
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 7171 - 7184
December 7-11, 2022 ©2022 Association for Computational Linguistics

LPC: A Logits and Parameter Calibration Framework
for Continual Learning

Xiaodi Li1 Zhuoyi Wang1 Dingcheng Li2 Latifur Khan1 Bhavani Thuraisingham1

1The University of Texas at Dallas
2Baidu Research

{xiaodi.li,zxw151030,lkhan,bhavani.thuraisingham}@utdallas.edu
dingchengl@gmail.com

Abstract

When we execute the typical fine-tuning
paradigm on continuously sequential tasks, the
model will suffer from the catastrophic forget-
ting problem (i.e., the model tends to adjust old
parameters according to the new knowledge,
which leads to the loss of previously acquired
concepts). People proposed replay-based meth-
ods by accessing old data from extra storage
and maintaining the parameters of old concepts,
which actually raise the privacy issue and larger
memory requirements. In this work, we aim
to achieve the sequential/continual learning of
knowledge without accessing the old data. The
core idea is to calibrate the parameters and log-
its (output) so that preserving old parameters
and generalized learning on new concepts can
be solved simultaneously. Our proposed frame-
work includes two major components, Log-
its Calibration (LC) and Parameter Calibration
(PC). The LC focuses on calibrating the learn-
ing of novel models with old models, and PC
aims to preserve the parameters of old mod-
els. These two operations can maintain the old
knowledge while learning new tasks without
storing previous data. We conduct experiments
on various scenarios of the GLUE (the General
Language Understanding Evaluation) bench-
mark. The experimental results show that our
model achieves state-of-the-art performance in
all scenarios.

1 Introduction

Predicting labels for a large number of instances oc-
curring continuously is a crucial problem in many
real-world applications like online tweets/news
summaries, online product classification in e-
commerce systems, and online dialogue learning
systems. In these scenarios, we not only require
the model to learn from its own experiences, but
also expect the model to be capable of continuously
acquiring, fine-tuning, and transferring knowledge
over time (Parisi et al., 2019), which is also known
as continual learning. One of the most essen-

tial existing challenges we aim to solve in contin-
ual learning is the catastrophic forgetting problem
(McCloskey and Cohen, 1989; Kirkpatrick et al.,
2017a). The forgetting typically happens when we
apply the pre-trained model (e.g., BERT (Devlin
et al., 2018)) on newly emerged tasks, the model
usually forgets the parameters that learned from
previous tasks, when we train it on new coming
ones.

Existing works trying to solve the catastrophic
forgetting problem are varied, which can be divided
into three categories: (1) storing exemplars from
previous classes (Rebuffi et al., 2017a; Rolnick
et al., 2019); (2) regularizing the parameters when
we fine-tune the model on new tasks (Kirkpatrick
et al., 2017b; Li and Hoiem, 2017a; Aljundi et al.,
2018; Wang et al., 2021a); (3) dedicating different
model parameters to each task to prevent any pos-
sible forgetting (Mallya and Lazebnik, 2018; Serra
et al., 2018; Wang et al., 2021b). Such methods
aim to transfer or store the knowledge of previous
tasks to the newly emerged tasks and preserve the
previous learned knowledge.

Typical replay methods require storing the data
from old classes or tasks, and applying them for
maintaining old representation during updating.
The major concern is that this pattern does not con-
sider the constraint of memory resources or privacy
issues sufficiently, e.g., the data of old tasks is often
inaccessible or too large for the continual adapta-
tion setting. Different from this strategy, we focus
on the calibration of the knowledge gap between
different tasks, which can reduce catastrophic for-
getting without any old data/task replay. The pro-
posed calibration framework focuses on both en-
coder parameters and output classifiers: when the
new/current task comes, we first evaluate the previ-
ous model on this task and get the old output, then
train a new model with new output based on this
task, the differences between output and parameter
from the two models (old, new) are used for cali-

7171

bration. Specifically, for learning new concepts, we
add the logits calibration that can amplify the soft-
max output of the previous model, and overcome
the bias towards the current category (Zhao et al.,
2020). We also propose to calibrate the encoder
parameters that encourages the model to maintain
previously learned knowledge in the latent feature
space, which simulate the training objective using
the parameters of the previous model. Then, during
the training on the current tasks, the model will
calibrate parameters with target drift from the pre-
vious tasks to the current one, so that the new task
learning and old knowledge maintainance could be
balanced. It allows the model to focus on current
tasks by making the learning objective drift from
the previous tasks to current tasks gradually.

Our proposed Logits and Parameter Calibration-
based continual learning framework is shown in
Figure 1, it reduces catastrophic forgetting with-
out further data storage. The calibration mech-
anism includes two components for both model
encoder parameters and output logits, we finally
integrate these two calibrations into a brand-new
optimization algorithm by decoupling them from
the gradient updates in the Adam optimizer. We
do experiments on the GLUE benchmark with pre-
trained models BERT-base and ALBERT-xxlarge
and achieve state-of-the-art performance.

The contributions of our work are three folds.
First, we propose LPC, a novel continual learning
framework, which can reduce catastrophic forget-
ting effectively. Second, we develop a new mecha-
nism by calibrating the logits and parameters with
target drifting from previous tasks to current tasks,
thereby alleviating the catastrophic forgetting dur-
ing the model updating. Third, when combined
with the existing regularization-based approach,
our model achieves state-of-the-art performance
while addressing the old knowledge forgetting with-
out data storage. Therefore, the newly proposed
LPC is feasible for researchers to use for further
explorations in this field.

2 Related Works

Continual learning is also named as life-long learn-
ing, sequential learning, or incremental learning.
As the name suggests, continual learning aims to
learn tasks in a sequential way. In the online learn-
ing process, data sometimes arrives continuously
in a non i.i.d. way, tasks may change over time,
and entirely new tasks can emerge (Nguyen et al.,

2017). In the field of biology, biological neural net-
works exhibit continual learning in which they ac-
quire new knowledge over a lifetime (Zenke et al.,
2017). However, continual learning in deep neural
networks suffers from a phenomenon called catas-
trophic forgetting (Shin et al., 2017). Thus, one
of the most essential goals of continual learning
systems is to achieve satisfying performance on all
tasks in an incremental way. Reducing catastrophic
forgetting plays a vital role to achieve it. Current
continual learning approaches can be classified into
the following three families (De Lange et al., 2019):
(1) Replay methods (Rebuffi et al., 2017b; Lopez-
Paz and Ranzato, 2017; Chaudhry et al., 2018),
(2) Regularization-based methods (Li and Hoiem,
2017b; Aljundi et al., 2018; Wang et al., 2021b; Yin
et al., 2022a; Li et al., 2022a; Wang et al., 2022),
and (3) Parameter isolation methods (Mallya and
Lazebnik, 2018; Serra et al., 2018).

