
Findings of the Association for Computational Linguistics: NAACL 2022, pages 1787 - 1798
July 10-15, 2022 ©2022 Association for Computational Linguistics

Crake: Causal-Enhanced Table-Filler for Question Answering
over Large Scale Knowledge Base

Minhao Zhang1♣ Ruoyu Zhang1♣ Yanzeng Li1♦ Lei Zou1,2♣

1 Wangxuan Institute of Computer Technology (WICT), Peking University, China;
2Beijing Academy of Artificial Intelligence, Beijing, China;
♣{zhangminhao,ry_zhang,zoulei}@pku.edu.cn

♦ liyanzeng@stu.pku.edu.cn

Abstract

Semantic parsing solves knowledge base (KB)
question answering (KBQA) by composing a
KB query, which generally involves node ex-
traction (NE) and graph composition (GC) to
detect and connect related nodes in a query. De-
spite the strong causal effects between NE and
GC, previous works fail to directly model such
causalities in their pipeline, hindering the learn-
ing of subtask correlations. Also, the sequence-
generation process for GC in previous works
induces ambiguity and exposure bias, which
further harms accuracy. In this work, we for-
malize semantic parsing into two stages. In
the first stage (graph structure generation), we
propose a causal-enhanced table-filler to over-
come the issues in sequence-modelling and to
learn the internal causalities. In the second
stage (relation extraction), an efficient beam-
search algorithm is presented to scale complex
queries on large-scale KBs. Experiments on
LC-QuAD 1.0 indicate that our method sur-
passes previous state-of-the-arts by a large mar-
gin (17%) while remaining time and space ef-
ficiency. The code and models are available at
https://github.com/AOZMH/Crake.

1 Introduction

To incorporate knowledge in real-world question-
answering systems, knowledge base question an-
swering (KBQA) utilizes a background knowl-
edge base (KB) as the source of answers to fac-
toid natural language questions. Leveraging the
versatility of KB query languages like SPARQL
(Prud’hommeaux, 2008), many previous works
(Unger et al., 2012; Yahya et al., 2012) adopted a se-
mantic parsing paradigm for KBQA, in which ques-
tions are converted to equivalent SPARQL queries
and answers are given by executing the queries
in KB. Regarding the intrinsic graph structure of
SPARQLs, some works further reduced such pro-
cedure as generating the query graph of SPARQLs
w.r.t. questions. However, these methods either

Output�

[Question]�
Which�person�discovered�the
class�of�Swinhoe's�Crake?

Graph�Structure�Generation Relation�Extraction

[SPARQL]�select�?person��
{�?person�dbp:type�dbo:person.��
?class�dbp:named_by�?person.

dbr:Swinhoe's_Crake�dbp:class�?class�}

?person

select

dbo:person?class

dbr:Swinhoe's_Crake

Node�
Extraction�

Graph�
Composition�

select

dbp:typedbp:class

dbp:named_by

Which� person discovered the class of Swinhoe'sCrake

Which�

person

discovered

the

class

of

Swinhoe's

Crake

O B_VT O O B_V O B_E I_E
Input�
Question

RoBERTa
Encoder

Biaffine�
Attention�

FCN�
Sequence�
Labeling�

♣ ♠

Label�
Transfer�

[CLS]

[CLS]

O

♥&♦ Generated�Query�Graph�Structure

♥

♣ ♦

♠

select

▟▛

▚

▞

0 0 1▞ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1▞ 0 1▟ 0 0 1▛ 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1▛ 0 0 0 0 1▚ 1▚

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1▚ 0 0 0

0 0 0 0 0 1▚ 0 0 0

Node Mention Tag Links�to

♠ Swinhoe's
Crake

Entity
dbr:Swinhoe's�

_Crake

♦ person Type dbo:person

♣ class Variable /

♥ person Variable /

🍍，♦，♥，⚪，♦，■，▲，★，🌙，🍕，●，※，是😂🤣😃😍🧧💋♦🩸🍂🎈🎯🀄♠♣♥♦🔈🔉🚩☁❤🧡💛💚🖤🤍💔💤⛔
❌❗❓❔✅⏺🔴➕➖➗✖🔘🔴🔵⚫⬜⚪⬛🟨▪▫◾◻🗨，🍎，🍍，🍇，🥥

Figure 1: Generating a query graph (bottom) by two
stages to represent the SPARQL (right-top). At graph
structure generation stage, node-extraction generates all
graph nodes while graph-composition adds unlabeled
edges between proper nodes. Then, the relation extrac-
tion stage decides the specific predicate of each edge.

require auxiliary tools (e.g. AMR in Kapanipathi
et al., 2021, constituency tree in Hu et al., 2021, de-
pendency tree in Hu et al., 2017) causing potential
cascading errors, or rely on predefined templates
(Cui et al., 2017; Athreya et al., 2021) limiting their
expressiveness and generalization abilities.

To address these, efforts were made on devising
independent pipelines for query graph construction
(Lin et al., 2021). As in Figure 1, these pipelines
usually involve a node extraction (NE) module to
detect the mentions of all nodes in query graph and
link entity mentions, a graph composition (GC)
module to connect related nodes given by NE, and
a relation extraction (RE) module deciding the KB
predicate corresponding to each edge added in GC.
In this framework, two drawbacks exist in previous
works: 1) we observe strong causal effects between
NE and GC, e.g. edges connected by GC are valid
only between the node mentions extracted in NE,
making GC decisions highly dependent on NE. To
this regard, previous works (Zhang et al., 2021;
Ravishankar et al., 2021) that perform NE and
GC separately without causal-modelling may fall
short in deeply comprehending the correlated tasks

1787

https://github.com/AOZMH/Crake

and accurately generating query graphs. 2) GC is
commonly modelled as a sequence-generation in
prior methods, either through generative decoder
(Shen et al., 2019; Chen et al., 2021) or via stage-
transition (Yih et al., 2015; Hu et al., 2018). How-
ever, sequence-modelling generally undergoes se-
quence ambiguity and exposure bias (Zhang et al.,
2019) that harms model accuracy.

