbolic reasoners. It should also expand to multi-
modal setup or investigate using weak-supervision
to gather preconditions. Alternatively, we can lever-
age the contributed resource to develop generative
models for automated context-aware knowledge
base construction (Sorokin and Gurevych, 2017).
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Ethical Statement

Though we may present this as we started from
openly available data that is both crowdsource-
contributed and neutralized, however it still may
reflect human biases (Mehrabi et al., 2021).

During our data collection we did not collect
any sensitive information, such as demographic
or identity characteristics. We only limited the
annotators to English-speaking users from mainly
English-speaking countries such as US, which may
add cultural bias to the data. However, neither our
crowd annotators or the expert annotators noticed
any offensive language in the questions or the re-
sponses.

Given the urgency of addressing climate change
we have reported the detailed model sizes and run-
time associated with all the experiments in Ap-
pendix C.

Limitations

The current PaCo still has limitations in the breadth
and diversity of preconditions associated with com-
monsense knowledge. However, with more re-
sources we would easily extend the benchmark
in both directions to have PaCo v2.0. From the
breadth perspective, PaCo utilizes ConceptNet as
source of common sense statements which has a
bounded scope of coverage on commonsense sce-
narios, even though, to the best of our knowledge,
ConceptNet is so far the largest crowd-verified re-
source on common sense knowledge. From the
diversity perspective, PaCo currently provides 6
preconditions per statements. This also limits the
comprehensiveness of automatic evaluation for the
P-G task, similar to Rudinger et al. (2020), in which
a correct answer by the test models may not be in
the reference set for it to receive high score. This
open problem is addressed specifically in some
works, e.g. Chen et al. (2020).
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Figure 3: Data-collection and processing in a nutshell

Figure 4: A sample question-unit used in main survey
on the AMT

A Data Collection Details

We used Amazon Mechanical Turk (AMT) (Crow-
ston, 2012) to collect the PaCo. This enabled us
to coordinate the study and access a large pool of
English-speaking participants as our study popula-
tion. The AMT is especially suitable for this study
as it can facilitate accessing a diverse population
of participants which is necessary for any notion
of commonsense. Our study on AMT consists of
two parts: a tutorial that also serves as a qualifi-
cation test and the main survey. In addition, we
implemented two levels of quality control: in the
first one we use a response checker code and in
the second we use human annotators to ensure only
high-quality responses wind up into the final data.

A.1 Main AMT Survey
In the main survey, the participants are given a set
of question-units (sample in Fig. 4) each consists
of a factual sentence (discussed in Section A.2)
followed by a prompt question, then we ask par-
ticipants to write their responses for each prompt
question in the designated text box in front of the
unit. The prompt questions are short questions that
ask about the preconditions that enable or disable
the factual sentence (e.g. what makes this possible?,
when is this impossible). The goal of this phase is
to use the powers of crowdsourcing to capture as
much information as needed to create a dataset of
enabling and disabling conditions.

A.2 Gathering Factual Sentences
The first row in Fig. 3 summarizes the steps to cre-
ate the factual sentences. Each factual sentence

is a short sentence derived from an edge from a
commonsense knowledge graph. The information
on this knowledge graph is related to everyday sit-
uations such as usage of objects (A net is used for
catching fish.), or capabilities of objects (Humans
are capable of catching a bus.), etc. (Speer et al.,
2017; Ilievski et al., 2020a; Sap et al., 2019a). In
our case, the knowledge associated with each fac-
tual sentence is extracted from ConceptNet (Speer
et al., 2017), a well known commonsense resource.
To limit the scope of this work we only focus on
UsedFor, Causes, and Desires relations from Con-
ceptNet, however, the method can be extended to
any other relation from any other knowledge graph.

To convert the knowledge graph edges to human-
readable factual sentences, we used automatic lex-
icalization methods, similar to (Ma et al., 2019;
Bouraoui et al., 2020). In this method, we define
a set of templates to convert the edge to a set of
sentence candidates, then use the perplexity score
of a language model to pick the best candidate for
each edge. The lexicalization is explained in more
details in Appendix A.4.

Since ConceptNet’s knowledge is not perfect,
some of the generated factual sentences may not
fully make sense. Additionally, the automatic con-
version of edges to the sentence is not perfect,
hence some sentences may have odd grammar (e.g.
An net is used for catch fish). Consequently, some
of the question-units may be hard to understand
or just be wrong. To help us find those question-
units and ignore them in future iterations, each
unit is presented with an adjacent checkbox labeled
This does not make sense. The participant may
choose to select the checkbox and skip answering
that prompt. To make the payment structure fair
for the participants, they will get paid regardless of
their response.