Replay methods store samples in a raw format or
generate pseudo-samples with a generative model.
iCaRL (Rebuffi et al., 2017b) store a subset of ex-
emplars per class. GEM (Lopez-Paz and Ranzato,
2017) projects the estimated gradient direction on
the feasible region outlined by previous task gra-
dients through first order Taylor series approxima-
tion. A-GEM (Chaudhry et al., 2018) relaxes the
problem to project on one direction estimated by
randomly selected samples form a previous task
data buffer. Regularization-based methods eschews
storing raw inputs, prioritizing privacy, and alle-
viating memory requirements. Instead, an extra
regularization term is introduced in the loss func-
tion, consolidating previous knowledge when learn-
ing on new data. LwF (Li and Hoiem, 2017b)
uses the previous model output as soft labels for
previous tasks. MAS (Aljundi et al., 2018) sug-
gests unsupervised importance estimate, allowing
increased flexibility and online user adaptation; and
CLEAR (Wang et al., 2021b) applies the drift es-
timation to calibrate/compensate such drift in the
embedding space. Parameter isolation methods
dedicate different model parameters to each task to
prevent any possible forgetting. PackNet (Mallya
and Lazebnik, 2018) iteratively assigns parameter
subsets to consecutive tasks by constituting binary
masks. HAT (Serra et al., 2018) requires only one
training phase, incorporating task-specific embed-
dings for attention masking.

For continual learning, semi-supervised meth-
ods (Li et al., 2022b; Yin et al., 2022b) can also

7172

1. Previous Task
Training

2. Previous Parameter
Preservation

𝐿! 𝐿"

𝐿𝑇 = 𝜆 𝑡 𝐿" + 1 − 𝜆 𝑡 𝐿!

5. Back Propagation

4. Cross Entropy with
Logits Calibration

4. Mean Squared Error
with Logits Calibration

Logits Calibration

Previous Model

Input Texts in
Previous Tasks

Input Texts in Current Tasks
𝑇$ ∈ 𝑇% , 𝑇& , … , 𝑇'

Input Labels in Current Tasks
𝑇$ ∈ 𝑇% , 𝑇& , … , 𝑇'

Current Model

𝑞(, 𝑞)

𝐿"*+" 𝐿,-*+"

Parameter
Calibration

LPC Framework

Update3. Current Task
Training

Figure 1: The Overview of LPC Framework. (1) We first train the previous model on the large-scale input texts
and initialize our model (for current tasks) same as the previous one. (2) We do previous parameter preservation
to preserve the parameters of the trained model, and compute the loss for the previous model LP . (3) During the
current task training, we compute logits qp and qc. (4) We do logits calibration (e.g., cross entropy with logits
calibration for classification tasks) given qp and qc using LCELC or LMSELC for regression tasks as the loss for
the current model LC . Then, the objective function drifts from LP to LC gradually with the annealing coefficient
λ(t). (5) Finally, we perform back propagation to update the parameters of the current model.

help. MCoM (Li et al., 2022b) is a new semi-
supervised learning methodology that innovates
a triplet mixup data augmentation approach that
can be used to handle the labeled issue in continual
learning. Twinner (Abrol and Khan, 2010) exam-
ine the development of a tool that combines social
media in improving the quality of web search and
predicting whether the user is looking for news or
not. Wang et al. (Wang et al., 2004) propose one
automatic image annotation and retrieval system
which can be used in continual learning scenario
to handle the continually emerging data. Awad et
al. (Awad et al., 2008) combine two classification
techniques, namely, the Markov model and Sup-
port Vector Machines (SVM), which overcomes
the inability of the Markov model in predicting the
unseen data as well as overcoming the problem of
multi-classification in the case of SVM, especially
when dealing with large number of classes.

Our method is an advanced regularization-based
method based on LCwoF (Kukleva et al., 2021)
and RecAdam (Chen et al., 2020). LCwoF revises
the original cross entropy loss by adding the sum-
mation of the exponential logits of the previous
classes classifier to the denominator to change the
normalization scale. However, the normalization
part of LCwoF is flawed as the summation of all the

normalization items is not 1. RecAdam is a method
based on EWC. However, RecAdam treats each
parameter the same, which ignores that different
parameters weigh differently in a neural network.

3 Proposed Approach

Here we introduce our proposed Logits and Param-
eter Calibration framework, LPC, which includes
two essential parts: (1) Logits Calibration (LC) that
execute calibration on the logits to reduce the logits
forgetting and increase the accuracy, and (2) Param-
eter Calibration (PC) execute the calibration on the
parameters to reduce the parameter forgetting. For
the Logits Calibration, we apply the Cross Entropy
with Logits Calibration (CELC) for classification
tasks (or MSE with Logits Calibration (MSELC)
for regression). For the Parameter Calibration (PC),
it consists of two components: (1) Previous Param-
eter Preservation (PPP) that aims to preserve the
parameters from previous tasks, and (2) Current
Task Training (CTT) that to reduce the drifting
from the previous tasks to current ones gradually,
when update on new task. The LPC algorithm inte-
grating the Logits Calibration (CELC or MSELC)
and Parameter Calibration (PPP and CTT) into a
brand-new optimization algorithm based on the
Adam (Kingma and Ba, 2014) optimizer.

7173

3.1 Logits Calibration

In this section, we introduce our proposed logits
calibration, the Cross Entropy with Logits Calibra-
tion (CELC) for classification tasks. Some other
loss function (e.g., the Mean Squared Error for re-
gression) can also be combined with the Logits
Calibration, in the following paragraph.

3.1.1 Cross Entropy with Logits Calibration

The Cross Entropy (CE) Loss (Zhang and Sabuncu,
2018) is a widely-used loss for classification tasks
in deep learning. It first applies a log softmax
function on the output logits of the neural network.
Then, it computes the negative log likelihood (nll)
loss on the output of the log softmax function. Typ-
ically, the cross entropy loss can be defined as fol-
lows:

LCE(q) = −
NC∑

i=1

pi log(
exp(qc,i)

NC∑
j=1

exp(qc,j)

) (1)

where NC is the total number of classes in the
current tasks. qc,i represents the output logits for
class i of the current model on the current tasks. pi
can be considered as the binary label of class i. If
the data input x belongs to class i, the value of pi
will be 1, otherwise, the value will be 0.

Nevertheless, the original cross entropy loss only
concerns the performance of the current model.
Thus, the model will suffer the catastrophic for-
getting problem with the step increasing. In order
to reduce the catastrophic forgetting problem, we
consider to simultaneously evaluate the previous
model on the current tasks and compute the output
logits of the previous model qp.

Inspired by the idea from LCwoF (Kukleva et al.,
2021), we add the logits information of the previ-
ous model into the cross entropy loss. Different
from LCwoF, we do logits calibration by adding
the difference between each logits of the current
model and the previous model (qc,i−qp,i) to the cor-
responding output logits qc,i of the current model
for class i. In this way, the model can preserve im-
portant output logits information of each class for
the previous model in an element-wise way. Our
proposed Cross Entropy with Logits Calibration
(CELC) Loss is shown in Equation 2:

LCELC = −
NC∑

i=1

pi log

(
exp(qc,i + µ(qc,i − qp,i))

NC∑
j=1

exp(qc,j + µ(qc,j − qp,j))

)
(2)

where we multiply the difference between the
logits for the current model and the previous model
(qc − qp) by a weight item µ ∈ [0, 1] to control
the calibration degree. By employing this new loss
function, we can also increase the accuracy of the
model through training process by giving a reward
to the logits for the correct class if qc,i is larger than
qp,i, otherwise, giving a penalty to the logits for the
correct class if qc,i is smaller than qp,i.