In this work, we formalize the generation of
query graph in a two-staged manner as in Figure 1.
At the first stage, we tackle the aforesaid weak-
nesses by a novel causal-enhanced table-filling
model to jointly complete NE and GC, resulting
in a query graph structure representing the con-
nectivity of all nodes. More specifically, inspired
by Chen et al. (2020a), we utilize a label transfer
mechanism to facilitate the acquisition of causal-
ity between NE and GC (which solves drawback 1
above). Further, we apply a table-filler to decode
all edges simultaneously, which naturally circum-
vents the ambiguity and bias of iterative decoding
(and solves drawback 2). For the second stage,
we propose a beam-search-based relation extrac-
tion algorithm to determine the predicate that binds
to each graph edge. Differ from prior works, we
perform candidate predicate retrieval and ranking
alternately for each edge, limiting the candidate
scale linearly w.r.t. KB degree and making the al-
gorithm scalable for large-scale KBs like DBpedia.

In short, the major contributions of this paper
are: 1) to our knowledge, we are the first to model
GC as a table-filling process, which prevents the
ambiguity and bias in prior works; 2) we model the
intrinsic causal effects in KBQA to grasp subtask
correlations and improve pipeline integrity; 3) our
method outperforms previous state-of-the-arts on
LC-QuAD 1.0, a prominent KBQA benchmark, by
a large margin (∼17%), further experiments verifies
the effectiveness of our approach.

2 Preliminaries

2.1 Problem Setting

We solve KBQA in a semantic parsing way, given
a question (left-top in Figure 1), we generate a
SPARQL query (right-top in Figure 1) to represent
its semantics and answer the question by executing
the query in KB. By definition, SPARQL describes
a query graph with each triple in its body referring
to a graph edge; by matching the graph pattern in
KB, certain KB entries binding to the query graph
can be processed as query results (e.g. in Table 1

Type Example SPARQL

JUDGE ask {dbr:New_York a dbo:City}
COUNT select count(?x) {?x a dbo:City}
SELECT select ?x {?x a dbo:City}

Table 1: Supported query types.

for SELECT queries, all entries binding to the "se-
lect" node are results; for JUDGE queries, the ex-
istence of matched entries determines the boolean
result). Hence, our task is further specified as con-
structing the query graph (bottom of Figure 1) of a
question to represent its corresponding SPARQL.

2.2 Methodology Overview

Illustrated by Figure 1, we construct the query
graph in two stages. In the graph structure gen-
eration stage (bottom-left in Figure 1), we ex-
tract all graph nodes by finding the mention
of each node in question and its tag among{variable, entity, type}, e.g. the mention and tag
for the node ?class is "class" and variable, respec-
tively. Further, we link all non-variable nodes to
KB entries, e.g. the type node with mention "per-
son" links to dbo:person in Figure 1. Also, we
decide the target ("select") node of the graph and
add undirected edges between the nodes that are
connected in the query graph, resulting in a graph
structure representing the connectivity of all nodes.

Since all edges above are undirected and unla-
beled, we fill in the exact KB predicate of each
edge in the relation extraction stage (bottom-right
in Figure 1) to construct a complete query graph.

Finally, we compose a SPARQL w.r.t. the query
graph as output. Note that the body of the SPARQL
exactly corresponds to the query graph, so only the
SPARQL header is yet undetermined. Like Hu
et al., 2021, we collect frequent trigger words in
the train data to classify questions into COUNT,
JUDGE or SELECT queries as in Table 1 (e.g.
a question beginning with "is" triggers JUDGE).
Thus, an entire SPARQL can now be formed. In the
following sections, we expatiate our methodology
for the two aforementioned stages.

3 Graph Structure Generation (GSG)

The overview of the model proposed for graph
structure generation is illustrated by Figure 2. As
discussed in Section 1, the model jointly deals with
node extraction and graph composition via causal-
modelling, which is detailed in this section below.

1788

Figure 2: Causal-enhanced table-filling model for graph structure generation. The label-to-node and table-to-edge
correspondence is illustrated by the poker and fruit symbols respectively.

3.1 Node Extraction (NE)
Node extraction discovers all nodes in the query
graph, i.e. {?person, ?class, dbr:Swinhoe’s_Crake,
dbo:person} in Figure 1. We represent a node
by its mention and tag, i.e. ("person", variable),
("class", variable), ("Swinhoe’s Crake", entity) and
("person", type) for each node respectively.

This goal can naturally be achieved by multi-
class sequence labeling. More specifically, let
Q ∈ Nn be the question (token ids) with length
n, we first encode it into hidden features Hrb by a
RoBERTa (Liu et al., 2019) encoder Erb ∶ N

n →
Rn×hrb with hidden size hrb:

Hrb = Erb(Q) ∈ Rn×hrb

Then, Hrb is projected by a fully-connected-
network (FCN) Ene ∶ R

n×hrb → Rn×∣L∣ into Yne

in label space:

Yne = Ene(Hrb) ∈ Rn×∣L∣
L = {O}∪ {B, I}× {V,E, T, V T} is the label set
denoting the mention span of variables (V), entities
(E), types (T), or overlapping variable and type
(VT). Now, the label prediction of each token can
be given by Pne = argmax(Yne); also, given
the gold token labels Gne ∈ Nn (Figure 2 top), a
model for NE can be trained by optimizing:

ℓne = −
1
n

n

∑
i=1

log(softmax(Yne)[i;Gne[i]])

Where [⋅] denotes tensor indexing.
After detecting all node mentions and tags, we

link each non-variable node to KB entries by DBpe-
dia Lookup and a mention-to-type dictionary built
on train data to align the graph structure with KB.
See Appendix A for more details in node linking.

3.2 Graph Composition (GC)

After node extraction, all nodes in the query graph
remain unconnected. To form the structure of the
query graph, graph composition inserts unlabeled
and undirected edges between the nodes that are
related in the query graph, leaving the specific pred-
icate of each edge yet unresolved. Formerly, graph
composition is commonly modelled as a edge-
sequence-generation process via stage-transition
(Yih et al., 2015; Hu et al., 2018) or generative
decoders (Shen et al., 2019; Chen et al., 2021). De-
spite the strong expressiveness, modelling graph
composition by a sequence usually suffers from
two issues: 1) while the edge sequence is ordered,
edges in the query graph are a set without order.
For a graph with two edges e1 and e2, both se-
quence e1-e2 and e2-e1 correctly represents the
edges in the graph, but they are distinct from the
perspective of sequence-generation. As a result,
the edge set itself becomes ambiguous for the se-
quence, which confuses the model when compre-
hending a sequence and potentially decelerates the
convergence. 2) As discussed by Zhang et al., 2019,
without extra augmentation, sequence-generation

1789

generally endures an exposure bias between train-
ing and inference, harming the model’s accuracy
when predicting. Hence, a robust model should
address the issues above properly.