A.3 Qualifying Participants

To ensure the participants can understand the task,
we prepared detailed instructions that explain to
the participants what they need to do and what
are the criteria for a good vs bad response. For
example, in the instructions, we ask participants
to avoid using negative sentences or avoid using
pronouns to refer to objects. The instruction is 366
words with an expected reading time of < 5 mins.
Additionally, we have prepared a set of good/bad
examples associated with each rule that can also be
accessed in the tutorial. Each one of the good/bad
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examples comes with a short explanation clarifying
the reason for its good/bad rating.

The participants are then asked to take the quali-
fication test as a check on whether they have read
and understood the instructions. The qualification
test contains 10 multi-choice questions (each with
two choices); each containing a question-unit (sim-
ilar to those that are used in the main survey) with
two choices of the possible responses that one may
give to them. We have carefully designed each
multiple-choice question such that it tests the par-
ticipants’ understanding of the rules individually
and give them feedback on their wrong answers.
For example, for the rule discouraging the use of
negative sentences, we have two questions where
the wrong answers contain a negative verb. After
successfully passing the test, participants with ac-
ceptable scores are granted a qualification badge
that allows them to engage in the main survey. It
must be noted that the detailed instructions and the
good/bad examples are both available in the main
survey as a memory refresher for the participants.

For the main survey, we have structured the pay-
ment on a per HIT basis, such that the overall
compensation be equal to $15 per hour of work.
To simplify the annotation process, we grouped
4 statements together in one HIT that helped us
reduce the waste time of annotators. The partici-
pants will be paid by the number of submitted HITs
and there will be no min number of HITs for them.
However, AMT allows us to ban participants that
produce low-quality responses from further engag-
ing in our study. The banned participants were fully
compensated for their accepted work (according
to automatic evaluation script) up until they are
banned.

A.4 Edge Lexicalization

Each of the selected edges is lexicalized using a
combination of templates and masked LMs de-
scribed by Ma et al. (2019) and Bouraoui et al.
(2020). Similar to Ma et al. (2019), we use a com-
bination of the templates for each relation (e.g.
[subject] is used for [object], [subject] is used
by [object]) and use the perplexity score from the
LM to select the best lexicalization for each edge.
However, this method does not guarantee the se-
lection of the best lexicalization as the perplexity
score reflects the probability of the sentence to-
kens appearing in that specific order rather than the
sentence’s grammatical correctness. To mitigate

Metric [0,10](%) [50,60](%) [90,100](%)
Perp. 75 95 90
Salient 80 100 95
Weight 95 90 90

Table 6: hand-annotated usefulness indication of the
precondition statements for top/bottom/mid percentile
buckets of the quantitative methods. The [A,B] label
indicates edges with the metric score in the range of
[A,B] percentile of the metric score.

this issue, in addition to the above method, follow-
ing (Bouraoui et al., 2020), we let the LM adjust
the templates as well by adding one masked token
to some templates (e.g. [subject] is used [MASK]
[object]) and let the LM fill the mask before filling
the subject and the object slots of the template.

B Results in More Details

B.1 Edge Selection Results

In this section, we provide further evidence to sup-
port the decision to use the UsedFor edges without
any additional filtering. First, we showcase the
lack of correlation between a hand-annotated use-
fulness indication of the precondition statements
and existing quantitative methods/scores. Then, in
a similar setup, we show that the UsedFor edges
have a higher usefulness score.

For the first study, we only focus on UsedFor
edges. For each metric, we randomly sample 20
edges in each percentile of the metric and hand-
annotate the usefulness of sampled edges in each
percentile. Then, for each percentile-metric, we
report the percentage of edges that were consid-
ered useful for our study. The results in Table 6,
summarizes the usefulness score for three of the
percentile buckets for three of the metrics. For the
perplexity score we used the RoBERTa (Liu et al.,
2019) language model on the lexicalized edges, for
the Salient score we used DICE metrics (Chalier
et al., 2020), and for the weight score we use the
weights from the ConceptNet (Speer et al., 2017)
itself. The usefulness scores suggest that a higher
score may or may not result in more useful edges
which makes using them for filtering edges tricky.
This study is by no means conclusive due to both
the small sample sizes and a small number of trials,
however, it led us to choose the edges solely based
on relation type and leave further filterings to future
work.

For the second study, Table 7, we group edges
based on their relations only and compute the use-
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Metric Score(%)
UsedFor 95
CapableOf 90
RelatedTo 40

Table 7: hand-annotated usefulness indication of the
precondition statements three of the ConceptNet rela-
tions

fulness score for each relation. The results showed
that UsedFor edges tend to generally be more use-
ful for our annotation task. This couple with the
statement that UsedFor edges could be annotated
with both enabling and disabling preconditions led
us to focus on them for this study.

B.2 Additional Results from P-NLI

Table 8 presents some error cases that each model
predicts on the test subset of P-NLI.

As our version of NLI only consists of Entail-
ment and Contradiction labels, we discuss the re-
sults using binary classification terminology.