3.1.2 Mean Squared Error with Logits
Calibration

Mean Squared Error (MSE) Loss (Fisher, 1922)
is the most commonly-used loss function for re-
gression tasks. It computes the squared L2 norm
between output logits and the true values and takes
the mean of the full batch. Follow the idea of the
logits calibration on cross entropy loss, we evaluate
the previous model on current tasks and take out
the output logits qp. We measure the difference be-
tween the output logits of the current model and the
previous model by adding a squared L2 norm on
the difference between logits of the current model
and the previous model (qc − qp)

2 to the origi-
nal function. The proposed Mean Squared Error
with Logits Calibration Loss LMSELC is shown in
Equation 3:

LMSELC(q) = (qc − p)2 + µ(qc − qp)
2 (3)

3.2 Parameter Calibration

In this section, we introduce the second module
of our model, Parameter Calibration (PC). Our
proposed Parameter Calibration method can effec-
tively reduce the catastrophic forgetting by giving
a penalty to the prediction if the parameters of
the current model are different from the previous
model by adding the squared difference between
the parameters of the current model and the previ-
ous model to the training loss. It includes two parts:
(1) Previous Parameter Preservation (PPP), and (2)
Current Task Training (CTT).

7174

Algorithm 1 LPC

1: given initial learning rate α ∈ R, momentum factors β1 = 0.9, β2 = 0.999, ϵ = 10−8, pre-trained
parameter vector θ∗ ∈ Rn, hyperparameter for the regularizer δ ∈ R, coefficient of the quadratic
penalty γ ∈ R, hyperparameter controlling the annealing rate r ∈ R, hyperparameter controlling the
timesteps t0 ∈ N.

2: initialize timestep t ← 0, parameter vector θt=0 ∈ Rn, importance weights Ω ← 1, first moment
vector mt=0 ← 0, second moment vector vt=0 ← 0, schedule multiplier ηt=0 ∈ R.

3: repeat
4: t← t+ 1 ▷ update timestep
5: x← SelectBatch(x) ▷ select batch data
6: qc,t ← Qc,t(x, θt−1) ▷ compute output logits for the current model

7: qp,t ← Qp,t(x, θ
∗) ▷ compute output logits for the previous model

8: ∇(ft(x; θt−1))← ∇(LCELC(qc,t, qp,t) ∥ LMSELC(qc,t, qp,t)) ▷ compute gradients

9: Ωt ← Ωt−1

10: for k ← 0 to N do
11: gt(xk)← ∇l22(ft(xk; θt−1))

12: Ωt ← Ωt + ∥gt(xk)∥
13: end for
14: Ωt ← Ωt/N ▷ compute importance weights after each update epochs
15: λ(t)← 1/(1 + exp(−r · (t− t0)) ▷ compute annealing coefficient
16: gt ← λ(t)∇ft(x; θt−1)+ 2(1− λ(t))δγΩt(θt−1 − θ∗) ▷ compute new gradients
17: mt ← β1mt−1 + (1− β1)gt ▷ update biased first moment estimate
18: vt ← β2vt−1 + (1− β2)g

2
t ▷ update biased second raw moment estimate

19: m̂t ← mt/(1− βt
1) ▷ compute bias-corrected first moment estimate

20: v̂t ← vt/(1− βt
2) ▷ compute bias-corrected second raw moment estimate

21: ηt ← SetScheduleMultiplier(t) ▷ can be fixed, decay, or also be used for warm restarts
22: θt ← θt−1 − ηt(λ(t)αm̂t/(

√
v̂t + ϵ)+ 2(1− λ(t))δγΩt(θt−1 − θ∗)) ▷ update parameters

23: until stopping criterion is met
24: return optimized parameters θt

3.2.1 Previous Parameter Preservation

As shown in Figure 1, in Previous Parameter Preser-
vation, we try to maintain the parameters of the pre-
vious model. Here, we add a regularization to the
posterior of parameters given data. The Previous
Parameter Preservation method can be regarded as
an improved method derived from RecAdam (Kirk-
patrick et al., 2017b). Different from RecAdam,
PPP measures the importance of each parameter
by introducing the importance weights Ω. During
training, the current model preserves the informa-
tion of the most important parameters to a great
extent by penalizing the changes to those important
parameters more severely. The detailed derivation
of our proposed loss function LP is shown in Equa-
tion 4:

LP = − log p(θ|DP)

≈ − log p(θ∗|DP) + δ(θ − θ∗)TH(θ∗)

Ω(θ)(θ − θ∗)

≈ δ(θ − θ∗)TH(θ∗)Ω(θ)(θ − θ∗)

≈ δ(θ − θ∗)T (NF (θ∗) +Hprior(θ
∗))

Ω(θ)(θ − θ∗)

≈ δN
∑

ij

FijΩij(θij − θ∗ij)
2

≈ δNF
∑

ij

Ωij(θij − θ∗ij)
2

= δγ
∑

ij

Ωij(θij − θ∗ij)
2

(4)

where δ is a hyperparameter for the regularizer.
H(θ∗) is the Hessian matrix of the optimization

7175

Table 1: Experimental Results on Single Task. All of results are the medians over 5 runs. The metric for CoLA is
mcc (Matthew Correlation Coefficient). The metric for STS-B is corr (Average of Pearson and Spearman Correlation
Coefficient). All other metrics are acc (Accuracy). The train-test split of the datasets is shown as (# train samples / #
test samples) in the third row.

Model
CoLA
mcc

8.5k / 1k

MNLI
acc

393k / 20k

MRPC
acc

3.7k / 1.7k

QNLI
acc

105k / 5.4k

QQP
acc

364k / 391k

RTE
acc

2.5k / 3k

SST-2
acc

67k / 1.8k

STS-B
corr

7k / 1.4k

WNLI
acc

634 / 146

Avg
acc

Avg
mcc

Avg
corr

BERT-base + Adam (rerun) Median 57.1 84.2 81.3 91.0 90.7 63.9 93.1 89.2 56.3 80.1 57.1 89.2
BERT-base + EWC (rerun) Median 54.0 84.5 83.4 91.4 90.6 67.9 92.7 89.6 33.8 77.8 54.0 89.6
BERT-base + MAS (rerun) Median 58.0 83.5 84.9 91.2 91.0 72.2 91.9 89.5 52.1 81.0 58.0 89.5
BERT-base + SI (rerun) Median 58.8 83.6 84.3 91.0 91.2 71.1 91.9 89.8 56.3 81.3 58.8 89.8
BERT-base + RecAdam (rerun) Median 59.9 82.6 85.7 91.4 88.9 70.8 93.1 90.0 56.3 81.3 59.9 90.0
BERT-base + LPC Median 61.8 85.0 86.1 91.5 91.5 74.7 93.2 90.3 62.0 83.4 61.8 90.3