Here, we model graph composition by a table-
filling process to decide all edges simultaneously
involving no sequence-generation, which naturally
circumvents all issues above. Let Hgc ∈ Rn×hgc be
the hidden features for graph composition (the full
definition of Hgc with causal-modelling is given in
Section 3.3; without causal-modelling, we simply
have Hgc = Hrb), we adopt a biaffine attention
model (Dozat and Manning, 2017; Wang et al.,
2021) to convert Hgc into a table denoting the rela-
tionship between each token pair. More specifically,
through two multi-layer-perceptrons (MLP) Ehead

and Etail ∶ R
n×hgc → Rn×hbi , we first project Hgc

into head (Hhead) and tail (Htail) features:

H{head,tail} = E{head,tail}(Hgc) ∈ Rn×hbi

Then, for ∀1 ≤ i, j ≤ n, the biaffine attention is
performed between the head features of the ith to-
ken h

(i)
head and the tail features of the jth token h

(j)
tail,

producing si,j ∈ R2 representing the probability
that an edge exists between the ith and jth token:

si,j = softmax(Biaff(h(i)
head,h

(j)
tail))

Biaff(x,y) ∶= x
T
U1y +U2(x⊕ y) + b

As U1 ∈ R2×hbi×hbi , U2 ∈ R2×2hbi and b ∈ R2

are trainable parameters, ⊕ denotes concatenation.
Combining all scores by Ygc = (si,j)(1≤i,j≤n) ∈
Rn×n×2, we now have a table describing the edge
existence likelihood between any two tokens.

At training, we first obtain the boolean gold ta-
ble Ggc ∈ Bn×n, for every connected node pair in
the query graph, the element in Ggc corresponding
to any pair of tokens belonging to the mentions of
the two nodes respectively is set to 1 (resulting in
several rectangles of 1s). Also, we prefix the ques-
tion with a special [CLS] token and connect it with
the target node to represent the "select" edge; for
ASK queries without target nodes, a [SEP] token is
suffixed and connected with [CLS]. Note that since
the graph structure is undirected, Ggc is a symmet-
ric matrix. An example of Ggc can be found in
Figure 2. With Ggc, we can train the table-filler by
ℓtb:

ℓtb = −
1

n2

n

∑
i=1

n

∑
j=1

log(Ygc[i; j;Ggc[i; j]])

(a)

(b)

YGC

X

YNE

YGC

X

YNE

RoBERTa�Encoder

Gumbel�
Softmax

Label�
Embedding

X

YNE

YGC

Label�Transfer

Biaffine�
Attention

Sequence�
Labeling

(c)

Figure 3: Modelling NE and GC with (a) and without
(b) causality, as X, YNE, and YGC denotes question, NE
predictions, and GC predictions. Model (c) learns the
causal effects by a label transfer module.

Following Wang et al., 2021, we also introduce
ℓsym to grasp the table symmetry. Finally, we opti-
mize ℓgc = ℓtb + ℓsym to train a model for GC.

ℓsym = 1

n2

n

∑
i=1

n

∑
j=1

2

∑
k=1

∣Ygc[i; j; k]−Ygc[j; i; k]∣
At inference, for each pair of nodes given by

NE, we average the rectangle area in Ygc corre-
sponding to the mentions of the node pair as its
edge existence probability. The node pairs with
a probability higher than 0.5 are connected. This
threshold is selected intuitively to denote an edge
is more likely to exist against to not exist, though
we argue that the prediction is insensitive to any
threshold in reasonable range (e.g. 0.3∼0.7).

3.3 Causal Modelling NE and GC

Up to now, NE and GC are treated as separate tasks
that fail to model the intrinsic causal effects be-
tween them (e.g. edges in YGC only exist between
the mentions detected in NE). Here, we model such
causality by a mediation assumption in Figure 3(b)
denoting the causal dependence of GC on both
question and NE prediction by edge X→YGC and
YNE→YGC respectively. To grasp this causal graph,
we devise a label transfer (Chen et al., 2020a) mod-
ule to enable the transfer of NE predictions to GC,
i.e. representing YNE→YGC, in Figure 3(c).

In detail, we sample NE predictions Ỹne by gum-
bel softmax (Nie et al., 2019) with g∼Gumbel(0,1)

1790

Iterate�on�each�edge

Candidate�Retrieval

Query�Graph�Structure Complete�Query�Graph

select
?person

dbo:person?class

dbr:Swinh-
oe's_Crake

Candidate�Predicates

dbp:fossilRange

dbp:class

dbo:wikiPageID

......

dbp:genus

Candidate�Ranking

select
?person

dbo:person?class

dbr:Swinh-
oe's_Crake

dbp:class
Candidate Score

dbp:class 0.99

dbo:species 0.92

dbo:class 0.66

dbo:basedOn 0.05

dbo:type 0.02

Figure 4: Candidate retrieval and raking framework for
relation extraction.

and temperature τ .

Ỹne = softmax((Yne + g)/τ) ∈ Rn×∣L∣
Ỹne is then embedded by label embedding Wle ∈
R∣L∣×hle and concatenated with Hrb to form Hgc

in Section 3.2 with hgc=hrb + hle:

Hgc = Hrb ⊕ (ỸneWle) ∈ Rn×hgc

Now, by minimizing ℓgsg=ℓne+ℓgc, a joint model
for NE and GC can be obtained. In this model, GC
receives NE labels to learn the causal effects from
NE, while NE gets feedback through differentiable
label transfer to further aid GC decision. In this
sense, our model improves the integrity of graph
structure generation compared with separately mod-
elling each subtask or simple multitasking.

4 Relation Extraction (RE)

As shown in Figure 4, relation extraction (RE) con-
ducts candidate retrieval and ranking in turn for
each edge in graph structure S to decide its predi-
cate. For a question q, an edge e connecting nodes
n1 and n2 with mention m1,m2 respectively, can-
didate retrieval recalls a set of predicates P that
can be bound to e. Note that unlike e, each predi-
cate in P is directional. Then, candidate ranking
Rank(P ,q,m1,m2) gives each predicate a score.
This section details this procedure.

