Weight Perturbation as Defense against Adversarial Word Substitutions

Jianhan Xu1,2, Linyang Li1,2, Jiping Zhang1,2, Xiaoqing Zheng1,2, Kai-Wei Chang3, Cho-Jui Hsieh3, Xuanjing Huang1,2

1School of Computer Science, Fudan University, Shanghai, China
2Shanghai Key Laboratory of Intelligent Information Processing
3Department of Computer Science, University of California, Los Angeles, USA

{jianhanxu20, zhengxq}@fudan.edu.cn

{kwchang, chohsieh}@cs.ucla.edu

Abstract

The existence and pervasiveness of textual adversarial examples have raised serious concerns to security-critical applications. Many methods have been developed to defend against adversarial attacks for neural natural language processing (NLP) models. Adversarial training is one of the most successful defense methods by adding some random or intentional perturbations to the original input texts and making the models robust to the perturbed examples. In this study, we explore the feasibility of improving the adversarial robustness of NLP models by performing perturbations in the parameter space rather than the input feature space. The weight perturbation helps to find a better solution (i.e., the values of weights) that minimizes the adversarial loss among other feasible solutions. We found that the weight perturbation can significantly improve the robustness of NLP models when it is combined with the perturbation in the input embedding space, yielding the highest accuracy on both clean and adversarial examples across different datasets.

1 Introduction

Deep neural networks (DNNs) have achieved impressive results in a wide range of domains, but they were found to be vulnerable to adversarial examples maliciously crafted by adding a small perturbation to original examples (Szegedy et al., 2014). Many studies have demonstrated the vulnerability of DNNs on various natural language processing (NLP) tasks, including machine translation (Zhao et al., 2018; Cheng et al., 2020), dialogue systems (Cheng et al., 2019) and text classification (Liang et al., 2018; Zhao et al., 2018; Gao et al., 2018; Ren et al., 2019; Jin et al., 2020). These methods attack an NLP model by replacing, scrambling, and erasing characters or words under certain semantic and syntactic constraints.

The existence and pervasiveness of textual adversarial examples have raised serious concerns, especially when NLP models are deployed to security-sensitive applications. Many methods have been proposed to defend against adversarial attacks for neural NLP models, including adversarial data augmentation (Zheng et al., 2020; Si et al., 2021), adversarial training (Madry et al., 2018; Zhu et al., 2020) and certified defense (Jia et al., 2019; Huang et al., 2019; Ye et al., 2020). Most of them improve the adversarial robustness of NLP models by applying some perturbations on input data and making the models robust to these perturbations. However, it is infeasible to enumerate and explore all possible inputs that would be fed to models by adversaries. In this study, we want to explore the feasibility of enhancing the robustness of neural NLP models by performing weight perturbations in the parameter space. The weight perturbation is useful to find a better solution in the parameter space (i.e., the weights) that minimizes the adversarial loss among other feasible solutions.

Adversarial weight perturbation (Wu et al., 2020; Foret et al., 2021) has been investigated in the image domain, but our preliminary experiments show that their methods to implement weight perturbation cannot be trivially applied to NLP models. The existing weight perturbation results in inferior robustness and requires a long training time due to the discrete nature of texts. We found that the weight perturbation works better for NLP models when it is combined with the perturbation in the input feature space. Based on this finding, we propose a mixed adversarial training method with accumulated weight perturbation, named MAWP. The
mixed adversarial training was designed to boost the model’s robustness by combining the weight perturbation with the traditional adversarial training (i.e., perturbation in the input embedding space like FreeLB (Zhu et al., 2020)). In this way, the resulting models can benefit more from the weight perturbation by exposing them to the input perturbation during the training process. The accumulated weight perturbation was mainly introduced to accelerate the training process while the model’s robustness can be further improved. The accumulated perturbation takes the smoothed form of a weighted sum of gradient descents calculated in the previously-performed weight perturbations, which carries the global gradient information and gives a clear signal in which direction the parameters should move to aggressively if the successive gradients point in a similar direction. Through extensive experiments, we demonstrate that our method can boost the robustness of NLP models to a great extent while suffering no or little performance drop on the clean data across three different datasets.

