@inproceedings{xu-etal-2022-sead,
title = "{S}ea{D}: End-to-end Text-to-{SQL} Generation with Schema-aware Denoising",
author = "Xu, Kuan and
Wang, Yongbo and
Wang, Yongliang and
Wang, Zihao and
Wen, Zujie and
Dong, Yang",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.141",
doi = "10.18653/v1/2022.findings-naacl.141",
pages = "1845--1853",
abstract = "On the WikiSQL benchmark, most methods tackle the challenge of text-to-SQL with predefined sketch slots and build sophisticated sub-tasks to fill these slots. Though achieving promising results, these methods suffer from over-complex model structure. In this paper, we present a simple yet effective approach that enables auto-regressive sequence-to-sequence model to robust text-to-SQL generation. Instead of formulating the task of text-to-SQL as slot-filling, we propose to train sequence-to-sequence model with Schema-aware Denoising (SeaD), which consists of two denoising objectives that train model to either recover input or predict output from two novel erosion and shuffle noises. These model-agnostic denoising objectives act as the auxiliary tasks for structural data modeling during sequence-to-sequence generation. In addition, we propose a clause-sensitive execution guided (EG) decoding strategy to overcome the limitation of EG decoding for generative model. The experiments show that the proposed method improves the performance of sequence-to-sequence model in both schema linking and grammar correctness and establishes new state-of-the-art on WikiSQL benchmark. Our work indicates that the capacity of sequence-to-sequence model for text-to-SQL may have been under-estimated and could be enhanced by specialized denoising task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2022-sead">
<titleInfo>
<title>SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kuan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongbo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongliang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zihao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zujie</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>On the WikiSQL benchmark, most methods tackle the challenge of text-to-SQL with predefined sketch slots and build sophisticated sub-tasks to fill these slots. Though achieving promising results, these methods suffer from over-complex model structure. In this paper, we present a simple yet effective approach that enables auto-regressive sequence-to-sequence model to robust text-to-SQL generation. Instead of formulating the task of text-to-SQL as slot-filling, we propose to train sequence-to-sequence model with Schema-aware Denoising (SeaD), which consists of two denoising objectives that train model to either recover input or predict output from two novel erosion and shuffle noises. These model-agnostic denoising objectives act as the auxiliary tasks for structural data modeling during sequence-to-sequence generation. In addition, we propose a clause-sensitive execution guided (EG) decoding strategy to overcome the limitation of EG decoding for generative model. The experiments show that the proposed method improves the performance of sequence-to-sequence model in both schema linking and grammar correctness and establishes new state-of-the-art on WikiSQL benchmark. Our work indicates that the capacity of sequence-to-sequence model for text-to-SQL may have been under-estimated and could be enhanced by specialized denoising task.</abstract>
<identifier type="citekey">xu-etal-2022-sead</identifier>
<identifier type="doi">10.18653/v1/2022.findings-naacl.141</identifier>
<location>
<url>https://aclanthology.org/2022.findings-naacl.141</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>1845</start>
<end>1853</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising
%A Xu, Kuan
%A Wang, Yongbo
%A Wang, Yongliang
%A Wang, Zihao
%A Wen, Zujie
%A Dong, Yang
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Findings of the Association for Computational Linguistics: NAACL 2022
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F xu-etal-2022-sead
%X On the WikiSQL benchmark, most methods tackle the challenge of text-to-SQL with predefined sketch slots and build sophisticated sub-tasks to fill these slots. Though achieving promising results, these methods suffer from over-complex model structure. In this paper, we present a simple yet effective approach that enables auto-regressive sequence-to-sequence model to robust text-to-SQL generation. Instead of formulating the task of text-to-SQL as slot-filling, we propose to train sequence-to-sequence model with Schema-aware Denoising (SeaD), which consists of two denoising objectives that train model to either recover input or predict output from two novel erosion and shuffle noises. These model-agnostic denoising objectives act as the auxiliary tasks for structural data modeling during sequence-to-sequence generation. In addition, we propose a clause-sensitive execution guided (EG) decoding strategy to overcome the limitation of EG decoding for generative model. The experiments show that the proposed method improves the performance of sequence-to-sequence model in both schema linking and grammar correctness and establishes new state-of-the-art on WikiSQL benchmark. Our work indicates that the capacity of sequence-to-sequence model for text-to-SQL may have been under-estimated and could be enhanced by specialized denoising task.
%R 10.18653/v1/2022.findings-naacl.141
%U https://aclanthology.org/2022.findings-naacl.141
%U https://doi.org/10.18653/v1/2022.findings-naacl.141
%P 1845-1853
Markdown (Informal)
[SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising](https://aclanthology.org/2022.findings-naacl.141) (Xu et al., Findings 2022)
ACL