Extracting Temporal Event Relation with Syntax-guided Graph Transformer

Shuaicheng Zhang♣, Qiang Ning♠, Lifu Huang♣
♣Virginia Tech, ♠Amazon
♣{zshuai8,lifuh}@vt.edu, ♠qning@amazon.com

Abstract

Extracting temporal relations (e.g., before, after, and simultaneous) among events is crucial to natural language understanding. One of the key challenges of this problem is that when the events of interest are far away in text, the context in-between often becomes complicated, making it challenging to resolve the temporal relationship between them. This paper thus proposes a new Syntax-guided Graph Transformer network (SGT) to mitigate this issue, by (1) explicitly exploiting the connection between two events based on their dependency parsing trees, and (2) automatically locating temporal cues between two events via a novel syntax-guided attention mechanism. Experiments on two benchmark datasets, MATRES and TB-DENSE, show that our approach significantly outperforms previous state-of-the-art methods on both end-to-end temporal relation extraction and temporal relation classification; This improvement also proves to be robust on the contrast set of MATRES. The code is publicly available at https://github.com/VT-NLP/Syntax-Guided-Graph-Transformer.

1 Introduction

Temporal relationship, e.g., Before, After, and Simultaneous, is important for understanding the process of complex events and reasoning over them. Extracting temporal relationship automatically from text is thus an important component in many downstream applications, such as summarization (Jiang et al., 2011; Ng et al., 2014), dialog understanding and generation (Ritter et al., 2010; Sun et al., 2021), reading comprehension (Harabagiu and Bejan, 2005; Sun et al., 2018; Ning et al., 2020; Huang et al., 2019) and future event prediction (Li et al., 2021; Lin et al., 2022). While event mentions can often be detected reasonably well (Lin et al., 2020; Huang and Ji, 2020; Wang et al., 2021, 2022), extracting event-event relationships, especially temporal relationship, still remains challenging (Chen et al., 2021).

Recent studies (Han et al., 2019b; Ning et al., 2017; Vashishtha et al., 2019; Wang et al., 2020a) have shown improved performance in temporal relation extraction by leveraging the contextual representations learned from pre-trained language models (Devlin et al., 2018; Liu et al., 2019). However, one remaining challenge of this task is that it requires accurate characterization of the connection between two event mentions and the cues indicating their temporal relationship, especially when the context is wide and complicated. For instance, by manually examining 200 examples of human annotated temporal relations from the MATRES (Ning et al., 2018) dataset, we find that about 52% of the temporal cues ⁴ come from the connection between two event mentions (e.g., S1 in Fig. 1), 39% from their surrounding contexts (S2 in Fig. 1) and the remaining 9% from others, e.g., event co-reference or subordinate clause structures (S3 in Fig. 1).

⁴Temporal cues refer to the words of which the semantic meaning or related syntactic relations can determine the temporal relation of two event mentions.
Graph Attention Over Ingoing and Outgoing Edges

Ingoing

He won the Gusher
No Yes No No
...
N
N

Graph Attention Source Node Neighbor Node

Outgoing

Path Neighbor Node Target Node

Syntax-guided Attention over Src-To-Tar Path

Aggregated Temporal Information

Figure 2: Architecture overview. The tokens highlighted with red and blue colors in the Input Sentence show the source and target events to be detected. The bold edges in the Input Graph Structure indicate the triples from the dependency path between the source and target event mentions as well as their surrounding context, and are considered by the syntax-guided attention.