2 Related Work

2.1 Textual Adversarial Defense

The goal of adversarial defenses is to learn a model capable of achieving high accuracy on both clean and adversarial examples. Recently, many defense methods have been developed to defend against textual adversarial attacks, which can roughly be divided into two categories: empirical (Miyato et al., 2017; Sato et al., 2018; Zhou et al., 2021; Dong et al., 2021) and certified (Jia et al., 2019; Huang et al., 2019; Ye et al., 2020) methods.

Adversarial data augmentation is one of the most effective empirical defenses (Ren et al., 2019; Jin et al., 2020; Li et al., 2020) for NLP models. During the training time, they replace a word with one of its synonyms to create adversarial examples, and the models are trained on the dataset augmented with these adversarial examples. By augmenting these adversarial examples with the original training data, the model is robust to such perturbations. Zhou et al. (2021) and Dong et al. (2021) relax a set of discrete points (a word and its synonyms) to a convex hull spanned by the word embeddings of all these points, and use a convex hull formed by a word and its synonyms to capture word substitutions. Adversarial training (Miyato et al., 2017; Zhu et al., 2020) is another one of the most successful empirical defense methods by adding norm-bounded adversarial perturbations to word embeddings and minimizes the resultant adversarial loss.

The downside of existing empirical methods is that failure to discover an adversarial example does not mean that another more sophisticated attack could not find one. To address this problem, some certified defenses (Jia et al., 2019; Huang et al., 2019; Ye et al., 2020) have been introduced to guarantee the robustness to certain specific types of attacks. However, the existing certified defense methods make an unrealistic assumption that the defenders can access the synonyms used by the adversaries. They would be easily broken by more sophisticated attacks by using synonym sets with large sizes (Jia et al., 2020) or generating synonyms dynamically with BERT (Li et al., 2020).

Most of the existing defense methods improve the robustness by making the models adapt to the training set augmented with the adversarial examples crafted by adding adversarial perturbations to discrete tokens or distributed embeddings. However, it is infeasible to enumerate all possible inputs that would be fed to the models by adversaries. In contrast, we have full control over the values of the model’s parameters. Therefore, we propose to improve the robustness of neural NLP models by performing weight perturbations in the parameter space rather than in the input space.

2.2 Weight Perturbation

Weight perturbation has been explored to improve the generalization of models in the image domain. Graves (2011) first investigated the method to apply the perturbations on the weights of neural networks and introduced a stochastic variational method to improve the generalization. Following this direction, Foret et al. (2021) proposed an optimization method, named Sharpness-Aware Minimization (SAM), to seek the values of parameters that yield a uniformly low loss in their neighborhood.

Recently, researchers from the computer vision community have also tried to improve the model’s robustness by weight perturbation. He et al. (2019) presented a Parametric Noise Injection method that intentionally injects trainable noises on the activations and weights of neural networks. Wu et al. (2020) showed the correlation of model’s performance with the direction and scale of weight perturbation by investigating the weight loss landscapes of multiple adversarial training techniques. They also proposed an Adversarial Weight Perturbation...
(AWP) method, which can be incorporated into existing adversarial training methods to narrow down the gap in robustness between training and test sets.

However, the existing weight perturbation methods cannot trivially be applied to NLP models due to the discrete nature of texts. To address the problem we faced when implementing the weight perturbation to train NLP models, we propose a mixed adversarial training method to further improve the adversarial robustness of neural NLP models and introduce an accumulated weight perturbation to speed up the training process. This study is among the first ones to study how to apply the adversarial weight perturbations in the text domain.