ALBERT-xxlarge + Adam (rerun) Median 70.5 88.0 88.8 93.7 81.3 72.9 91.1 92.2 69.0 83.5 70.5 92.2
ALBERT-xxlarge + EWC (rerun) Median 70.5 88.2 85.0 94.2 88.5 74.0 93.9 91.4 63.4 83.9 70.5 91.4
ALBERT-xxlarge + MAS (rerun) Median 71.4 89.4 88.6 94.2 92.1 84.1 94.4 92.0 76.1 88.4 71.4 92.0
ALBERT-xxlarge + SI (rerun) Median 69.8 88.1 89.0 94.2 91.7 87.4 95.0 92.2 74.6 88.6 69.8 92.2
ALBERT-xxlarge + RecAdam (rerun) Median 70.5 88.5 87.5 93.9 87.5 89.5 93.9 92.8 78.9 88.5 70.5 92.8
ALBERT-xxlarge + LPC Median 74.1 89.8 89.4 94.3 92.3 89.5 95.8 93.3 81.7 90.4 74.1 93.3

objective with respect to θ∗. We can approximate
H(θ∗) with the empirical Fisher information ma-
trix F (θ∗) (Martens, 2014). N is the total num-
ber of data inputs in DP . Hprior(θ

∗) is the Hes-
sian matrix of the negative log prior probability
− log p(θ). EWC ignores Hprior(θ

∗) and approx-
imates H(θ∗) by assigning the diagonal values of
F (θ∗) to H(θ∗). Thus, we replace NF with a
constant value γ at the end of the derivation. We
can consider γ as a coefficient of the quadratic
penalty. During the derivation, we can simply ig-
nore − log p(θ∗|DP) as it is a constant term with
respect to θ∗. Ω(θ) is estimated by the sensitivity
of the squared L2 norm of the function output to
their changes. We can obtain Ωij by accumulating
the gradients over the given data points by Equation
5:

Ωij =
1

N

N∑

k=1

∥gij(xk)∥ (5)

where gij(xk) =
∂[l22(f(xk;θ))]

∂θij
is the gradients of

the squared L2 norm of the learned neural network
with respect to the parameter θij . The output of
f(xk; θ) is the loss of the network.

In Equation 4, θij is the parameter of the current
model of the connections between pairs of neurons
ni and nj in two consecutive layers. θ∗ represents
parameters of the previous model, which can be
assumed as a local minimum of the parameter space
as shown in Equation 6:

θ∗ = argmin
θ
{− log p(θ|DP)} (6)

3.2.2 Current Task Training with Continual
Learning

In the current task training process, we train the
current model and evaluate the previous model on
current tasks simultaneously. In the continual learn-
ing setting, first, we train with Task T1, then evalu-
ate on Task T1. Second, our current task training
will cover T2 task, and then evaluate on instances
related to Task T1 and T2. Next, our current task
training will focus on Task T3 and then evaluate
on instances related to Task T1, T2 and T3 and so
on. Here, we present the detail of one particular
current task where how we incorporate drift from
previous tasks to the current task. The function of
the neural network whose output is the loss of the
model can be represented as follows:

LC = ft(x; θt−1) (7)

where t is the timestep. We compute the loss
by the proposed Cross Entropy with Logits Cali-
bration (CELC) for classification tasks and Mean
Squared Error with Logits Calibration (MSELC)
for regression tasks as follows:

ft = LCELC(Q(x; θt−1)) ∥ LMSELC(Q(x; θt−1))
(8)

where Q(x; θt−1) represents the function of the
current model and the previous model whose output
are logits with data inputs x and parameters θt−1

of the model in timestep t− 1.
To adapt the target task from previous tasks to

current tasks, we introduce a method allowing the
objective function to gradually drift from LP to LC

with the annealing coefficient λ(t):

7176

LT = λ(t)LC + (1− λ(t))LP (9)

where t refers to the timestep during the training
process. We compute λ(t) = 1

1+exp(−r·(t−t0))
as

the sigmoid annealing function (Kiperwasser and
Ballesteros, 2018), where r is the hyperparameter
controlling the annealing rate and t0 is the hyper-
parameter controlling the timesteps.

When t < t0, −r · (t − t0) will be positive. In
this case, if r → ∞, then exp(−r · (t − t0)) →
∞, λ(t) → 0, LT = LP . When t > t0, −r ·
(t − t0) will be negative. In this case, if r → ∞,
then exp(−r · (t − t0)) → 0, λ(t) → 1, LT =
LC . Otherwise, if r → 0, then −r · (t − t0) →
0, exp(−r · (t − t0)) → 1, λ(t) → 0.5, LT =
0.5LC + 0.5LP . Finally, if 0 < r < ∞, then
0 < λ < 1. With time goes by, the objective
of the model drifts from previous tasks to current
tasks gradually. Finally, by doing back propagation,
we update parameters of the current model with
parameter calibration.

3.3 LPC Algorithm
In this section, we combine the Logits Calibration
(CELC or MSELC) with Parameter Calibration
(PPP and CTT) into a brand-new optimization algo-
rithm as shown in Algorithm 1. The Logits Calibra-
tion (LC) part is shown from line 6 to line 8. The
Parameter Calibration (PC) part is shown from line
9 to line 16 and line 22. Here, we introduce LPC
Algorithm which integrates the quadratic penalty
with importance weights and the annealing coef-
ficient into a complete optimization algorithm by
decoupling them from the gradient update in Adam
optimization algorithm (Kingma and Ba, 2014).
The orange part in Algorithm 1 depicts how LPC is
different from RecAdam (Chen et al., 2020), more
specific description could be viewed in Appendix.

4 Evaluations

In this section, we evaluate LPC on the Gen-
eral Language Understanding Evaluation (GLUE)
(Wang et al., 2018) benchmark. We compare our
model with Adam (Kingma and Ba, 2014), EWC
(Kirkpatrick et al., 2017b), MAS (Aljundi et al.,
2018), SI (Zenke et al., 2017), and RecAdam (Chen
et al., 2020).

4.1 Dataset
We evaluate our approach LPC on the GLUE bench-
mark, which is a collection of resources for train-

ing, evaluating, and analyzing in the NLU systems
(Wang et al., 2018). It contains the following 9
different scenarios: (1) Single-Sentence Scenar-
ios: CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2019), and SST-2 The Stanford
Sentiment Treebank (Socher et al., 2013); (2) Sim-
ilarity and Paraphrase Senarios: MRPC The Mi-
crosoft Research Paraphrase Corpus (Dolan and
Brockett, 2005), QQP The Quora Question Pairs
dataset1, and STS-B The Semantic Textual Simi-
larity Benchmark (Cer et al., 2017); (3) Inference
Scenarios: MNLI The Multi-Genre Natural Lan-
guage Inference Corpus (Williams et al., 2017),
QNLI The Stanford Question Answering Dataset
(Rajpurkar et al., 2016), RTE The Recognizing
Textual Entailment datasets (Dagan et al., 2005)
(Haim et al., 2006) (Giampiccolo et al., 2007) (Ben-
tivogli et al., 2009), and WNLI The Winograd
Schema Challenge (Levesque et al., 2012). We
perform our experiments on 9 out of 9 corpora.