Syntactic features, such as dependency parsing trees, have proved to be effective in characterizing the connection of two event mentions in pre-neural methods (Chambers, 2013; Chambers et al., 2014; Mirza and Tonelli, 2016). However, how to make use of these features has been under-explored since the adoption of neural methods in this field. This paper closes this gap with a novel Syntax-guided Graph Transformer (SGT) network – in addition to the attention heads in a typical Graph Transformer, we bring in a new attention mechanism that specifically looks at the path from a source node to a target node over dependency parsing trees. SGT thus not only learns event representations as in a typical Graph Transformer, but also provides a way to represent syntactic dependency information between a pair of events (for temporal relation extraction, this means attending to the aforementioned temporal cues). We conduct experiments on two benchmark datasets, MATRES (Ning et al., 2018) and TB-DENSE (Cassidy et al., 2014) on both end-to-end temporal relation extraction and classification, which demonstrate the effectiveness of SGT over previous state-of-the-art methods. Experiments on the contrast set (Gardner et al., 2020) of MATRES further proves the robustness of our approach.

2 Approach

Figure 2 shows the overview of our approach. Given an input sentence \(\tilde{s} = [w_1, w_2, ..., w_n] \) with \(n \) tokens, we aim to detect a set of event mentions \(\{e_1, e_2, \ldots \} \) where each event mention \(e_i \) may contain one or multiple tokens by leveraging the contextual representations learned from a pre-trained BERT (Devlin et al., 2018) encoder. Then, following previous studies (Ning et al., 2019, 2017; Han et al., 2019b; Wang et al., 2020a), we consider each pair of event mentions that are detected from one or two continuous sentences, and predict their temporal relationship.

To effectively capture the temporal cues between two event mentions, we build a dependency graph from one or two input sentences and design a new Syntax-guided Graph Transformer network to automatically learn a new contextual representation for each event mention by considering the triples that they are locally involved as well as the triples along the dependency path of the two event mentions within the dependency graph. Finally, the two event mention representations are concatenated to predict their temporal relationship.
2.1 Sequence Encoder

Given an input sentence $\tilde{s} = [w_1, w_2, ..., w_n]$, we apply the same tokenizer as BERT (Devlin et al., 2018) to get all the subtokens. Then, we feed the sequence of subtokens as input to a pre-trained BERT model to get a contextual representation for each token w_i. If a token w_i is split into multiple subtokens, we use the contextual representation of the first subtoken to represent w_i. To enrich the contextualized representations, for each token, we create a one-hot Part-of-Speech (POS) tag vector and concatenate it with BERT contextual embeddings. In this way, we obtain a final representation c_i for each w_i. These representations will be later used for event mention detection and also as the initial representations to our syntax-guided graph transformer network.

2.2 Event Detection

To detect event mentions from the sentence, we take the contextual representation of each word as input to a binary linear classifier to determine whether it is an event mention or not, which is optimized by minimizing the following binary cross-entropy loss:

$$
\tilde{y}_i = \text{softmax}(W_{eve}c_i + b_{eve})
$$

$$
L_{eve} = - \sum_{s \in S} \sum_{i=1}^{s} \sum_{\pi \in \{0,1\}} \alpha_\pi y_{i,\pi} \log(\tilde{y}_{i,\pi})
$$

where L_{eve} denotes the cross-entropy loss for event detection. S is the set of sentences in the training dataset. α_π is a weight coefficient for each class (0 or 1) to mitigate the data imbalance problem and $\alpha_0 + \alpha_1 = 1$. $y_{i,\pi}$ is a binary indicator to show whether π is the same as the groundtruth binary label ($y_{i,\pi} = 1$) or not ($y_{i,\pi} = 0$). $\tilde{y}_{i,\pi}$ denotes the probability of the i-th token in s being predicted with a binary class label π. W_{eve} and b_{eve} are learnable parameters.

2.3 Syntax-guided Graph Transformer

From the example sentences in Fig. 1, the temporal cues for characterizing the temporal relationship between two event mentions mainly come from their surrounding contexts as well as their connections from their syntactic dependency path. However, a sequence encoder usually fails to capture such information, especially when the context between two event mentions is complicated, thus we further design a new Syntax-guided Graph Transformer (SGT) network.