3 Preliminary

In the following, we first introduce the traditional adversarial training that performs perturbation in the input feature space, and then give a brief review of the adversarial weight perturbation. Before diving into the details, we need to set up some notations. A training dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ with n instances consists of a set of the feature vector representation $x \in \mathbb{R}^d$ of an input text x and its corresponding label $y \in \{1, ..., C\}$ pairs, where d is the size of feature vectors and C is the number of classes. Given a neural text classifier with a set of trainable weights w and a loss function of $L(w, x, y)$, the regular training aims to find the values of weights w that minimizes the empirical risk of $E_{(x,y)\sim \mathcal{D}}[L(w, x, y)]$. In adversarial training, we denote the adversarial perturbation to input feature vectors x as δ, the weight perturbation to model’s weights w as ϵ_w, and the number of ascent steps as $k \in \{1, ..., K\}$.

3.1 Traditional Adversarial Training

Traditional adversarial training can be formulated as a min-max optimization problem (Madry et al., 2018) as follows:

$$\min_w E_{(x,y)\sim \mathcal{D}} \left[\max_{\|\delta\|_F \leq \epsilon} L(w, x + \delta, y) \right],$$

where δ is constrained in a Frobenius norm ball with a radius ϵ. As pointed out by Zhu et al. (2020), the outer minimization can be achieved by Stochastic Gradient Descent (SGD) method, and the inner maximization can be accomplished by Projected Gradient Descent (PGD)-based attack algorithm. Specifically, PGD-based algorithms take the following step (with a step size α) at k-th iteration under the constraint of Frobenius norm:

$$\delta_{k+1} = \prod_{\|\delta_k\|_F \leq \epsilon} \left(\delta_k + \frac{\alpha g(\delta_k)}{\|g(\delta_k)\|_F} \right),$$

where $g(\delta_k) = \nabla \delta_k L(w, x + \delta_k, y)$ denotes the loss gradient with respect to δ_k, and $\prod_{\|\delta\|_F \leq \epsilon}$ is the projection of input perturbation δ within the Frobenius norm ball with the radius ϵ.

3.2 Adversarial Weight Perturbation

We here give a brief introduction of adversarial weight perturbation (Wu et al., 2020; Foret et al., 2021) in the image domain. Given an adversarial example x' of a clean one x, the adversarial weight perturbation seeks the values of parameters w that have the lowest training loss within the surrounding neighborhood, which can be formulated as follows:

$$\min_w E_{(x,y)\sim \mathcal{D}} \left[\max_{\|w\|_2 \leq \rho} L(w + \epsilon_w, x', y) \right],$$

where ρ is the radius of weight perturbation under the l_2-norm. Since it is hard to directly maximize the values of ϵ_w, the optimal values can be approximated via the first-order Taylor expansion of $L(w + \epsilon_w, x', y)$ as follows:

$$\epsilon_w^* \approx \arg \max_{\|w\|_2 \leq \rho} \nabla w L(w, x', y).$$

By this approximation, the value of ϵ_w can be estimated as $\rho \nabla w L(w, x', y)/\|\nabla w L(w, x', y)\|_2$. Specifically, Wu et al. (2020) performs the adversarial weight perturbations at layer level by setting ϵ_w to $\eta \|w\|_2 \cdot \nabla w L(w, x', y)/\|\nabla w L(w, x', y)\|_2$. Once the values of ϵ_w are obtained, they update w based on the gradient of $\nabla w L(w, x', y)\|_2 + \epsilon_w$ in order to make the models generalize well on the adversarial sample x'.

4 Method

In the following, we first introduce our accumulated weight perturbation method that is designed to accelerate the training process when fine-tuning a pre-trained language model. After then, we discuss how to combine it with adversarial training to further improve the robustness of NLP models.

4.1 Accumulated Weight Perturbation

Adversarial weight perturbation works by searching for the worst case within the neighborhood of current weights with respect to the training loss and finding a better solution in the neighborhood
Algorithm 1 A mixed adversarial training algorithm with accumulated weight perturbation

Input:
- K: the number of ascent steps;
- D: a training dataset $(x_i, y_i)_{i=1}^n$;
- a: the size of ascent steps;
- H: the dimensionality of the hidden layers;
- w: the weights of a model;
- τ: a learning rate;
- η: the size of weight perturbation ϵ_w;
- η_2: the size of accumulated weight perturbation ϵ_g;
- U: a uniform distribution with the bound of σ.