Candidate Ranking For each pi ∈ P , we en-
code it together with q,m1,m2 by a RoBERTa en-
coder and pool them to 0 ≤ si ≤ 1 to score the
predicate. If the direction of pi is n1→ n2, we
join q,m1,m2, pi sequentially by [SEP] token as
model input; otherwise (direction n2→ n1), the

Algorithm 1: BeamSearchRE
Input: Question q, Query graph structure S, beam

width b
Output: A beam of query graphs B

1 B ← {{}};// Start with an empth graph
2 Spend ← S;// All edges are pending
3 while Spend ≠ ∅ do
4 B

′ ← {};
// Select a pending edge

5 e = (n1, n2) ←Sample (Spend);
6 for G ∈ B do
7 P ←Retrieve (G,n1, n2);

// n1/n2 has mention m1/m2

8 C = {(pi, si)} ←Rank (P, q,m1,m2);
// Extend previous beams

9 for (pi, si) ∈ C do
10 B

′ ← B
′ ∪ {G ∪ {(n1, n2, pi, si)}};

11 B ← B
′
.topk(b);// Set up new beams

// Mark e as determined
12 Spend ← Spend \ {e};

join order is q,m2,m1, pi. By giving si to each
candidate, we can get the most proper predicates
for e by selecting those with highest scores. More
details on training the ranking model can be found
in Appendix B.

Candidate Retrieval Zhang et al., 2021 pro-
posed a straightforward way to retrieve candidates:
if either n1 or n2 is a non-variable node, the predi-
cates around that node in KB are viewed as candi-
dates; otherwise, they trace n1 or n2 in other graph
edges with non-variable nodes and view the pred-
icates k-hop away from that node in KB as candi-
dates (e.g. predicates 2-hop away from dbo:person
are candidates for ?class-?person in Figure 4).
We view this as the baseline in latter experiments.

However, this results in a candidate scale O(nk)1,
making it unscalable to multi-hop queries (k↑) and
large KBs (n↑). Here, we propose Algorithm 1 to
limit the scale to O(n). We start by selecting an
edge between n

a
1 and n

b
1 containing a non-variable

node (e.g. edge ?class-dbr:Swinhoe’s_Crake in
Figure 4), retrieving all adjacent predicates of that
node in KB and use Rank to select the most proper
predicate p1 (e.g. dbp:named_by) of score s1, this
forms a subgraph G={(na

1,nb
1,p1)} with only one

edge whose score is s1. Then, we sample another
edge between n

a
2 and n

b
2 (e.g. ?class-?person)

and retrieve its candidates P based on G (e.g. G
already entails ?class=dbr:bird, so all neighbors
of dbr:bird forms P), this process is denoted as
Retrieve(G,n

a
2, n

b
2). Now, we use Rank to se-

1n is the node degree in KB, k is the edge number in S

1791

Type Methods P R F1

I NSQA (Kapanipathi et al., 2021) .448 .458 .445
EDGQA (Hu et al., 2021) .505 .560 .531

II

QAmp (Vakulenko et al., 2019) .250 .500 .330
NAMER (Zhang et al., 2021) .438 .438 .435
STaG-QA (Ravishankar et al., 2021) .745 .548 .536
Crake (ours) .722 .731 .715

Table 2: End-to-end performance on LC-QuAD 1.0 test
set. I/II stands for methods with/without aux tools. We
re-implement NAMER since its results on LC-QuAD
is not provided; however, NAMER suffers from severe
timeout issues on DBpedia to limit its performance, so
we restrict each candidate query to run at most 45s in
practice (which already requires ∼15h for a complete
evaluation run).

lect p2 of score s2 from P , add (na
2,nb

2,p2) to sub-
graph G and update its score as s1 ∗ s2. Repeating
this loop until all edges are bound with a predicate,
we finally form a query graph.

Note that for each edge, the candidate scale given
by Retrieve is O(n), since it is always among
the neighbors of one or several KB nodes. Also, to
improve the recall of query graphs, this process can
trivially be extended as a beam search with each
step maintaining a beam of subgraphs B, ordering
each subgraph by ∏i si as in Algorithm 1.

5 Experiments

Dataset We adopt LC-QuAD 1.0 (Trivedi et al.,
2017), a predominant open-domain English KBQA
benchmark based on DBpedia (Auer et al., 2007)
2016-04, to test the performance of our system.
We randomly sample 200 questions from train data
as dev set and follow the raw test set, resulting
in a 4800/200/1000 train/dev/test split. More de-
tails on the dataset can be found in Appendix C.
Like Zhang et al., 2021, we do not experiment on
multiple datasets due to the high annotation cost
involved, however, we conduct no dataset-specific
optimizations in this work, so we consider the large
improvements on LC-QuAD and detailed discus-
sions sufficient to prove our effectiveness.

Annotation We annotate the dataset with the
mention of each node in query graph, e.g. the
mention "class" and "person" for the node ?class
and dbo:person respectively in Figure 1. With the
annotation, we obtain the gold data (Gne,Ggc) to
train our models. Appendix D details the annota-
tion process.

0 20 40 60 80 100 120
Epochs

0.0

0.2

0.4

0.6

EM
 A

cc
ur

ac
y

of
 G

SG

Seq2seq
TF
TF+Causal

Figure 5: EM accuracy of GSG during training. See the
meaning of each series in Table 3.

Baselines We evaluate our method against exist-
ing works both with and without auxiliary tools.
With aux tools, Kapanipathi et al., 2021 constructs
query graphs based on the AMR of questions; Hu
et al., 2021 designs rules on constituency tree to aid
query graph formation. For independent pipelines
without aux tools, Vakulenko et al., 2019 parses
URI mentions from the question to match with KB
via confidence score passing; Ravishankar et al.,
2021 combines a generative graph-skeleton de-
coder with entity and relation detector to form a
query; Zhang et al., 2021 co-trains a pointer gener-
ator with the node extractor to build a query graph,
it’s worth to note that this work also requires the
node-to-mention Annotation for training.

Setup We utilize the RoBERTa-large released
by huggingface (Wolf et al., 2020) as our encoder.
All experiments are averaged on two runs on an
NVIDIA A40 GPU. For the GSG model, we train
for at most 500 epochs (~6 GPU-hours) and report
the best checkpoint on dev set; for the RE model,
we train for 20 epochs (~16 GPU-hours) and report
the final checkpoint. For hyperparameters, we find
no apparent performance variance on dev set as
long as the values are in reasonable range (e.g. 64≤
hle≤1024, 1e-6≤ lrgsg≤2e-5) so no further tuning
is involved. See the full setting in Appendix E.