Given a source event e_s and a target event e_t detected from one or two continuous sentences, we apply a public dependency parser\(^3\) to parse each sentence into a tree-graph and connect the graphs of two continuous sentences with an arbitrary cross-sentence edge (Peng et al., 2017; Cheng and Miyao, 2017) pointing from the root node of the preceding sentence to the root node of the following one, and obtain a graph $G = (V, E)$. For each node v_i, we use $\mathcal{N}_{in}^{i} = \{(v_k, r_{ki}, v_i) \in E | v_k, v_i \in V\}$ and $\mathcal{N}_{out}^{i} = \{(v_i, r_{ij}, v_j) \in E | v_i, v_j \in V\}$ to denote all the neighbor triples of v_i with in-going and out-going edges respectively, $r \in \Upsilon$ where Υ is the label set for syntactic dependency relation, and use $\mathcal{P}_{ij} = \{(v_i, r_{ig}, v_g), ..., (v_i, r_{ih}, v_h)\}$ as the triple set along the path from v_i to v_j.

Node Representation Initialization For each node v_i in graph G, we map it to a particular token w_i' from the original sentence and obtain a contextual representation c_i' from the BERT encoder. Then, we learn an initial node representation for each node v_i as:

$$
h_{i}^{0} = W_{e}c_{i}' + b_{e}
$$

where W_{e} and b_{e} are learnable parameters.

Graph Multi-head Self-attention Following transformer model (Vaswani et al., 2017; Wang et al., 2020b), we adapt the multi-head self-attention to learn a contextual representation for each node in the graph G. Each node v_i in graph G is associated with a set of neighbor triples $\mathcal{N}_{in}^{i} \cup \mathcal{N}_{out}^{i}$ and a node representation h_{i}^{l-1} where l is the index of a layer in our transformer architecture. To perform self-attention, we first apply a linear transformation to obtain a query vector based on each node v_i, and employ another two linear transformations to get the key and value vectors based on the node’s neighbor triples:

$$
Q_{i}^{l} = W_{q}^{m}h_{i}^{l-1}
$$

$$
K_{ij}^{l} = W_{k}^{m}R_{ij}^{l-1}
$$

$$
U_{ij}^{l} = W_{u}^{m}R_{ij}^{l-1}
$$

$$
R_{ij}^{l-1} = W_{r}^{m}(h_{i}^{l-1}||r_{ij}||h_{j}^{l-1}) + b_{r}
$$

where m is the index of a particular head. Q_{i}^{l} denotes a query vector corresponding to node v_i.

\(^3\)https://spacy.io/api/dependencyparser
K_{ij} and U_{ij} is a key and value vector respectively, and both of them are learned from a triple $(v_i, r_{ij}, v_j) \in \mathcal{N}_i \cup \mathcal{N}_j^{out}$, which is represented as R_{ij}. m is the index of a particular head. \parallel denotes the concatenation operation. r_{ij} denotes the representation of a particular relation r_{ij} between v_i and v_j, which is randomly initialized and optimized by the model. W_q^m, W_k^m, W_v^m, W_r and b_r^m are learnable parameters.

For each node v_t, we then perform self-attention over all the neighbor triples that it is involved, and compute a new context representation with multiple attention heads:

$$g^l_t = (\parallel_{m=1}^M \text{Head}^m(\hat{g}^l_t)) W_o$$

where g^l_t is the aggregated representation computed over all neighbor triples of node v_t with M attention heads at l-th layer. g^l_t will be later used to learn the updated representation of node v_t. $\sqrt{d_k}$ is the scaling factor denoting the dimension size of each key vector. W_o is a learnable parameter.