Output: the resulting weights w.

1. Initialize w.
2. for epoch $= 1, \ldots, N$ do
3. $\epsilon_g \leftarrow 0$
4. for minibatch $B \subset D$ do
5. $w_0 \leftarrow w$, $g_0 \leftarrow 0$
6. $\delta_0 \leftarrow \frac{1}{\sqrt{n}} U(-\sigma, \sigma)$
7. for $k = 0 \ldots (K-1)$ do
8. // Calculate weight perturbation ϵ_{w_k}
9. $d_{w_k} \leftarrow \nabla_{w_k} L(w_k, x + \delta_k, y)$
10. $\epsilon_{w_k} \leftarrow \eta \|d_{w_k}\|_2 \cdot \frac{d_{w_k}}\|d_{w_k}\|_2$
11. $w_{k+1} \leftarrow w_k + \epsilon_{w_k}$
12. // Accumulate gradient g_k for w_{k+1}
13. $g_{k+1} \leftarrow g_k + \frac{1}{K} \sum_{i=1}^K \delta_{k+1}$, y_{i}.
14. // Update δ_{k+1} via input perturbation
15. $\delta_{k+1} \leftarrow \frac{1}{K} \sum_{i=1}^K \nabla_{\delta_{k+1}} L(w_{k+1}, x + \delta_{k+1}, y_{i})$
16. // Calculate accumulated perturbation ϵ_g
17. $\epsilon_{g} \leftarrow \sum_{k=0}^{K-1} \epsilon_{w_k}$
18. $\epsilon_{g} \leftarrow \sqrt{\frac{1}{K}} \sum_{k=0}^{K-1} \epsilon_{w_k}$
19. $w \leftarrow w - \tau \delta_K - \epsilon_g$
20. end for
21. end for
22. return w

information and gives a clear signal in which direction the parameters should move to aggressively if the gradients obtained at different steps point in a similar direction.

At each step k, we can perform the weight perturbation ϵ_{w_k} that finds the worse case in the neighborhoods of weight w_k. Meanwhile, an accumulated weight perturbation is also calculated which takes the smoothed form of a weighted sum of gradient descents calculated in the previously-performed weight perturbations. Specifically, for each minibatch B, the values of weight perturbation ϵ_{s} are obtained by summing up all the perturbations as $\epsilon_{s} = \sum_{k=0}^{K} \epsilon_{w_k}$. Then, we can calculate the accumulated weight perturbation ϵ_{g} as follows:

$$\epsilon_{g} = \prod_{\|\epsilon_{g}\|_2 \leq \eta_2} \left(\epsilon_{s} + \frac{\epsilon_{g}}{\|\epsilon_{g}\|_2 + \epsilon_0} \right),$$

where η_2 is the radius of the accumulated weight perturbation, ϵ_0 a constant introduced for numerical stability in the computation, and $\prod_{\|\epsilon_{g}\|_2 \leq \eta_2}$ the projection function.

4.2 Mixed Adversarial Training Method

We here describe our adversarial weight perturbation and how to combine it with FreeLB (Free Large-Batch) (Zhu et al., 2020), a popular adversarial training algorithm. The algorithm of FreeLB adds adversarial perturbations to word embeddings and minimizes the resultant adversarial loss inside different regions around input samples. It also adds norm-bounded adversarial perturbations to the input sentences’ embeddings using a gradient-based method and enlarges the batch size with diversified adversarial samples under such norm constraints.

By the mixed adversarial training, NLP models can benefit more from the adversarial weight perturbation by exposing the models to the input perturbation during the training process.