5.1 End-to-end Evaluation

As shown in Table 2, our method, Crake, outper-
forms all former methods by a large∼17% margin
on F1, becoming the new SoTA of LC-QuAD 1.0.
Surpassing methods requiring aux tools (I) on all
metrics, we present the effectiveness of indepen-
dent pipelines (II) that avoid cascading errors. Also,
we achieve consistent answer precision and recall
to surpass other methods in II on F1, showing the
superiority of our pipeline design, which is further
discussed in the sections below.

1792

Methods Decoder Parameters NE Accuracy GSG Accuracy End-to-end

P R F1 EM Actual P R F1

Seq2seq 76.67M (×1) .895 .901 .897 .695 .768 .653 .674 .654
TF 0.66M (×1/100) .895 .901 .897 .728 .795 .655 .674 .657
TF+SMTL 0.66M (×1/100) .901 .904 .902 .735 .805 .665 .684 .667

TF+Causal 3.03M (×1/25) .909 .914 .911 .755 .828 .677 .696 .680

Table 3: Experiments on table-filling and causal-modelling. Seq2seq and TF adopt a generative decoder and
table-filler in GC respectively, while both deal with NE and GC by separate models. TF+SMTL (simple multitask
learning) co-trains NE and GC by directly adding losses without modelling their intrinsic causal effects. TF+Causal
denotes our full approach which models the causal effects between NE and GC by label transfer. We report the
node-level P/R/F1 in NE, the exact-match (EM) and actual accuracy (that ignores variable mentions in judging
accuracy) in GSG, and the overall answer-level P/R/F1 on LC-QuAD 1.0 dev set for comparison.

5.2 Effects of Tabel-Filling

As explained in Section 3.2, modelling GC as a
sequence-generation causes a few issues that can
be overcome by table-filling. Specifically, the se-
quence ambiguity confuses the learning process
and requires large decoders to grasp the sequence
generation policy, which may slow down the con-
vergence. Besides, the exposure bias harms the
decoding accuracy of the model at inference. This
section, we try to verify such effects by experi-
ments. To enable the comparison with sequence-
generation, we construct a generative decoder as
in Zhang et al., 2021 as the baseline, which se-
quentially generates the connected node pairs in
the graph structure to represent the edges. We train
the generative model under the same settings (e.g.
learning rate, warmup, epochs, etc.), resulting in
the performance of Seq2seq in Table 3.

Comparing with the table-filling model (i.e. TF
in Table 3), Seq2seq comes short in the accu-
racy of graph structure, indicating the negative ef-
fects of the exposure bias on predicting accuracy.
Meanwhile, TF requires only 1/100 of Seq2seq’s
parameters to achieve comparable or better re-
sults, we attribute this to the removal of sequence
ambiguity which frees the model from acquiring
the complex and ambiguous scheme of sequence-
generation. This speculation is further verified in
Figure 5, in which TF converges distinctly quicker
than Seq2seq since the simultaneous decision of
all edges is well-defined and easier to learn. Thus,
compared with sequence-modelling, handling GC
via table-filling reduces model size and boosts train-
ing, which is essential for real-world applications.

Output�

IIIIII

select

TF

NE

GC

(×)

Node Mention Tag

I location�of�death V

II skier V(×)

III Alpine...slalom E

IIIIII

select

TF+SMTL

NE

GC

(×)

Node Mention Tag

I location�of�death V

II skier VT(√)

III Alpine...slalom E

TF+Causal

NE

GC

Node Mention Tag

I location�of�death V

II&IV skier VT(√)

III Alpine...slalom E

(√)
IIIIII

selectIV

What�is�the�location�of�
death�of�the�skier�

who�was�the�bronze�
medalist�of�Alpine�skiing�

at�the�1964�Winter�
Olympics�Men's�slalom?�

Question

Figure 6: Case study on the effects of causal-modelling.

5.3 Effects of Causal-Modelling

We propose a joint model to learn the NE-GC
causalities in Section 3.3, to discuss its effects, we
compare it with two alternatives in Table 3: 1) us-
ing two separate models for NE and GC (TF in Ta-
ble 3) like Ravishankar et al., 2021, 2) co-training
NE and GC by sharing encoder and adding losses
(TF+SMTL in Table 3) like Shen et al., 2019. As
shown, co-training consistently surpasses separate
models by grasping the shared knowledge between
NE and GC, nevertheless, our causal-modelling
approach (TF+Causal) further outperforms co-
training. In detail, though TF+Causal has similar
results with TF+SMTL in NE, it achieves better ac-
curacy for overall GSG (NE+GC) and excels in
end-to-end metrics. Therefore, we infer that causal-
modelling improves the integrity of the GSG stage

1793

Methods Accuracy Efficiency

P R F1 1-hop 2-hop 3-hop

Baseline .560 .566 .556 0.12s 42.4s 84.2s
BeamSearch .677 .696 .680 0.12s 1.06s 2.72s

Table 4: Performance comparison between our beam-
search RE algorithm and its baseline in Section 4. Ac-
curacy refers to the answer-level P/R/F1, efficiency is
measured by the average run time on 1/2/3-hop queries.

by expressing the internal causalities between its
subtasks. To better understand this, we perform a
case study in Figure 6, in which TF fails to real-
ize that "skier" also corresponds to a type node; in
contrast, TF+SMTL extract all nodes correctly by
learning both NE and GC labels, but it still fails
in generating a correct graph structure. Finally,
TF+Causal utilizes the VT tag of "skier" in NE
predictions and correctly connects the II-IV edge
in GC. Thus, Figure 6 demonstrates the usage of
causal effects to reach higher accuracy in GSG.

5.4 Analysis on Beam-Search RE

In this section, we compare our beam-search RE
algorithm with its baseline. As stated in Section
4, by alternately performing retrieval and ranking
on each edge (rather than retrieving the candidates
of every edge before ranking), our approach low-
ers the scale of candidate predicates on multi-hop
queries to get better efficiency, which is verified
in Table 4. In detail, BeamSearch costs substan-
tially less time than Baseline in 2 and 3-hop
queries (note that for 1-hop queries, two methods
reduce to a same process with similar time costs).
Since BeamSearch only operates on the neigh-
bors of certain KB nodes, it avoids the retrieval of
2-hop neighbors, which requires considerable time
on DBpedia, to improve efficiency. In addition,
by pruning off useless candidates in Baseline,
BeamSearch also achieves higher overall KBQA
accuracy in Table 4. Therefore, Algorithm 1 tran-
scends previous methods to reveal an efficient and
accurate solution for ranking-based RE scalable to
KB size and query complexity.