Syntax-guided Attention To automatically find the indicative temporal cues for two event mentions from their connection as well as surrounding contexts, we design a new syntax-guided attention mechanism. For two event nodes v_s and v_t, we first extract the set of nodes from the dependency path between v_s and v_t (including v_s and v_t), which is denoted as Θ_{st}. We then get all the triples from the dependency path between v_s and v_t as well as the triples that any node from Θ_{st} is involved, which are denoted as $\Phi_{st} = \cup_{v_t \in \Theta_{st}} (\mathcal{N}_s \cup \mathcal{N}_t^{out}) \cup \mathcal{P}_{st}$. To compute the syntax-guided attention over all the triples from Φ_{st}, we apply three linear transformations to get the query, key and value vectors where the query vector is obtained from the representation of two event mentions, and key and value vectors are computed from the triples in Φ_{st}:

$$Q^l_{st} = \tilde{W}^m_q \cdot (h^l_{i-1} \parallel h^l_{i-1})$$

$$K_{ij} = \tilde{W}^m_k \hat{R}_{ij}$$

$$U^l_{ij} = \tilde{W}^m_u \hat{R}_{ij}$$

$$\hat{R}_{ij} = \tilde{W}^m_r (h^l_{i-1} \parallel r_{ij} \parallel h^l_{j-1}) + \bar{b}_r$$

where m is the index of a particular head, Q^l_{st}, K_{ij}, U^l_{ij} denote the query, key and value vectors respectively. \hat{R}_{ij} is the representation of a triple $(v_i, r_{ij}, v_j) \in \Phi_{st}$. \tilde{W}^m_q, \tilde{W}^m_k, \tilde{W}^m_u and \tilde{W}^m_r are learnable parameters.

Given the query vector, we then compute the attention distribution over all triples from Φ_{st} and get an aggregated representation to denote the meaningful temporal features captured from the connection between two event mentions and their surrounding contexts.

$$\hat{g}^l_{st} = \left(\parallel_{m=1}^M \text{Head}^m(\hat{g}^l_{st}) \right) W_p$$

$$\text{Head}^m_{st} = \text{softmax}(\frac{Q^l_{st} (K^l)^\top}{\sqrt{d_k}}) \cdot \hat{U}^l$$

where \hat{g}^l_{st} is the aggregated temporal related information from all the triples in Φ_{st} based on the syntax-guided attention at l-th layer. W_p is a learnable parameter.

Node Representation Fusion Each event node in graph G will receive two representations learned from the multi-head self-attention and syntax-guided attention, thus we further fuse the two representations for both the source node v_s and the target node v_t:

$$\hat{h}^l_s = \tilde{W}_f(g^l_s \parallel \hat{g}^l_{st}), \quad \hat{h}^l_t = \tilde{W}_f(g^l_t \parallel \hat{g}^l_{st})$$

where g^l_s and g^l_t denote the context representations learned from the multi-head self-attention for v_s and v_t. \hat{g}^l_{st} denotes the representation learned from the triples from Φ_{st} using syntax-guided attention. \hat{h}^l_s and \hat{h}^l_t are the fused representations of v_s and v_t, respectively. \tilde{W}_f is a learnable parameter.

For each non-event node v_i, which only receives a context representation g^l_i learned from the multi-head self-attention, we apply a linear projection and get a new node representation:

$$\hat{h}^l_i = W_i g^l_i$$

Our Syntax-guided Graph Transformer encoder is composed of a stack of multiple layers, while each layer consists of the two attention mechanisms and the fusion sub-layer. We use residual connection followed by LayerNorm for each layer to get the final representations of all the nodes:

$$H^l = \text{LayerNorm}(\hat{H}^l + H^{l-1})$$
2.4 Temporal Relation Prediction

To predict the temporal relation between two event mentions e_s and e_t, we concatenate the final hidden states of v_s and v_t obtained from the Syntax-guided Graph Transformer network, and apply a Feedforward Neural Network (FNN) to predict their relationship

$$\hat{y}_{st} = \text{softmax}({W_z(h^L_s \| h^L_t) + b_t})$$

where \hat{y}_{st} denotes the probabilities over all possible temporal relations between event mentions e_s and e_t.