Specifically, at the k-th ascent step, we calculate the weight perturbation ϵ_{w_k} based on the input perturbations δ_k and the weights w_k as follows:

$$\epsilon_{w_k} = \eta \|w_k\|_2 \cdot \frac{\nabla_{w_k} L(w_k, x + \delta_k, y)}{\|\nabla_{w_k} L(w_k, x + \delta_k, y)\|_2}.$$ (6)

The input perturbation δ_0 is initialized from a uniform distribution, and $\delta_0 \sim \frac{1}{\sqrt{B}} U(-\sigma, \sigma)$. After calculating the weight perturbation ϵ_{w_k}, the perturbed weights of w_{k+1} can be updated by $w_{k+1} = w_k + \epsilon_{w_k}$. Following the gradient accumulating operation in FreeLB, we compute the gradients of
Datasets	Methods	Clean%	TextFooler	BERT-Attack	TextBugger	BERT-Attack*	TextBugger*
Base | 92.24 | 11.77 | 101.22 | 11.10 | 128.23 | 28.00 | 52.44 | 19.93 | 102.81 | 18.97 | 107.94 | 21.63 | 99.99
PGD | 50.78 | 10.87 | 111.16 | 8.67 | 131.56 | 33.73 | 49.87 | 29.37 | 106.73 | 22.33 | 106.29 | 29.60 | 103.88
FreeLB++ | 92.35 | 13.33 | 112.86 | 11.40 | 136.90 | 33.07 | 51.10 | 33.83 | 110.43 | 27.63 | 111.22 | 33.93 | 109.16
TA-VAT | 93.08 | 13.89 | 117.06 | 11.56 | 133.47 | 32.89 | 53.45 | 28.00 | 106.11 | 22.33 | 106.84 | 27.33 | 106.64
InfoBERT | 93.14 | 10.56 | 111.95 | 10.33 | 138.74 | 33.33 | 53.09 | 26.67 | 105.50 | 22.45 | 111.87 | 28.89 | 106.15
PGD-AWP | 91.14 | 11.87 | 113.53 | 9.93 | 129.50 | 32.33 | 50.27 | 29.17 | 106.68 | 22.50 | 106.33 | 27.90 | 104.66
FreeLB-AWP | 92.35 | 14.80 | 118.97 | 13.67 | 142.30 | 35.63 | 53.89 | 35.37 | 121.32 | 29.00 | 113.61 | 36.73 | 129.45
MAWP | 93.26 | 31.30 | 146.01 | 24.57 | 184.02 | 43.07 | 88.02 | 41.47 | 174.11 | 32.60 | 167.06 | 39.23 | 187.00

Table 1: The experimental results of different defense methods on SST-2, AGNEWS, and IMDB datasets. The best performance is highlighted in bold fonts. The symbol * indicates the attack algorithms on which we impose some constraints for fair comparison by ensuring the quality of adversarial examples (see Section 5.2 for details).

\[
g_{k+1} = \frac{1}{K} \nabla w_{k+1} L(w_{k+1}, x + \delta_k, y) \tag{7}
\]

where \(g_0\) is initialized to 0. When we calculate the accumulated gradient \(g_{k+1}\), it is free for us to calculate the input perturbation without additional cost. Therefore, we can calculate the input perturbation \(\delta_{k+1}\) based on the perturbed weights \(w_{k+1}\) and the former input perturbation \(\delta_k\) as follows:

\[
\delta_{k+1} = \prod_{\|\alpha\|_2 \leq \epsilon} \left(\delta_k + \alpha \frac{\nabla \delta L (w_{k+1}, x + \delta_k, y)}{\nabla \delta L (w_{k+1}, x + \delta_k, y)} \right) \tag{8}
\]

We list the proposed MAWP in Algorithm 1. After the weights \(w_0\) and the input perturbations \(\delta_0\) are initialized, we calculate the weight perturbations \(\epsilon_{w_k}\) and add them to the model’s weight \(w_k\) at each ascent step. Then we calculate the gradient \(g_k\) (Line 14) and the next input perturbations \(\delta_{k+1}\) (Line 16). Finally, the accumulated weight perturbations \(\epsilon_g\) are calculated to update the model’s weights with the adversarial loss.