6 Related Works

KBQA via Semantic Parsing A mainstream
to solve KBQA is semantic parsing (Yih et al.,
2016) which converts a question to a KB query
to get answers. Due to the graph-like structure of
KB queries, prior works construct query graphs

to represent queries in semantic parsing. Among
them, some works (Zafar et al., 2018; Chen et al.,
2020b) only focus on predicting the graph structure
given node inputs. To perform end-to-end QA, Hu
et al., 2017 leverages the dependency parsing tree
to match KB subgraphs for answers; Kapanipathi
et al., 2021 builds the query graph by transforming
and linking the AMR (Banarescu et al., 2012) of the
question; Hu et al., 2021 uses the constituency tree
to compose an entity description graph represent-
ing the query graph structure. Requiring aux tools
or data structures, these works may be subjected to
cascading errors. Yih et al., 2015 overcomes this
by an independent stage-transition framework to
generate the query graph, Hu et al., 2018 extends
the transitions to express more complex graphs. Be-
sides, Zhang et al., 2021 adopts a pointer generator
to decode graph structure, Ravishankar et al., 2021
generates the query skeleton by a seq2seq decoder.
Unlike these methods that model the query graph
as a sequence (by state-transition or generative de-
coder), we decode all edges at once via a table-filler
in graph structure generation.

Modelling causal effects Causality occurs in
various deep-learning scenarios between multiple
channels or subtasks, existing works models the
causality for better performance. Niu et al., 2021
mitigates the false causal effects in VQA (Antol
et al., 2015) to overcome language bias; Zeng et al.,
2020 dispels the incorrect causalities from different
input channels of NER by generating counterfacts.
Chen et al., 2020a utilizes the inter-subtask causali-
ties to improve multitask learning for JERE (Li and
Ji, 2014), ABSA (Kirange et al., 2014), and LJP.
Unlike them, we formulate and utilize the internal
causal effects in KBQA.

7 Conclusion

In this work, we formalize the generation of query
graphs in KBQA by two stages, namely graph struc-
ture generation (GSG) and relation extraction (RE).
In GSG, we propose a table-filling model for graph
composition to avoid the ambiguity and bias of
sequence-modelling, meanwhile, we encode the
inherent causal effects among GSG by a label-
transfer block to improve the stage integrity. In RE,
we introduce an effective beam-search algorithm
to retrieve and rank predicates in order for each
edge, which turns out to be scalable for large KBs
and multi-hop queries. Consequently, our approach
substantially surpasses previous state-of-the-arts in

1794

KBQA, revealing the effectiveness of our pipeline
design. Detailed experiments also validate the ef-
fects of all our contributions.

8 Limitation

Admittedly, our approach endures certain limita-
tions as discussed below.

Query Expressiveness Like most semantic pars-
ing systems, we fail to cover all the operations
of SPARQL, limiting our capability to compose
queries with complex filter or property path.
For the conciseness of our system, we only focus
on constructing triples in the multi-hop query graph
in this paper, while we plan to incorporate more
functions into Crake in the future to improve the
expressiveness of the system.

Annotation Cost Training models with node
mentions require expensive manual annotations,
which is impractical for us to conduct on every
popular KBQA dataset. As explained in Section 5,
without data-oriented optimization, we believe the
significant gain presented adequate to verify our
contributions. Further, we expect to extenuate such
costs in two directions for the future: 1) some mod-
ules of our framework (e.g. NE) is generalizable to
other English questions, gifting it the potential to
be transferred to other datasets without re-training;
2) few-shot (Wang et al., 2020) and active (Aggar-
wal et al., 2014) learning techniques aids the model
to reach competitive performance with a small por-
tion of annotated data, which can be explored in
our framework to reduce annotation cost.

Acknowledgements

This work was supported by National Key R&D
Program of China (2020AAA0105200) and NSFC
under grant U20A20174. The corresponding author
of this work is Lei Zou (zoulei@pku.edu.cn). We
would like to thank Zhen Niu and Sen Hu for their
kind assistance on this work. We also appreciate
anonymous reviewers for their valuable comments
and advises.

References
Charu C Aggarwal, Xiangnan Kong, Quanquan Gu,

Jiawei Han, and S Yu Philip. 2014. Active learning:
A survey. In Data Classification, pages 599–634.
Chapman and Hall/CRC.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,

and Devi Parikh. 2015. VQA: visual question an-
swering. In 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 2425–2433. IEEE Com-
puter Society.

Ram G Athreya, Srividya K Bansal, Axel-
Cyrille Ngonga Ngomo, and Ricardo Usbeck.
2021. Template-based question answering using
recursive neural networks. In 2021 IEEE 15th
International Conference on Semantic Computing
(ICSC), pages 195–198. IEEE.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. In The
semantic web, pages 722–735. Springer.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2012. Abstract meaning representation
(amr) 1.0 specification. In Parsing on Freebase from
Question-Answer Pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing. Seattle: ACL, pages 1533–1544.

Wenqing Chen, Jidong Tian, Liqiang Xiao, Hao He,
and Yaohui Jin. 2020a. Exploring logically depen-
dent multi-task learning with causal inference. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2213–2225, Online. Association for Computa-
tional Linguistics.

Yongrui Chen, Huiying Li, Yuncheng Hua, and Guilin
Qi. 2020b. Formal query building with query struc-
ture prediction for complex question answering over
knowledge base. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2020, pages 3751–3758. ijcai.org.

Yongrui Chen, Huiying Li, Guilin Qi, Tianxing Wu, and
Tenggou Wang. 2021. Outlining and filling: Hier-
archical query graph generation for answering com-
plex questions over knowledge graph. arXiv preprint
arXiv:2111.00732.

Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu
Song, Seung-won Hwang, and Wei Wang. 2017.
Kbqa: Learning question answering over qa corpora
and knowledge bases. Proceedings of the VLDB En-
dowment, 10(5).

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Sen Hu, Lei Zou, Jeffrey Xu Yu, Haixun Wang, and
Dongyan Zhao. 2017. Answering natural language
questions by subgraph matching over knowledge
graphs. IEEE Transactions on Knowledge and Data
Engineering, 30(5):824–837.

1795

https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.18653/v1/2020.emnlp-main.173
https://doi.org/10.18653/v1/2020.emnlp-main.173
https://doi.org/10.24963/ijcai.2020/519
https://doi.org/10.24963/ijcai.2020/519
https://doi.org/10.24963/ijcai.2020/519
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le

Sen Hu, Lei Zou, and Xinbo Zhang. 2018. A state-
transition framework to answer complex questions
over knowledge base. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2098–2108, Brussels, Bel-
gium. Association for Computational Linguistics.