The training objective is to minimize the following cross-entropy loss function:

$$L_{rel} = - \sum_{st \in X} \sum_{x \in \Delta} \beta_x y_{st,x} \log(\hat{y}_{st,x})$$

where Δ denotes the total set of event pairs for temporal relation prediction and X denotes the whole set of relation labels. $y_{st,x}$ is a binary indicator (0 or 1) to show whether x is the same as the groundtruth label ($y_{st,x} = 1$) or not ($y_{st,x} = 0$). We also assign a weight β_x to each class to mitigate the label imbalance issue.

3 Experiment

3.1 Experimental Setup

We perform experiments on two public benchmark datasets for temporal relation extraction: (1) TB-DENSE (Cassidy et al., 2014), which is a densely annotated dataset with 6 types of relations: Before, After, Simultaneous, Includes, Is_Included and Vague. (2) MATRES (Ning et al., 2018), which annotates verb event mentions along with 4 types of temporal relations: Before, After, Simultaneous and Vague. Additionally, we use POS tag information from MATRES provided by (Ning et al., 2019). For TB-DENSE, we use spaCy annotation for predicting POS tag information which is based on Universal POS tag set. For both benchmark datasets, we use the same train/dev/test splits as previous studies (Ning et al., 2019, 2017; Han et al., 2019a,b). Note that, for evaluation, similar as previous work, we disregard the Vague relation from both datasets (in the evaluation phase, we simply remove all ground truth Vague relation pairs). In addition, we will only consider event pairs from adjacent sentences due to the fact that it will require an exponential number of annotations if we also consider event pairs from non-adjacent sentences, which is beyond the scope of this study. Table 1 shows statistics of the two datasets and Table 2 shows the label distribution.

<table>
<thead>
<tr>
<th>Labels</th>
<th>TB-DENSE</th>
<th>MATRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>384</td>
<td>417</td>
</tr>
<tr>
<td>After</td>
<td>274</td>
<td>266</td>
</tr>
<tr>
<td>Includes</td>
<td>56</td>
<td>-</td>
</tr>
<tr>
<td>Is_Included</td>
<td>53</td>
<td>-</td>
</tr>
<tr>
<td>Simultaneous</td>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>Vague</td>
<td>638</td>
<td>133</td>
</tr>
</tbody>
</table>

Table 1: Data statistics for TB-DENSE and MATRES.

Table 2: Label distribution for TB-DENSE and MATRES.

For each dataset, the first column shows the number of instances of each relation type while the second column shows the percentage.

Implementation Details For fair comparisons with previous baseline approaches, we use the pre-trained bert-large-cased model5 for fine-tuning and optimize our model with BertAdam. We optimize the parameters with grid search: training epoch 10, learning rate $\in \{3e-6, 1e-5\}$, training batch size $\in \{16, 32\}$, encoder layer size $\in \{4, 12\}$, number of heads $\in \{1, 8\}$. During training, we first optimize the event extraction module for 5 epochs to warm up, and then jointly optimize both event extraction and temporal relation extraction modules using gold event pairs for another 5 epochs.

3.2 Results

We evaluate SGT against two public benchmark datasets under two settings: (1) joint event and temporal relation extraction (Table 3); (2) temporal relation classification, where the gold event mentions are known beforehand (Table 4). Note in the “joint” setting, we adopt the same strategy proposed in (Han et al., 2019b): we first train the event extraction module, and then jointly optimize both event extraction and temporal relation extraction.