5 Experiments

We conducted three sets of experiments. The first one is to evaluate our MAWP in both clean accuracy and adversarial robustness on several datasets under three representative attack algorithms, compared to seven baseline methods. The goal of the second one is to investigate the impact of the number of ascent steps and training epochs on the performance. In the third experiment, we would like to better understand the interpretability of adversarial training via visualizations.

Three widely-used text classification datasets were used for evaluation: Stanford Sentiment Treebank (SST-2) (Socher et al., 2013), AG-News corpus (AGNEWS) (Zhang et al., 2015) and Internet Movie Database (IMDB) (Maas et al., 2011). SST-2 has about 67,000 sentences for binary categories, and IMDB consists of about 50,000 movie reviews for positive and negative sentiment classification, and AGNEWS is a text classification dataset containing four categories containing about 30,000 news articles. For fair comparison, we used a BERT-based model (Devlin et al., 2019) as the base model for all the defense methods.

5.1 Implementation Details

We implemented MAWP based on Huggingface Transformers\(^1\). We chose to use PGD (Madry et al., 2018), FreeLB++ (Li et al., 2021), TA-VAT (Li and Qiu, 2020), and InfoBERT (Wang et al., 2020) as baselines. They are widely-used defense methods against textual adversarial attacks or have been

\(^1\)https://github.com/huggingface/transformers
proposed most recently. We also developed two strong baselines. One is the combination of AWP (Wu et al., 2020) (a weight perturbation method proposed for computer vision tasks) and PGD, denoted as PGD-AWP. Another is the combination of AWP with FreeLB, denoted by FreeLB-AWP. These two baselines were also designed for the ablation study and used to compare our mixed adversarial training method. For fair comparison, we also implemented PGD-AWP and FreeLB-AWP as described in Algorithm 1 except using AWP instead of the proposed weight perturbation.

The size of the weight perturbation η was set to 1×10^{-5} for all the training methods compared, and that of the accumulated perturbation η_2 was set to 2×10^{-5}. All the experimental results are obtained over three runs with different random initialization.

5.2 Attack Algorithms and Evaluation Metrics

Three representative attack algorithms were used to evaluate the adversarial robustness of models: TextFooler (Jin et al., 2020), BERT-Attack (Li et al., 2020) and TextBugger (Li et al., 2019). We use these attack algorithms reimplemented by TextAttack toolkit\(^2\) (Morris et al., 2020). TextFooler and BERT-Attack adversarially perturb text inputs by synonym-based substitutions, whereas TextBugger can perform adversarial perturbation to inputs at both character and word levels. TextFooler generates synonyms using 50 nearest neighbors in the word embedding space, while BERT-Attack uses BERT to generate synonyms dynamically, and thus no defender can know in advance the synonyms used to replace original words by BERT-Attack.

Following Li et al. (2021), we used three metrics to evaluate our methods and other competitors: clean accuracy (the accuracy of models on clean examples) is denoted as Clean\%, accuracy under attack (the accuracy of models on adversarial examples under a certain attack) denoted as Aua\%; and number of queries (the average number of queries an attacker needs to perform successful attacks) denoted as #Query.

The clean accuracy is calculated on the entire test set while the other two metrics are evaluated on the 1,000 examples randomly sampled from the test set. In Table 1, we also report the experimental results under the attack algorithms imposed with some constraints suggested by Li et al. (2021) to ensure the quality of adversarial examples generated. For all the attack algorithms, the maximum percentage of words that are allowed to be modified is set to 0.2 on SST-2, 0.3 on AGNEWS, and 0.1 on IMDB. We set the minimum semantic similarity between original sample and adversary to 0.84, set the maximum number of one word’s synonyms to 50 and set the maximum number of queries to the victim model for each sample text to $50L$, where L serves as the length of sample text. For a fair comparison, the number of ascent steps K was set to 10 for all adversarial training methods considered.