Xixin Hu, Yiheng Shu, Xiang Huang, and Yuzhong
Qu. 2021. Edg-based question decomposition for
complex question answering over knowledge bases.
In International Semantic Web Conference, pages
128–145. Springer.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravis-
hankar, Salim Roukos, Alexander Gray, Ramón Fer-
nandez Astudillo, Maria Chang, Cristina Corne-
lio, Saswati Dana, Achille Fokoue-Nkoutche, et al.
2021. Leveraging abstract meaning representation
for knowledge base question answering. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3884–3894.

DK Kirange, Ratnadeep R Deshmukh, and MDK
Kirange. 2014. Aspect based sentiment analysis
semeval-2014 task 4. Asian Journal of Computer
Science and Information Technology (AJCSIT) Vol,
4.

Qi Li and Heng Ji. 2014. Incremental joint extraction
of entity mentions and relations. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 402–412, Baltimore, Maryland. Association
for Computational Linguistics.

Yinnian Lin, Minhao Zhang, Ruoyu Zhang, and Lei Zou.
2021. Deep-ganswer: A knowledge based question
answering system. In Asia-Pacific Web (APWeb) and
Web-Age Information Management (WAIM) Joint In-
ternational Conference on Web and Big Data, pages
434–439. Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Weili Nie, Nina Narodytska, and Ankit Patel. 2019. Rel-
gan: Relational generative adversarial networks for
text generation. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu,
Xian-Sheng Hua, and Ji-Rong Wen. 2021. Counter-
factual vqa: A cause-effect look at language bias. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12700–
12710.

Eric Prud’hommeaux. 2008. Sparql query language
for rdf, w3c recommendation. http://www. w3.
org/TR/rdf-sparql-query/.

Srinivas Ravishankar, June Thai, Ibrahim Abdelaziz,
Nandana Mihidukulasooriya, Tahira Naseem, Pavan
Kapanipathi, Gaetano Rossilleo, and Achille Fok-
oue. 2021. A two-stage approach towards generaliza-
tion in knowledge base question answering. arXiv
preprint arXiv:2111.05825.

Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu
Tang, Nan Duan, Guodong Long, and Daxin Jiang.
2019. Multi-task learning for conversational ques-
tion answering over a large-scale knowledge base. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2442–
2451, Hong Kong, China. Association for Computa-
tional Linguistics.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey,
and Jens Lehmann. 2017. Lc-quad: A corpus for
complex question answering over knowledge graphs.
In International Semantic Web Conference, pages
210–218. Springer.

Christina Unger, Lorenz Bühmann, Jens Lehmann,
Axel-Cyrille Ngonga Ngomo, Daniel Gerber, and
Philipp Cimiano. 2012. Template-based question an-
swering over RDF data. In Proceedings of the 21st
World Wide Web Conference 2012, WWW 2012, Lyon,
France, April 16-20, 2012, pages 639–648. ACM.

Svitlana Vakulenko, Javier David Fernandez Garcia,
Axel Polleres, Maarten de Rijke, and Michael Cochez.
2019. Message passing for complex question an-
swering over knowledge graphs. In Proceedings of
the 28th ACM International Conference on Informa-
tion and Knowledge Management, CIKM 2019, Bei-
jing, China, November 3-7, 2019, pages 1431–1440.
ACM.

Yaqing Wang, Quanming Yao, James T Kwok, and Li-
onel M Ni. 2020. Generalizing from a few examples:
A survey on few-shot learning. ACM computing sur-
veys (csur), 53(3):1–34.

Yijun Wang, Changzhi Sun, Yuanbin Wu, Hao Zhou,
Lei Li, and Junchi Yan. 2021. Unire: A unified label
space for entity relation extraction. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 220–231.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

1796

https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.3115/v1/P14-1038
https://doi.org/10.3115/v1/P14-1038
https://openreview.net/forum?id=rJedV3R5tm
https://openreview.net/forum?id=rJedV3R5tm
https://openreview.net/forum?id=rJedV3R5tm
https://doi.org/10.18653/v1/D19-1248
https://doi.org/10.18653/v1/D19-1248
https://doi.org/10.1145/2187836.2187923
https://doi.org/10.1145/2187836.2187923
https://doi.org/10.1145/3357384.3358026
https://doi.org/10.1145/3357384.3358026
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
Maya Ramanath, Volker Tresp, and Gerhard Weikum.
2012. Natural language questions for the web of
data. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 379–390, Jeju Island, Korea. Association for
Computational Linguistics.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321–1331, Beijing, China. Association for
Computational Linguistics.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206, Berlin,
Germany. Association for Computational Linguis-
tics.

Hamid Zafar, Giulio Napolitano, and Jens Lehmann.
2018. Formal query generation for question answer-
ing over knowledge bases. In European semantic
web conference, pages 714–728. Springer.

Xiangji Zeng, Yunliang Li, Yuchen Zhai, and Yin
Zhang. 2020. Counterfactual generator: A weakly-
supervised method for named entity recognition. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7270–7280, Online. Association for Computa-
tional Linguistics.

Minhao Zhang, Ruoyu Zhang, Lei Zou, Yinnian Lin,
and Sen Hu. 2021. NAMER: A node-based mul-
titasking framework for multi-hop knowledge base
question answering. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Demonstrations, pages 18–25,
Online. Association for Computational Linguistics.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019. Bridging the gap between training
and inference for neural machine translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4334–
4343, Florence, Italy. Association for Computational
Linguistics.

A Details in Entity and Type Linking

We link each non-variable node to a KB entry by
its mention. For entity nodes, we directly link it to
an entity with the same name as its mention if such
entity exists in the KB (e.g. link mention "New

York" to dbr:New_York); otherwise, we recall en-
tities by DBpedia Lookup2 and further prioritize
ones whose lower-cased name is the same as the
lower-cased mention (e.g.dbr:new_york). Then,
the prioritized entity with the highest lookup score
is linked to the node; if no entity is prioritized, the
entity with the highest score is selected.

For type nodes, we build a dictionary D based on
the mention-type pairs (e.g. authors-dbo:Writer) in
train data and directly use the link result from D if
the mention exists in D. Otherwise, we singularize
and capitalize the mention to construct an URI
with prefix dbo (e.g. bands→dbo:Band), if this
URI presents in the KB, the type node is linked to
this URI. If no entry is found for either an entity
or a type afterall, we simply discard the node from
our query graph.