5https://huggingface.co/transformers/pretrained_models.html
Table 3: Comparison of various approaches on joint event and relation extraction with F-score (%). Note that HPN19 fixes BERT embeddings but relies on BiLSTM to capture the contextual features.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Pre-trained Model</th>
<th>Event Detection</th>
<th>Relation Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-DENSE</td>
<td>HNP19 (Han et al., 2019b)</td>
<td>BERT Base</td>
<td>90.9</td>
<td>49.4</td>
</tr>
<tr>
<td></td>
<td>Our Approach</td>
<td>BERT Base</td>
<td>91.0</td>
<td>51.8</td>
</tr>
<tr>
<td>MATRES</td>
<td>CogCompTime2.0 (Ning et al., 2019)</td>
<td>BERT Base</td>
<td>85.2</td>
<td>52.8</td>
</tr>
<tr>
<td></td>
<td>HNP19 (Han et al., 2019b)</td>
<td>BERT Base</td>
<td>87.8</td>
<td>59.6</td>
</tr>
<tr>
<td></td>
<td>Our Approach</td>
<td>BERT Base</td>
<td>90.5</td>
<td>62.3</td>
</tr>
</tbody>
</table>

Table 4: Comparison of various approaches on temporal relation classification with gold event mentions as input.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Pre-trained Model</th>
<th>Relation Classification (F-score %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-DENSE</td>
<td>LSTM (Cheng and Miyao, 2017)</td>
<td>BERT Base</td>
<td>62.2</td>
</tr>
<tr>
<td></td>
<td>HNP19 (Han et al., 2019b)</td>
<td>BERT Base</td>
<td>64.5</td>
</tr>
<tr>
<td></td>
<td>Our Approach</td>
<td>BERT Base</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>PSL (Zhou et al., 2020)</td>
<td>RoBERTa Large</td>
<td>65.2</td>
</tr>
<tr>
<td></td>
<td>DEER (Han et al., 2021)</td>
<td>RoBERTa Large</td>
<td>66.8</td>
</tr>
<tr>
<td></td>
<td>Our Approach</td>
<td>BERT Large</td>
<td>67.1</td>
</tr>
<tr>
<td>MATRES</td>
<td>CogCompTime2.0 (Ning et al., 2019)</td>
<td>BERT Base</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>LSTM (Cheng and Miyao, 2017)</td>
<td>BERT Base</td>
<td>73.4</td>
</tr>
<tr>
<td></td>
<td>HNP19 (Han et al., 2019b)</td>
<td>BERT Base</td>
<td>75.5</td>
</tr>
<tr>
<td></td>
<td>Our Approach</td>
<td>BERT Base</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td>HMHD20 (Wang et al., 2020a)</td>
<td>RoBERTa Large</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td>DEER (Han et al., 2021)</td>
<td>RoBERTa Large</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td>Our Approach</td>
<td>BERT Large</td>
<td>80.3</td>
</tr>
</tbody>
</table>

Table 5: Evaluation on the contrast set of MATRES. Original Test indicates the accuracy on 100 examples sampled from the original MATRES test set following (Gardner et al., 2020). Contrast shows the accuracy score on 401 examples perturbed from the original 100 examples. Consistency is defined as the percentage of the original 100 examples for which the model’s predictions of the perturbed examples are all correct in the contrast set.

<table>
<thead>
<tr>
<th>Model</th>
<th>Original Test</th>
<th>Contrast</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CogCompTime2.0 (Ning et al., 2019)</td>
<td>73.2</td>
<td>63.3</td>
<td>40.6</td>
</tr>
<tr>
<td>Our Approach</td>
<td>77.0</td>
<td>64.8</td>
<td>49.8</td>
</tr>
</tbody>
</table>

(continues)
Before (e₁: retiring) in 1984, Mr. Lowe (e₂: worked) as an inspector of schools with the department of education and sciences, and he leaves three sons from a previous marriage.

S2: Mr. Erdogan has long (e₁: sought) an apology for the raid in May 2010 on the Mavi Marmara, which was part of a Flotilla that (e₂: sought) to break Israel’s blockade of Gaza.

Figure 3: Comparison of the predictions from BERT, BERT-GT and our approach.

Table 6: Ablation study on MATRES. We use BERT base as the comparison basis.