5.3 Experimental Results

From the numbers reported in Table 1, a handful of trends are readily apparent: (1) MAWP consistently outperforms all the competitors by a significant margin on the adversarial data across three different attacks on SST-2 and IMDB datasets, and it also achieves comparable results on the predication accuracy of clean examples; (2) Although the gap in the accuracy under attack between MAWP and other baseline methods is slightly reduced under the attack algorithms imposed by some constraints as recommended by (Li et al., 2021), the adversaries require much more queries to find adversarial examples for the models trained with MAWP. Note that the greater the average number of queries required by the adversaries is, the more difficult it is for the defense model to be compromised; (3) MAWP outperforms most of the competitors and achieves a relatively high clean accuracy of 95.23 on the test set of AGNEWS.

5.4 Impact of Different Training Epochs

The accumulated weight perturbation was introduced to accelerate the training process and further improve the adversarial robustness of models. To evaluate its effectiveness, we implemented a variant of MAWP, denoted as “MAWP w/o Accum”, in which the accumulation operation is not used (i.e., reset the value of ϵ_g to 0 at every minibatch).

As shown in Figure 1, we found that: (1) Both MAWP and its variant outperform FreeLB++ and FreeLB-AWP in the accuracy under attack especially after 10 epochs; (2) MAWP requires fewer training epochs than its variant of “MAWP w/o Accum” in order to achieve the same or similar Aua\%; (3) The robustness of the model trained with FreeLB-AWP still can be improved even after 35 epochs while the Aua\% of the model trained

\(^2\)https://github.com/QData/TextAttack
Figure 1: Accuracy under attack versus the number of training epochs. The experiments were conducted on SST-2 under the attack algorithm of TextFooler.

with FreeLB++ drops obviously at the end of the training process.

5.5 Impact of the Number of Ascent Steps

We would like to understand how the choice of the number of ascent steps K impacts the adversarial robustness of models. MAWP was compared to FreeLB++ with different numbers of ascent steps, and the results on SST-2 dataset are reported in Table 2.

![Table 2: The impact of different ascent steps in clean accuracy and adversarial robustness on the validation set of SST-2.](image)

MAWP outperforms FreeLB++ in all the cases of K under three different attack algorithms. As the number of ascent steps grows, the clean accuracy of the two models drops to 91.14 and 91.21 respectively, and the performance in adversarial robustness also drops slightly. It shows that too much perturbation does harm the model’s clean accuracy and adversarial robustness. Therefore, we chose to set $K = 10$ in all the experiments except those reported in this subsection.

5.6 Input Loss Landscape

To give a reasonable explanation of the effect of an enlarged number of ascent steps, we visualized the input loss landscapes produced by the models trained with FreeLB++ and MAWP with the step $K \in \{5, 10, 15\}$. The visualization was provided by the models trained on SST-2 dataset.

Specifically, we perturb the original input embedding x to $x + \alpha \delta_1 + \beta \delta_2$, where δ_1 and δ_2 denote two random Gaussian direction vectors with normalization, and α and β are two scalar parameters. Then, the corresponding input loss landscapes can be obtained and are shown in Figure 2. As we can see from Figure 2-(a), (c) and (e), the input loss landscapes will gradually become more flattened as the number of ascent steps K grows when the BERT-based model is trained by FreeLB++ (an enhanced adversarial training method of FreeLB). The similar trend also can be observed from Figure 2-(b), 2(d) and 2(f) when MAWP is used to train the models. As the number of ascent steps K grows, the region with lower loss will become larger, leading to more robust models. However, too strong perturbations without the norm-bounded constraints will distort the decision boundary of the models, which reduces the models’ generalization and robustness.

To sum up, a larger number of ascent steps will make the input landscape flatter and enable the
model less impacted by the adversarial perturbations. However, the model with a too flat landscape (i.e., an over-smooth model) will result in poor generalization and robustness.

5.7 The Features Captured with and without Weight Perturbation

We want to gain a deeper understanding of why the weight perturbation will lead to more robust models. We examined the differences in the feature vectors produced by the resulting models between original and perturbed examples. Given a neural model \(f \), for an original example \(x \) we obtain a perturbed example \(\hat{x} \) that stays very close to the decision boundary of the model \(f \) and \(f(x) = f(\hat{x}) \). Note that the smaller the difference, the harder a model can be compromised by the adversaries, and the more robust the model will be generally.