In addition, the detailed results of Table 3 dis-
sected by the relation types are provided in Table 9.

B.3 Details of Soft Preconditions on P-NLI

In order to convert the ATOMIC2020 (Hwang et al.,
2020) to an NLI-style task, we method similar to
P-NLI and focused on three relations HinderedBy,
Causes, and xNeed. From these relations, Hin-
deredBy is converted to Contradiction and the rest
are converted to Entailment instances.

For converting Rudinger et al. (2020), we fo-
cused on SNLI subset of their data and used
the concatenation of SNLI’s “Hypothesis” and
“Premise” as hypothesis and their “Update” sen-
tence as premise.

Table 11, presents the detailed results of tuning
RoBERTa-large-MNLI model on each of the NLI-
style datasets, while being evaluated on P-NLI’s
test subset.

C Model Sizes and Run-times

For table 3, Runtimes: TE=2hr,rbrta=2.5hr, dbrta-
base=0.5hr, dbrta-large=2hr, dbrta-xlarge=3.5hr,
BART-large=2hr and #params: TE=0.5M,
rbta=356M, dbrta-base=141M, dbrta-large=401M,
dbrta-xlarge=751M, BART-large=407M. For
table 4, Runtimes:rbta-base=1hr, rbta-large=2hr,
uqa-small=1hr, uqa-base=4hr, uqa-large=20hr and
#params: rbta-base=124M,rbta-large=355M, uqa-
small=60M, uqa-base=222 M,uqa-large=737M. In

table 1, Runtimes: uqa, gpt2=10min and #params:
gpt2=1.5B. Finally in table 5, Runtimes:uqa-
small=1hr, uqa-base=2hr, uqa-large=6hr,
gpt2=1.5B, bart-base=139M, bart-large= and
#params: uqa-small=60M,uqa-base=222 M,
uqa-large=737M, gpt2=1.5B, bart-base=139M,
bart-large=406M.
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Model Statement Context *
TE You can typically use self adhesive label for labelling things The self adhesive label runs out of glue. FP

Acoustic ceiling is typically used for dampening sound. in rooms with noise above a certain decibel. FP
You can typically use self adhesive label for labelling things. Labeling things that are wet. FP
Farm is typically used for raising crops. Enough rain should be available. FN

roberta You can typically use pets to provide companionship the pet is dog. FN
Acoustic ceiling is typically used for dampening sound The sound is too loud FP

Table 8: Test results of SOTA systems on NLI task based on the PaCo. FP: False Positive, FN: False Negative

Model Rel. 0-Shot Tuned
RoBERTa-large-MNLI UsedFor 0.34 0.85

Causes 0.48 0.90
Desires 0.48 0.90
All 0.47 0.90

BART-large-MNLI UsedFor 0.51 0.91
Causes 0.41 0.82
Desires 0.46 0.89
All 0.48 0.89

DeBERTa-base-MNLI UsedFor 0.37 0.91
Causes 0.32 0.84
Desires 0.38 0.88
All 0.37 0.89

DeBERTa-large-MNLI UsedFor 0.38 0.94
Causes 0.31 0.88
Desires 0.36 0.90
All 0.36 0.92

DeBERTa-xlarge-MNLI UsedFor 0.37 0.94
Causes 0.31 0.88
Desires 0.37 0.89
All 0.37 0.91

Table 9: F1-Macro results of SOTA systems on P-NLI
task based on PaCo dissected based on relation type

Model Rel. 0-Shot Tuned
RoBERTa-base UsedFor 0.23 0.38

Causes 0.21 0.41
Desires 0.27 0.38
All 0.24 0.42

RoBERTa-large UsedFor 0.19 0.21
Causes 0.28 0.23
Desires 0.23 0.22
All 0.22 0.22

UnifiedQA-small UsedFor 0.37 0.55
Causes 0.35 0.53
Desires 0.31 0.45
All 0.32 0.50

UnifiedQA-base UsedFor 0.56 0.67
Causes 0.21 0.60
Desires 0.22 0.53
All 0.23 0.59

UnifiedQA-large UsedFor 0.31 0.76
Causes 0.26 0.68
Desires 0.26 0.61
All 0.28 0.68

Table 10: Accuracy results of SOTA systems on P-
MCQA task based on PaCo

Tune Dataset Relation F1-Macro
PaCo UsedFor 0.85

Causes 0.90
Desires 0.90
All 0.90

Hwang et al. (2020) UsedFor 0.50
Causes 0.50
Desires 0.45
All 0.48

Rudinger et al. (2020) UsedFor 0.84
Causes 0.80
Desires 0.82
All 0.83

Table 11: Results of RoBERTa-large-MNLI model on
test set of P-NLI after being tuned on different datasets,
dissected based on relation type.
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