<table>
<thead>
<tr>
<th>Ablation</th>
<th>F-score (%)</th>
<th>Gain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT-GT</td>
<td>79.3</td>
<td>0</td>
</tr>
<tr>
<td>BERT-GT</td>
<td>77.5</td>
<td>-2.0</td>
</tr>
<tr>
<td>BERT-SGT</td>
<td>75.5</td>
<td>-3.8</td>
</tr>
</tbody>
</table>

Table 6 also shows that by adding Graph Transformer, BERT-GT achieves 2.0% absolute F-score improvement over the BERT baseline model, demonstrating the benefit of dependency parsing trees to temporal relation prediction. By further adding the new syntax-guided attention into Graph Transformer, the absolute improvement on F-score (1.8%) shows the effectiveness of our new Syntax-guided Graph Transformer and the importance of capturing temporal cues from the connection of two event mentions as well as their surrounding contexts.

Figure 3 shows two examples as qualitative analysis. In S1, BERT mistakenly predicts the temporal relation as Before probably because it’s confused by the context word Before. However, by incorporating the dependency graph, especially the triples \{worked, prep, Before\}, \{Before, pcomp, retiring\} and the path between the two event mentions, \(worked \rightarrow prep \rightarrow Before \rightarrow pcomp \rightarrow retiring\), both BERT-GT and our approach correctly determine the relation as After. In S2, both BERT and BERT-GT mistakenly predict the temporal relation as Before as the context between the two event mentions is very wide and complicated, and these two event mentions are not close within the dependency graph. However, by explicitly considering and understanding the connection between the two event mentions, \(sought_{e_1} \rightarrow on \rightarrow Marmara \rightarrow was \rightarrow part \rightarrow Flotilla \rightarrow sought_{e_2}\), our approach correctly predicts the temporal relation between the two event mentions.

3.3 SGT on Temporal Cues

To analyze the source of temporal cues for relation prediction, we randomly sample 100 correct event relation predictions given gold event mentions from MATRES and select the triple that has the highest temporal attention weight from the last layer of the Syntax-guided Graph Transformer network as a temporal cue candidate. We manually evaluate the validity of each temporal cue candidate, and further analyze if the cue is from the dependency path between two event mentions, their surrounding context, or both. Our analysis shows that about 64% of the temporal cues are valid, 37% of them come from the dependency path, 17% are from local context, and the remaining 10% are from both. This verifies our initial observation that most of the temporal cues are from the dependency path between two event mentions as well as their surrounding context. It also demonstrates the...
effectiveness of our new syntax-guided attention mechanism.

3.4 Impact of Wide Context

We further illustrate the impact of context width to both baseline model and our approach. For fair comparison, we use three context width category, [context length < 10, 10 < context length < 20, context length > 20]. As we can see in Fig. 4, the first category has 267 pairs and the second category has 343 pairs and the third category has 817 pairs. From our results, we observe that the BERT baseline cannot predict the temporal relation of two event mentions with wide context but rather working well when the event mentions are close to each other. Our model overall performs slightly worse in the second category but in general is very good at predicting the temporal relationship for the event mentions with short and context width. This also proves the benefit of syntactic parsing trees to the prediction of temporal relationship. For the second category where the context length is within [10, 20], the performance of our approach slightly drops due to two reasons: (1) the training samples within this range are not as sufficient as the other two categories; (2) for most event pairs from this category, their dependency path is very long and there is no explicit temporal indicative features within their context or dependency path, making it more difficult for the model to predict their temporal relationship.

Figure 4: Context width analysis on TB-DENSE. The X axis shows the number of tokens between two events mentions. The left Y axis shows the data distribution of each width category indicating with blue bars. The right Y axis denotes the micro F-score for each width category.

