@inproceedings{bai-etal-2022-query2particles,
title = "{Q}uery2{P}articles: Knowledge Graph Reasoning with Particle Embeddings",
author = "Bai, Jiaxin and
Wang, Zihao and
Zhang, Hongming and
Song, Yangqiu",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.207",
doi = "10.18653/v1/2022.findings-naacl.207",
pages = "2703--2714",
abstract = "Answering complex logical queries on incomplete knowledge graphs (KGs) with missing edges is a fundamental and important task for knowledge graph reasoning. The query embedding method is proposed to answer these queries by jointly encoding queries and entities to the same embedding space. Then the answer entities are selected according to the similarities between the entity embeddings and the query embedding. As the answers to a complex query are obtained from a combination of logical operations over sub-queries, the embeddings of the answer entities may not always follow a uni-modal distribution in the embedding space. Thus, it is challenging to simultaneously retrieve a set of diverse answers from the embedding space using a single and concentrated query representation such as a vector or a hyper-rectangle. To better cope with queries with diversified answers, we propose Query2Particles (Q2P), a complex KG query answering method. Q2P encodes each query into multiple vectors, named particle embeddings. By doing so, the candidate answers can be retrieved from different areas over the embedding space using the maximal similarities between the entity embeddings and any of the particle embeddings. Meanwhile, the corresponding neural logic operations are defined to support its reasoning over arbitrary first-order logic queries. The experiments show that Query2Particles achieves state-of-the-art performance on the complex query answering tasks on FB15k, FB15K-237, and NELL knowledge graphs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bai-etal-2022-query2particles">
<titleInfo>
<title>Query2Particles: Knowledge Graph Reasoning with Particle Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaxin</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zihao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongming</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangqiu</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Answering complex logical queries on incomplete knowledge graphs (KGs) with missing edges is a fundamental and important task for knowledge graph reasoning. The query embedding method is proposed to answer these queries by jointly encoding queries and entities to the same embedding space. Then the answer entities are selected according to the similarities between the entity embeddings and the query embedding. As the answers to a complex query are obtained from a combination of logical operations over sub-queries, the embeddings of the answer entities may not always follow a uni-modal distribution in the embedding space. Thus, it is challenging to simultaneously retrieve a set of diverse answers from the embedding space using a single and concentrated query representation such as a vector or a hyper-rectangle. To better cope with queries with diversified answers, we propose Query2Particles (Q2P), a complex KG query answering method. Q2P encodes each query into multiple vectors, named particle embeddings. By doing so, the candidate answers can be retrieved from different areas over the embedding space using the maximal similarities between the entity embeddings and any of the particle embeddings. Meanwhile, the corresponding neural logic operations are defined to support its reasoning over arbitrary first-order logic queries. The experiments show that Query2Particles achieves state-of-the-art performance on the complex query answering tasks on FB15k, FB15K-237, and NELL knowledge graphs.</abstract>
<identifier type="citekey">bai-etal-2022-query2particles</identifier>
<identifier type="doi">10.18653/v1/2022.findings-naacl.207</identifier>
<location>
<url>https://aclanthology.org/2022.findings-naacl.207</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>2703</start>
<end>2714</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Query2Particles: Knowledge Graph Reasoning with Particle Embeddings
%A Bai, Jiaxin
%A Wang, Zihao
%A Zhang, Hongming
%A Song, Yangqiu
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Findings of the Association for Computational Linguistics: NAACL 2022
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F bai-etal-2022-query2particles
%X Answering complex logical queries on incomplete knowledge graphs (KGs) with missing edges is a fundamental and important task for knowledge graph reasoning. The query embedding method is proposed to answer these queries by jointly encoding queries and entities to the same embedding space. Then the answer entities are selected according to the similarities between the entity embeddings and the query embedding. As the answers to a complex query are obtained from a combination of logical operations over sub-queries, the embeddings of the answer entities may not always follow a uni-modal distribution in the embedding space. Thus, it is challenging to simultaneously retrieve a set of diverse answers from the embedding space using a single and concentrated query representation such as a vector or a hyper-rectangle. To better cope with queries with diversified answers, we propose Query2Particles (Q2P), a complex KG query answering method. Q2P encodes each query into multiple vectors, named particle embeddings. By doing so, the candidate answers can be retrieved from different areas over the embedding space using the maximal similarities between the entity embeddings and any of the particle embeddings. Meanwhile, the corresponding neural logic operations are defined to support its reasoning over arbitrary first-order logic queries. The experiments show that Query2Particles achieves state-of-the-art performance on the complex query answering tasks on FB15k, FB15K-237, and NELL knowledge graphs.
%R 10.18653/v1/2022.findings-naacl.207
%U https://aclanthology.org/2022.findings-naacl.207
%U https://doi.org/10.18653/v1/2022.findings-naacl.207
%P 2703-2714
Markdown (Informal)
[Query2Particles: Knowledge Graph Reasoning with Particle Embeddings](https://aclanthology.org/2022.findings-naacl.207) (Bai et al., Findings 2022)
ACL