4.2 Experimental Setup

We perform the experiments based on deep pre-
trained language models BERT-base2 (Devlin et al.,
2018) and ALBERT-xxlarge (Lan et al., 2019),
respectively. BERT is a multi-layer bidirec-
tional Transformer encoder using bidirectional self-
attention to learn a Transformer encoder for rep-
resenting texts. ALBERT is an advanced deep
pre-trained language model with lower memory
consumption and faster training speed than BERT.
ALBERT improves BERT using parameter reduc-
tion techniques and employing self-supervised loss
for sentence-order prediction (SOP).

We have two different experimental settings: (1)
single task setting, and (2) continual learning set-
ting. In the single task setting, we treat the pretrain-
ing as the previous task, and choose one of the tasks
as the current task. In the continual learning set-
ting, we train the model on several different tasks
sequentially in a given order. Each time after train-
ing, we evaluate the current model on all the tasks
we have trained on. For example, if our current
model is trained on QNLI and previously trained
with CoLA and MRPC. During evaluation, we use
instances related to all 3 tasks (CoLA, MRPC, and
QNLI) so far we observed. After the last task train-
ing as a current model, we report the evaluation
results based on all the tasks that we have seen so

1https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

2https://huggingface.co/transformers/model_doc/bert.html

7177

Table 2: Experimental Results on Sequentially Emerged Classification Tasks (The order of emergence: CoLA,
MRPC, QNLI, QQP, RTE, SST-2, and WNLI). The results are the validation results on all the 7 classification tasks
using the model sequentially trained on all the 7 classification tasks. All of results are the medians over 10 runs.
The metric for CoLA is mcc (Matthew Correlation Coefficient). All other metrics are acc (Accuracy). The train-test
split of the datasets is shown as (# train samples / # test samples) in the third row.

Model
CoLA

mcc / fgt
8.5k / 1k

MRPC
acc / fgt

3.7k / 1.7k

QNLI
acc / fgt

105k / 5.4k

QQP
acc / fgt

364k / 391k

RTE
acc / fgt
2.5k / 3k

SST-2
acc / fgt

67k / 1.8k

WNLI
acc / fgt

634 / 146

Avg
acc / fgt

Avg
mcc / fgt

BERT-base + EWC (rerun) Median 2.8 / 49.0 57.3 / 21.4 44.2 / 45.5 70.3 / 20.3 46.9 / 9.8 72.6 / 18.2 22.5 / 0.0 52.3 / 19.2 2.8 / 49.0
BERT-base + MAS (rerun) Median 20.1 / 30.7 63.7 / 20.8 70.1 / 3.4 48.1 / 21.1 52.0 / 1.5 67.3 / 7.9 29.1 / 0.0 55.1 / 9.1 20.1 / 30.7
BERT-base + SI (rerun) Median 11.3 / 46.6 52.7 / 29.8 81.9 / 7.7 57.7 / 25.2 57.8 / 9.0 86.7 / 1.1 28.2 / 0.0 60.8 / 12.1 11.3 / 46.6
BERT-base + RecAdam (rerun) Median 2.0 / 58.6 51.1 / 19.7 49.4 / 11.5 50.1 / 25.3 49.8 / 3.3 48.7 / 31.8 11.3 / 0.0 43.4 / 15.3 2.0 / 58.6
BERT-base + LPC Median 27.1 / 25.8 63.9 / 18.8 83.0 / 2.2 70.5 / 11.7 58.5 / 6.5 87.3 / 0.4 32.4 / 0.0 65.9 / 6.6 27.1 / 25.8

Table 3: The Results of Ablation Study on Adam, Logits Calibration (LC), Parameter Calibration (PC), and Logits
and Parameter Calibration (LPC). All of results are the medians over 5 runs. The metric for CoLA is mcc (Matthew
Correlation Coefficient). The metric for STS-B is corr (Average of Pearson and Spearman Correlation Coefficient).
All other metrics are acc (Accuracy). The train-test split of the datasets is shown as (# train samples / # test samples)
in the third row.

Model
CoLA
mcc

8.5k / 1k

MRPC
acc

3.7k / 1.7k

QNLI
acc

105k / 5.4k

RTE
acc

2.5k / 3k

SST-2
acc

67k / 1.8k

STS-B
corr

7k / 1.4k

WNLI
acc

634 / 146

Avg
acc

Avg
mcc

Avg
corr

BERT-base + Adam (rerun) Median 57.1 81.3 90.1 63.9 93.1 89.2 56.3 76.9 57.1 89.2
BERT-base + Adam + LC Median 61.2 82.8 91.0 66.8 92.3 89.3 56.3 77.8 61.2 89.3
BERT-base + PC Median 61.4 85.3 91.2 72.2 92.8 90.2 57.7 79.8 61.4 90.2
BERT-base + LPC Median 61.8 86.1 91.5 74.7 93.2 90.3 62.0 81.5 61.8 90.3

far. For the continual learning setting, we focus
on evaluating the overall performance on classifi-
cation as same as existing work (Kirkpatrick et al.,
2017b), so we not use STS-B (regression) under
this setting. The forgetting metric (Chaudhry et al.,
2019) fgt for a given task is measured by the differ-
ence between results of the validation metrics (e.g.,
accuracy) when the task is first validated and last
validated.

4.3 Results

We perform single task experiments on 9 scenar-
ios of the GLUE benchmark as shown in Table
1. From the experimental results with BERT-base
model, we outperform BERT-base with Adam,
EWC, MAS, SI, and RecAdam models on 9 out
of 9 scenarios of the GLUE benchmark. From the
experimental results on ALBERT-xxlarge model,
we also outperform ALBERT-xxlarge with Adam,
EWC, MAS, SI, and RecAdam on 9 out of 9 sce-
narios of the GLUE benchmark. In both cases, we
achieve the best average acc, mcc and corr com-
pared to the other 5 models. For the result under
the continual learning setting, we try different task
sequence to evaluate the performance of our work
with EWC, MAS, SI, and RecAdam, the descrip-

Table 4: Different Task Sequences Used for Continual
Classification Setting

Order # Task Sequence
1 CoLA→MRPC→ QNLI→ QQP→ RTE→ SST-2→WNLI
2 QNLI→ QQP→ CoLA→MRPC→ RTE→ SST-2→WNLI
3 RTE→ SST-2→WNLI→ QNLI→ QQP→ CoLA→MRPC

tion of task sequences is in Table 4, We show the
result of sequence 1 in Table 2, other results are
listed in the Appendix. From the experimental re-
sults, we can see our model achieves less forgetting
than EWC, MAS, SI, and RecAdam especially for
older tasks like CoLA, MRPC, QNLI and QQP. In
general, we achieve the best average acc on MRPC,
QNLI, QQP, RTE, SST-2, and WNLI, and the best
mcc on CoLA. We also achieve the least average
forgetting on all the 7 classification tasks. The re-
sults of continual learning setting show that our
method can achieve the best performance and for-
get less than other methods, which demonstrate the
effectiveness of our method to address the catas-
trophic forgetting problem in continual learning.

What is more, there is no obvious relationship
between the size of the datasets and the results.
Namely, our model performs well on both large
datasets and small datasets.