3.5 Remaining Errors

We randomly sample 100 classification errors from the output of our approach and categorize them into four categories. As Figure 5 shows, the first category is due to the complex or ambiguous context (54% of the total errors). The second category is due to the complicated subordinate clause structure, especially the clauses that are related to quote or reported speech, e.g., S2 in Figure 5. The third error category is that our approach cannot correctly differentiate the actual events from the hypothetical and intentional events, while in most cases, the temporal relation among hypothetical and intentional events is annotated as Vague. The last category is due to the lack of sufficient annotation. We observe that none of the Simultaneous relation can be correctly predicted for MATRES dataset as the percentage of Simultaneous (3.7%) is much lower than other relation types. In TB-DENSE dataset, labels are even more imbalanced as the percentage of Vague relation is over 50% while the percentage of Includes, Is_Included and Simultaneous are all less than 4%.

4 Related Work

Early studies on temporal relation extraction mainly model it as a pairwise classification problem (Mani et al., 2006; Verhagen et al., 2007; Verhagen and Pustejovsky, 2008; Verhagen et al., 2010; Bethard et al., 2016; MacAvaney et al., 2017) and rely on hand-crafted features and rules (Verhagen and Pustejovsky, 2008; Bethard et al., 2007) to extract temporal event relations. Recently, deep neural networks (Dligach et al., 2017; Tourille et al., 2017) and large-scale pre-trained language models (Han et al., 2019a, 2021; Wang et al., 2020a; Zhou et al., 2020) are further employed and show state-of-the-art performance.

Similar to our approach, several studies (Ling and Weld, 2010; Nikfarjam et al., 2013; Mirza and Tonelli, 2016; Meng et al., 2017; Cheng and Miyao, 2017; Huang et al., 2017) also explored syntactic path between two events for temporal relation extraction. Different from previous work, our approach considers three important sources of temporal cues: local context, denoting the neighbors of each event node within the dependency graph; connection of two event mentions, which is based on the dependency path between two event mentions; and rich semantics of concepts and dependency relations, for example, the dependency
relation *nmod* between two event mentions usually indicates a *Before* relationship. All these indicative features are automatically selected and aggregated with the multi-head self-attention and our new syntax-guided attention mechanism.

Our work is also related to the variants of Graph Neural Networks (GNN) (Kipf and Welling, 2016; Veličković et al., 2018; Zhou et al., 2018), especially Graph Transformer (Yun et al., 2019; Chen et al., 2019; Hu et al., 2020; Wang et al., 2020b). Different from previous GNNs which aim to capture the context from neighbors of each node within the graph, in our task, we aim to select and capture the most meaningful temporal cues for two event mentions from their connections within the graph as well as their surrounding contexts.

5 Conclusion

Temporal relationship between events is important for understanding stories described in natural language text, and a main challenge is how to discover and make use of the connection between two event mentions, especially when the event pair is far apart in text. This paper proposes a novel Syntax-guided Graph Transformer (SGT) that represents the connection between an event pair via additional attention heads over dependency parsing trees. Experiments on benchmarking datasets, MATURES, TB-DENSE, and a contrast set of MATRES, show that our approach significantly outperforms previous state-of-the-art methods in a variety of settings, including event detection, temporal relation classification (where events are given), and temporal relation extraction (where events are predicted). In the future, we will investigate the potential of this approach to other relation extraction tasks.

Acknowledgements

We thank the anonymous reviewers and area chair for their valuable time and constructive comments. We also thank the support from the Amazon Research Awards.

References

Muhao Chen, Hongming Zhang, Qiang Ning, Manling Li, Heng Ji, Kathleen McKeown, and Dan Roth. 2021.

Manling Li, Sha Li, Zhenhailong Wang, Lifu Huang, Kyunghyun Cho, Heng Ji, Jiawei Han, and Clare Voss. 2021. The future is not one-dimensional: Complex event schema induction by graph modeling for event prediction. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5203–5215.

Qi an Ning, Hao Wu, and Dan Roth. 2018. A multi-axis annotation scheme for event temporal relations. In ACL.