Note that although we involve no extra disam-
biguation step, DBpedia Lookup itself has certain
mention-level disambiguation abilities to refine
mention-relevant candidates. Admittedly, sentence
context also contributes to a precise linking deci-
sion, leaving such context-level disambiguation a
future direction to improve our work.

B Training Details of the Candidate
Ranking Model

We mainly follow NAMER (Zhang et al., 2021) in
training the candidate ranking model mentioned
in Section 4. Basically, the positive and nega-
tive training samples are obtained from the gold
query. For instance, in Figure 1, we obtain the
candidates between ?class (m1="class") and ?per-
son (m2="person") by constructing "select ?r {
?person dbp:type dbo:person. ?class ?r ?person.
dbr:Swinhoe’s_Crake dbp:class ?class }" and "se-
lect ?r { ?person dbp:type dbo:person. ?person ?r
?class. dbr:Swinhoe’s_Crake dbp:class ?class }"
with query results Pp and Pr respectively. Let p∗=
dbp ∶ named_by be the correct predicate, we col-
lect model inputs {(q,m1,m2, p

∗)} as a positive
sample (i.e. of label 1) and {(q,m1,m2, pi)∣pi ∈
Ppos\{p∗}∪ {(q,m2,m1, pi)∣pi ∈ Prev} as nega-
tive samples (i.e. of gold label 0).

Further, we follow the augmentation pro-
cess in NAMER to learn the effects of men-
tion order on model predictions. Specifically,
we add {(q,m1,m2, pi)∣pi ∈ Prev\{p∗} ∪{(q,m2,m1, pi)∣pi ∈ Ppos} to negative samples
when training. With the aforesaid process repeated

2http://wiki.dbpedia.org/projects/dbpedia-lookup

1797

https://www.aclweb.org/anthology/D12-1035
https://www.aclweb.org/anthology/D12-1035
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/2020.emnlp-main.590
https://doi.org/10.18653/v1/2020.emnlp-main.590
https://www.aclweb.org/anthology/2021.naacl-demos.3
https://www.aclweb.org/anthology/2021.naacl-demos.3
https://www.aclweb.org/anthology/2021.naacl-demos.3
https://doi.org/10.18653/v1/P19-1426
https://doi.org/10.18653/v1/P19-1426

on each query graph edge, we get the full training
samples to train a ranking model.

Besides, similar with NAMER, we observe a
performance decay when forcibly co-training RE
and GSG module, in this regard, we leave RE a
separate module alongside GSG in the system. As
discussed in NAMER, the different input channels
between RE and GSG may result in unequal seman-
tic spaces for the model. Thus, despite the causal
association between RE and GSG, we conjecture
that the model fails to acquire beneficial causalities
between incompatible semantic spaces.

C Details of the Dataset

LC-QuAD 1.0 is an English open-domain KBQA
dataset widely used to evaluate KBQA systems.
With a GPL-3.0 licence, this dataset is intended for
training and testing models to answer a question
via querying the knowledge base, permitting modi-
fications on the dataset for experiments, which is
consistent with the way we use the dataset (annotat-
ing node mentions for each data entry, train several
models for KBQA on the train data and test the
system performance on the test data).

Due to the nature of KBQA tasks, LC-QuAD
1.0 involves questions about certain real-world enti-
ties usually including persons, organizations or ob-
jects (which is exactly the conditions where KBQA
is applied to real-world applications). However,
most information about the individuals (e.g. name,
team, etc.) are publicly available (since the dataset
utilizes DBpedia as background KB while DBpe-
dia mainly collects data from publicly available
Wikipedia). Further, when annotating the dataset,
we perform a brief manual check on potential of-
fensive or biased contents, to the best of our efforts,
we find no apparent offensive hints in the questions
and SPARQL queries. Hence, we believe that LC-
QuAD 1.0 under intended KBQA use has minor
potential to offend others or cause privacy issues.

D Details of Data Annotation

Annotation Guidelines We adopt the same an-
notation format as Zhang et al., 2021 to annotate
the LC-QuAD 1.0 dataset. Specifically, for each
node in the query graph corresponding to the SPAR-
QLs in the dataset, the mention of such node in the
question is annotated. All annotated mentions are
required as whole-words (e.g. including the ’s’ for
plural words), the mention is left as "None" when
no mention of a node can be found. There are

certain cases where multiple mentions co-refer a
node, we encourage annotators to choose a mention
containing more concrete semantics, while all of
these mentions are acceptable (e.g. for the ques-
tion "Who is Jack’s dad?", both "Who" and "dad"
are correct mentions but the latter is encouraged
since it indicates more semantics of the node). We
provide a detailed guideline3 to annotators with
extra discussions on marginal cases to further aid
the annotation. Also, we discuss the potential risks
and the overall usage of such annotations to get
agreements from the annotators in the guideline.

Annotation Process We recruit 9 annotators with
necessary background knowledge from school, con-
sisting of 5 undergraduate and 4 graduate students,
to fulfil the annotation task. By completing the
annotation, we provide essential payments for each
annotator. Finally, we use a script to auto-check the
collected annotations and perform basic corrections
(e.g. align all mentions to whole-words).

E Hyperparameter Settings

Table 5 details our hyperparameter settings.

Name Description Setting

hrb Hidden size of the RoBERTa encoder 1024
hbi Hidden size of the biaffine model 256
hle Dimension of the label embedding 256
τ Gumbel-softmax temperature 0.05

optim Optimizer to train both GSG and RE models AdamW
β1/β2 Betas of the AdamW optimizer 0.9 / 0.9
wd Weight decay rate of the AdamW optimizer 1e-5
lrrb Learning rate of the RoBERTa encoder in GSG 1e-5
lrgsg Learning rate of other parameters in GSG 5e-5

batchgsg Batch size of the GSG model 64
lrre Learning rate of the RE model 1e-5

batchre Batch size of the RE model 100
b Beam width in RE 4

Table 5: Detailed hyperparameter settings in this work.

F Ethical Statements

Considering the nature of NLP-based QA systems,
our method keeps the risk to output false (e.g. incor-
rect answers to factoid questions) or biased (e.g. im-
precise count of answer numbers) answers, which
might cause issues in trustworthy or practical uses.
However, we’d like to clarify that this work is in-
tended for discovering more accurate and efficient
systems on KBQA regardless of the exact content
in a KB, the answers to specific questions given by
our method does not reflect the authors’ point of
view.

3See the guideline in supplementary materials.

1798