7178

4.4 Ablation Study

As we have mentioned, our model (LPC) has two
important components, Logits Calibration (LC)
and Parameter Calibration (PC). Thus, we do ab-
lation study on these two components separately
with BERT-base pre-trained model and ALBERT-
xxlarge pre-trained model on the 7 scenarios of
the GLUE benchmark. The results of ablation
study with BERT-base model is shown in Table
3. The results of ablation study with ALBERT-
xxlarge model are listed in Appendix. From Table
3, we can see both of LC and PC achieve better
results than the baseline Adam. LPC achieves the
best results among all three models. Compared
with Adam, LC achieves 1.2% improvements on
average measured by acc on MRPC, QNLI, RTE,
SST-2, and WNLI, 7.2% improvements measured
by mcc on CoLA, and 0.1% improvements mea-
sured by corr on STS-B. Compared with Adam,
PC achieves 3.8% improvements on average mea-
sured by acc on MRPC, QNLI, RTE, SST-2, and
WNLI, 7.5% improvements measured by mcc on
CoLA, and 1.1% improvements measured by corr
on STS-B. Compared with Adam, LPC achieves
6.0% improvements on average measured by acc
on MRPC, QNLI, RTE, SST-2, and WNLI, 8.2%
improvements measured by mcc on CoLA, and
1.2% improvements measured by corr on STS-B.

5 Conclusion

In this paper, we propose Logits and Parameter Cal-
ibration (LPC) framework on continual learning to
deal with the catastrophic forgetting problem. The
proposed framework includes two important com-
ponents, Logits Calibration (LC) and Parameter
Calibration (PC). We introduce LPC algorithm by
integrating the Logits Calibration and Parameter
Calibration into a brand-new optimization algo-
rithm based on the well-known Adam optimization
algorithm. We do experiments with single task
setting on 9 scenarios of GLUE benchmark and
achieve state-of-the-art performance. We also do
experiments with continual learning setting and
achieve the best average accuracy and mcc, and the
least forgetting. The limitation of our work is that
when data comes in an online manner (sometimes
without labels), we have no technique to handle it.
Thus, our future direction is to make our model fit
the online learning settings. We also release the
open-source LPC Algorithm to further benefit the
continual learning research community.

Acknowledgement

The research reported herein was supported in part
by NSF awards DMS-1737978, DGE-2039542,
OAC-1828467, OAC-1931541, and DGE-1906630,
ONR awards N00014-17-1-2995 and N00014-
20-1-2738, Army Research Office Contract No.
W911NF2110032 and IBM faculty award (Re-
search). We also sincerely thank all the partici-
pants in the questionnaire for their valuable contri-
butions.

References
Satyen Abrol and Latifur Khan. 2010. Twinner: under-

standing news queries with geo-content using twitter.
In Proceedings of the 6th Workshop on Geographic
information Retrieval, pages 1–8.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-
seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 139–154.

Mamoun Awad, Latifur Khan, and Bhavani Thurais-
ingham. 2008. Predicting www surfing using mul-
tiple evidence combination. The VLDB Journal,
17(3):401–417.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2018. Effi-
cient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2019. Efficient
lifelong learning with a-gem. ICLR.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. arXiv preprint arXiv:2004.12651.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177–190. Springer.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. 2019. A continual learning sur-
vey: Defying forgetting in classification tasks. arXiv
preprint arXiv:1909.08383.

7179

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Ronald A Fisher. 1922. On the mathematical founda-
tions of theoretical statistics. Philosophical Trans-
actions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical
Character, 222(594-604):309–368.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1–9, Prague. Association for
Computational Linguistics.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 6:225–240.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017a. Overcom-
ing catastrophic forgetting in neural networks. Pro-
ceedings of the national academy of sciences, page
201611835.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017b. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Anna Kukleva, Hilde Kuehne, and Bernt Schiele. 2021.
Generalized and incremental few-shot learning by
explicit learning and calibration without forgetting.
arXiv preprint arXiv:2108.08165.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth International Conference on the Principles of
Knowledge Representation and Reasoning. Citeseer.

Dingcheng Li, Zheng Chen, Eunah Cho, Jie Hao, Xi-
aohu Liu, Fan Xing, Chenlei Guo, and Yang Liu.
2022a. Overcoming catastrophic forgetting during
domain adaptation of seq2seq language generation.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5441–5454.

Xiaodi Li, Latifur Khan, Mahmoud Zamani, Shamila
Wickramasuriya, Kevin W Hamlen, and Bhavani
Thuraisingham. 2022b. Mcom: A semi-supervised
method for imbalanced tabular security data. In IFIP
Annual Conference on Data and Applications Secu-
rity and Privacy, pages 48–67. Springer.

Zhizhong Li and Derek Hoiem. 2017a. Learning with-
out forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947.

Zhizhong Li and Derek Hoiem. 2017b. Learning with-
out forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning.
Advances in neural information processing systems,
30:6467–6476.

Arun Mallya and Svetlana Lazebnik. 2018. Packnet:
Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages
7765–7773.

James Martens. 2014. New insights and perspectives
on the natural gradient method. arXiv preprint
arXiv:1412.1193.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and
Richard E Turner. 2017. Variational continual learn-
ing. arXiv preprint arXiv:1710.10628.

German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. 2019. Continual
lifelong learning with neural networks: A review.
Neural Networks, 113:54–71.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

7180

https://aclanthology.org/W07-1401
https://aclanthology.org/W07-1401

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017a. icarl: In-
cremental classifier and representation learning. In
CVPR, pages 2001–2010.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017b. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timo-
thy Lillicrap, and Gregory Wayne. 2019. Experience
replay for continual learning. In Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.

Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. 2018. Overcoming catastrophic forget-
ting with hard attention to the task. In International
Conference on Machine Learning, pages 4548–4557.
PMLR.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. arXiv preprint arXiv:1705.08690.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Lei Wang, Li Liu, and Latifur Khan. 2004. Automatic
image annotation and retrieval using subspace clus-
tering algorithm. In Proceedings of the 2nd ACM
international workshop on Multimedia databases,
pages 100–108.

Yigong Wang, Zhuoyi Wang, Yu Lin, Latifur Khan,
and Dingcheng Li. 2021a. Cifdm: continual and
interactive feature distillation for multi-label stream
learning. In SIGIR, pages 2121–2125.

Zhuoyi Wang, Yuqiao Chen, Chen Zhao, Yu Lin, Xu-
jiang Zhao, Hemeng Tao, Yigong Wang, and Latifur
Khan. 2021b. Clear: Contrastive-prototype learning
with drift estimation for resource constrained stream
mining. In Proceedings of the Web Conference 2021,
pages 1351–1362.

Zhuoyi Wang, Dingcheng Li, and Ping Li. 2022. Latent
coreset sampling based data-free continual learning.
In Proceedings of the 31st ACM International Con-
ference on Information & Knowledge Management,
pages 2077–2087.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Haiyan Yin, Dingcheng Li, and Ping Li. 2022a. Con-
tinual learning for natural language generations with
transformer calibration. In The SIGNLL Conference
on Computational Natural Language Learning.