We chose to use TextFooler* as the attack algorithm when generating such perturbed examples. Note that TextFooler* was imposed by some constraints highly recommended by (Li et al., 2021). We used this variant of TextFooler because we want the results yielded by different defense methods can be compared in a more controlled manner. We define the following distance function \(G(x, \hat{x}) \) to measure the difference between the feature vectors of \(x \) and \(\hat{x} \):

\[
G(x, \hat{x}) = \frac{\|h^j(x) - h^j(\hat{x})\|_2}{\|h^j(x)\|_2}
\]

where \(h^j(x) \) denotes the averaged feature vector extracted from the \(j \)-th layer of the BERT-based model for an input \(x \). We chose to use \(l_2 \)-norm for calculating the distances since the size of perturbation in the embedding space is usually measured based on \(l_2 \)-norm for almost all the textual attack algorithms.

We first investigated a set of an input \(x \) and its quasi-adversarial example \(\hat{x} \) (stays very close to the decision boundary but does not make the model change its prediction yet) produced by different defense methods where \(\hat{x} \) was generated against the BERT-based model. The reported differences are averaged over all the examples in SST-2 test set. As shown in Figure 3-(a), we found that: (1) The distances between the features of \(x \) and \(\hat{x} \) generated at the 0-th layer (i.e., embeddings) are quite similar for almost all the models except InfoBERT, which aggressively compresses the embeddings; (2) At the deeper layers, the differences in this distance gradually increase among the models. More adversarially robust models have a lower distance between the features of \(x \) and \(\hat{x} \) generated at every layer, especially for the last few layers.

We also examined the differences between the feature vectors of original examples and perturbed ones generated against respective models (i.e., under test-time attacks). As shown in Figure 3-(b), the model trained with MAWP archived a relatively low distance in the generated feature space compared to other adversarial training methods, indicating that MAWP can keep such a distance smaller in the feature space produced at every network layer, which makes the model trained with MAWP more resistant to the perturbations imposed in the inputs.

6 Conclusion

This study is among the first ones to explore the feasibility of improving the adversarial robustness of neural NLP models by performing the perturbations in the parameter space (i.e., weights) rather than the input feature space (i.e., word embeddings). We experimentally demonstrate that the weight perturbation can be used to find a better solution in the parameter space by minimizing the adversarial loss with a multi-step, gradient-guided optimization method. We also show that the proposed method is complementary to existing adversarial training methods, and the combination of our
method and FreeLB achieved state-of-the-art accuracy on both clean and adversarial examples on multiple benchmark datasets.

Limitations

We evaluated the proposed mixed adversarial training method with accumulated weight perturbation (MAWP) under the word substitution-based attacks only in this study. We are aware that there are a wide range of textual adversarial attacks, including adding, deleting or modifying characters or words or other language units under certain semantics-preserving constraints. In the future, we would like to investigate how well the MAWP can defend against other types of adversarial attacks. In the current implementation of the MAWP, the weight perturbation needs to be calculated and applied at each adversarial training step, which requires a relatively longer training time. It is also planned to implement the weight perturbations for training NLP models in a more efficient way.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments. This work was supported by National Science Foundation of China (No. 62076068), Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0103), and Zhangjiang Lab. Chang is supported in part by Cisco and Sloan fellowship. Hsieh is supported in part by NSF IIS-2008173 and IIS-2048280.

References

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong Liu. 2021. Towards robustness against natural language word substitutions. In ICLR.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020. BERT-ATTACK: Adversarial attack against BERT using BERT. In EMNLP, Online.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In ACL, Portland, Oregon, USA.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating natural language adversarial examples through probability weighted word saliency. In ACL.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP.

Mao Ye, Chengyue Gong, and Qiang Liu. 2020. SAFER: A structure-free approach for certified robustness to adversarial word substitutions. In ACL.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. In NIPS.