Haiyan Yin, Dingcheng Li, and Ping Li. 2022b. Learn-
ing to selectively learn for weakly supervised para-
phrase generation with model-based reinforcement
learning. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1385–1395.

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual learning through synaptic intel-
ligence. In International Conference on Machine
Learning, pages 3987–3995. PMLR.

Zhilu Zhang and Mert R Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels. In 32nd Conference on Neural
Information Processing Systems (NeurIPS).

Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and
Shu-Tao Xia. 2020. Maintaining discrimination and
fairness in class incremental learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13208–13217.

7181

https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf

A LPC Appendix

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Eu
cl

id
e

an
 D

is
ta

n
ce

(1)

LPC RecAdam Adam

50

52

54

56

58

60

62

4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
et

ri
c

(m
cc

)

(3)

LPC RecAdam Adam

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
et

ri
c

(m
cc

)

（2）

LPC RecAdam Adam

Figure 2: Comparison of Parameter Forgetting and
Model Performance with the Epoch Increasing on CoLA
Corpus with BERT-base Pre-trained Model.

A.1 Specific Desription of Algorithm 1

From line 9 to line 14, we show how we calculate
Ω by initializing Ω as a tensor filled with the scalar
value one. The size of Ω are the same as that of
parameter size of the previous model and the cur-
rent model. From line 10 to line 13, we accumulate
the gradients of the squared L2 norm of the learned
neural network over the given data inputs to obtain
importance weights Ωij for parameter θij . In line
14, we compute the mean value of Ωij by dividing
it by N . Here, N is the total number of data in-
puts at a given phase. In line 16, we compute the
gradients of the loss function as a weighted combi-
nation of the gradients of LC and LP . In line 22,

we update the network parameters θ by the gradient
descent method.

A.2 Forgetting Analysis
In addition to computing accuracy, we also mea-
sure the forgetting by computing the euclidean dis-
tance between the parameters of the current model
and the previous model on CoLA corpus. Figure
2 shows the comparison of parameter forgetting
from the first epoch to the last epoch and the cor-
responding accuracy with epoch increasing among
LPC, RecAdam and Adam. In Figure 2 chart (1),
with epoch increasing, the euclidean distance of
Adam increases a lot, which means the forgetting
of Adam is huge with the epoch increasing. How-
ever, our model (LPC) reduces the forgetting in
a large extent compared with Adam and achieves
similar forgetting with RecAdam, another baseline
trying to reduce carastrophic forgetting. Here, the
forgettnig of our model is a little bit worse than
RecAdam is because our model tries to remember
the most important parameters while forget unim-
portant parameters. Furthermore, in Figure 2 chart
(3), we can see our model (LPC) achieves the best
accuracy compared to RecAdam and Adam all the
time after Epoch 4. Figure 2 chart (2) shows results
of all models starting from Epoch 0.

A.3 Hyperparameter Analysis
In this section, we analyze the most essential hy-
perparameters we set in the LPC model. δ is a
hyperparameter controlling the level of regulariza-
tion. Setting δ between 1 and 2 balances the level
of regularization. Ω is a parameter measuring the
importance of different parameters in the model.
Initializing Ω as ones makes the importance of each
parameter more balanced. The hyperparameter u_e
controls the updating epochs of Ω. Typically, u_e
is between 1 and 16. w_s is a hyperparameter con-
trolling the number of steps of updating with low
learning rate before/at the beginning of the train-
ing process. We set w_s as 0, 320 or 640. After
these warmup steps, we will use the regular learn-
ing rate to train our model until convergence. In
other words, we have a few steps adjustment before
we actually train the model. From our experiments,
we find that the hyperparameters δ, u_e, and w_s
have great influences on the experimental results.

Figure 3 shows the comparison of different hy-
perparameter (δ, u_e, and w_s) initializations on
CoLA, MRPC, and STS-B corpora with BERT-
base pre-trained model.

7182

58

63

68

73

78

83

88

93

u_e=1 u_e=2 u_e=4 u_e=8 u_e=16

M
e

tr
ic

 (
m

cc
, a

cc
, o

r
co

rr
)

(2)

CoLA MRPC STS-B

58

63

68

73

78

83

88

93

w_s=0 w_s=320 w_s=640

M
e

tr
ic

 (
m

cc
, a

cc
, o

r
co

rr
)

(3)

CoLA MRPC STS-B

58

63

68

73

78

83

88

93

δ=1 δ=1.2 δ=1.4 δ=1.8 δ=2

M
e

tr
ic

 (
m

cc
, a

cc
, o

r
co

rr
)

(1)

CoLA MRPC STS-B

Figure 3: Comparison of Different Hyperparameter Initializations on CoLA, MRPC, and STS-B Corpora with
BERT-base Pre-trained Model. The metric for CoLA, MRPC, and STS-B are mcc (Matthew Correlation Coefficient),
acc (Accuracy), and corr (Average of Pearson and Spearman Correlation Coefficient), respectively.

Table 5: The Results of Ablation Study on Adam, Logits Calibration (LC), Parameter Calibration (PC), and Logits
and Parameter Calibration (LPC) with ALBERT-xxlarge Pre-trained Model. All of results are the medians over 5
runs. The metric for CoLA is mcc (Matthew Correlation Coefficient). The metric for STS-B is corr (Average of
Pearson and Spearman Correlation Coefficient). All other metrics are acc (Accuracy). The train-test split of the
datasets is shown as (# train samples / # test samples) in the third row.

Model
CoLA
mcc

8.5k / 1k

MRPC
acc

3.7k / 1.7k

QNLI
acc

105k / 5.4k

RTE
acc

2.5k / 3k

SST-2
acc

67k / 1.8k

STS-B
corr

7k / 1.4k

WNLI
acc

634 / 146

Avg
acc

Avg
mcc

Avg
corr

ALBERT-xxlarge + Adam (rerun) Median 70.5 88.0 93.7 72.9 91.1 92.2 69.0 82.9 70.5 92.2
ALBERT-xxlarge + Adam + LC Median 71.0 88.5 93.8 88.4 95.5 92.3 70.4 87.3 71.0 92.3
ALBERT-xxlarge + PC Median 74.1 88.6 94.0 88.4 95.7 92.9 74.6 88.3 74.1 92.9
ALBERT-xxlarge + LPC Median 74.1 89.4 94.3 89.5 95.8 93.3 81.7 90.1 74.1 93.3

In Figure 3 chart (1), we set u_e = 2 and w_s =
320. We can see when δ increases from 1 to 1.2,
the performance of the model decreases on CoLA
and STS-B corpora while increases on the MRPC
corpus. After that, the performance of the model
increases with δ increasing. The model achieves
the best results when δ = 2 on all the three corpora.

In Figure 3 chart (2), we set δ = 2 and w_s =
320. We can see the performance of the model
varies with different values of u_e. Specifically,
when u_e increases from 1 to 2, the performance of
the model improves on CoLA and STS-B corpora
while decreases on the MRPC corpus. When u_e
increases from 2 to 4, the performance decreases in
a large extent especially on the CoLA corpus. How-
ever, when u_e increases from 4 to 8, the model
performance increases again. When u_e increases
from 8 to 16, there is no obvious difference on the
performance.

In Figure 3 chart (3), we set δ = 1 and u_e = 1.
We can see when w_s increases from 0 to 320,
there is an increase on all the three corpora. How-
ever, when w_s increases from 320 to 640, the
performance decreases slightly, instead.

A.4 Ablation Study with ALBERT-xxlarge
Model

As we have mentioned, our model (LPC) has two
important components, Logits Calibration (LC) and
Parameter Calibration (PC). In addition to doing
ablation study with BERT-base pre-trained model,
we also do ablation study on these two compo-
nents separately with ALBERT-xxlarge pre-trained
model on the 7 scenarios of the GLUE benchmark.
The results of ablation study with ALBERT-xxlarge
pre-trained model is shown in Table 5. We can see
with ALBERT-xxlarge pre-trained model, both of
LC and PC achieve better results than the baseline
Adam. LPC achieves the best results among all
three models. Compared with Adam, LC achieves
5.3% improvements on average measured by acc on
MRPC, QNLI, RTE, SST-2, and WNLI, 0.7% im-
provements measured by mcc on CoLA, and 0.1%
improvements measured by corr on STS-B. Com-
pared with Adam, PC achieves 6.5% improvements
on average measured by acc on MRPC, QNLI, RTE,
SST-2, and WNLI, 5.1% improvements measured
by mcc on CoLA, and 0.8% improvements mea-
sured by corr on STS-B. Compared with Adam,

7183

Table 6: Experimental Results on Sequentially Emerged Classification Tasks (The order of emergence: QNLI, QQP,
CoLA, MRPC, RTE, SST-2, and WNLI). The results are the validation results on all the 7 classification tasks using
the model sequentially trained on all the 7 classification tasks. All of results are the medians over 10 runs. The
metric for CoLA is mcc (Matthew Correlation Coefficient). All other metrics are acc (Accuracy). The train-test split
of the datasets is shown as (# train samples / # test samples) in the third row.

Model
QNLI

acc / fgt
105k / 5.4k

QQP
acc / fgt

364k / 391k

CoLA
mcc / fgt
8.5k / 1k

MRPC
acc / fgt

3.7k / 1.7k

RTE
acc / fgt
2.5k / 3k

SST-2
acc / fgt

67k / 1.8k

WNLI
acc / fgt

634 / 146

Avg
acc / fgt

Avg
mcc / fgt

BERT-base + EWC (rerun) Median 65.4 / 25.4 60.4 / 30.0 5.9 / 38.7 36.4 / 46.3 57.0 / 5.1 66.5 / 24.6 26.6 / 0.0 52.1 / 21.9 5.9 / 38.7
BERT-base + MAS (rerun) Median 56.2 / 34.0 57.5 / 12.2 6.3 / 3.3 63.2 / 3.8 47.7 / 5.7 55.5 / 1.8 20.8 / 0.0 50.2 / 9.6 6.3 / 3.3
BERT-base + SI (rerun) Median 78.1 / 12.8 52.2 / 31.9 3.5 / 43.8 40.3 / 38.8 57.4 / 9.4 83.3 / 3.3 26.8 / 0.0 56.4 / 16.0 3.5 / 43.8
BERT-base + RecAdam (rerun) Median 49.1 / 42.2 47.0 / 28.5 0.6 / 14.6 54.7 / 11.4 53.1 / 2.3 49.0 / 31.7 21.1 / 0.0 45.7 / 19.4 0.6 / 14.6
BERT-base + LPC Median 86.8 / 4.1 63.7 / 22.7 15.7 / 25.3 40.9 / 37.7 60.3 / 2.2 83.5 / 1.7 35.2 / 0.0 61.7 / 11.4 15.7 / 25.3

Table 7: Experimental Results on Sequentially Emerged Classification Tasks (The order of emergence: RTE, SST-2,
WNLI, QNLI, QQP, CoLA, and MRPC). The results are the validation results on all the 7 classification tasks using
the model sequentially trained on all the 7 classification tasks. All of results are the medians over 10 runs. The
metric for CoLA is mcc (Matthew Correlation Coefficient). All other metrics are acc (Accuracy). The train-test split
of the datasets is shown as (# train samples / # test samples) in the third row.

Model
RTE

acc / fgt
2.5k / 3k

SST-2
acc / fgt

67k / 1.8k

WNLI
acc / fgt

634 / 146

QNLI
acc / fgt

105k / 5.4k

QQP
acc / fgt

364k / 391k

CoLA
mcc / fgt
8.5k / 1k

MRPC
acc / fgt

3.7k / 1.7k

Avg
acc / fgt

Avg
mcc / fgt

BERT-base + EWC (rerun) Median 50.9 / 18.8 46.8 / 43.0 43.7 / 7.0 42.7 / 47.4 75.8 / 15.0 41.4 / 5.6 79.5 / 0.0 56.6 / 21.9 41.4 / 5.6
BERT-base + MAS (rerun) Median 48.7 / 16.3 75.1 / 13.1 38.0 / 5.0 56.9 / 17.9 44.6 / 29.6 6.1 / 3.1 68.5 / 0.0 55.3 / 13.7 6.1 / 3.1
BERT-base + SI (rerun) Median 42.6 / 25.9 52.0 / 40.2 47.9 / 2.8 27.9 / 61.1 67.8 / 14.7 32.2 / 6.2 83.0 / 0.0 53.5 / 24.1 32.2 / 6.2
BERT-base + RecAdam (rerun) Median 51.6 / 18.4 50.8 / 29.5 49.3 / 7.0 51.4 / 9.7 44.4 / 31.1 -6.3 / 18.0 64.9 / 0.0 52.1 / 16.0 -6.3 / 18.0
BERT-base + LPC Median 56.7 / 5.4 67.4 / 23.4 57.7 / 1.4 66.4 / 11.0 70.9 / 7.9 46.9 / 1.2 79.9 / 0.0 66.5 / 8.2 46.9 / 1.2

LPC achieves 8.7% improvements on average mea-
sured by acc on MRPC, QNLI, RTE, SST-2, and
WNLI, 5.1% improvements measured by mcc on
CoLA, and 1.2% improvements measured by corr
on STS-B. Thus, we can conclude that our model
can achieve state-of-the-art results with different
pre-trained model. These results prove the scalabil-
ity of our model.

A.5 Experimental Results on Sequentially
Emerged Classification Tasks with
Different Orders of Emergence

For continual learning setting, in addition to the
original order of emergence, we also do experi-
ments on sequentially emerged classification tasks
with different orders of emergence. The results are
shown in Table 6 and Table 7. In both cases, even
with different orders of emergence, LPC achieves
the best average accuracy and mcc. The results
demonstrate the superiority and robustness of LPC
on continual learning setting.

A.6 Hyper-parameters for the Rerun of
Baselines

For all the baselines, we use standard hyper-
parameters. For example, for BERT-base model,

the learning rate of all the baseline models is 2e-5.
For ALBERT-xxlarge model, the learning rate of
all the baseline models is 1e-5. The max sequence
length of all the models is 128. For RecAdam,
the annealing k is 0.1, the pretrain coefficient is
5000. For EWC, MAS, and SI, the regularization
coefficient is 150.

7184

