@inproceedings{yang-etal-2022-improving,
title = "Improving Conversational Recommendation Systems{'} Quality with Context-Aware Item Meta-Information",
author = "Yang, Bowen and
Han, Cong and
Li, Yu and
Zuo, Lei and
Yu, Zhou",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.4",
doi = "10.18653/v1/2022.findings-naacl.4",
pages = "38--48",
abstract = "A key challenge of Conversational Recommendation Systems (CRS) is to integrate the recommendation function and the dialog generation function smoothly. Previous works employ graph neural networks with external knowledge graphs (KG) to model individual recommendation items and integrate KGs with language models through attention mechanism for response generation. Although previous approaches prove effective, there is still room for improvement. For example, KG-based approaches only rely on entity relations and bag-of-words to recommend items and neglect the information in the conversational context. We propose to improve the usage of dialog context for both recommendation and response generation using an encoding architecture along with the self-attention mechanism of transformers. In this paper, we propose a simple yet effective architecture comprising a pre-trained language model (PLM) and an item metadata encoder to integrate the recommendation and the dialog generation better. The proposed item encoder learns to map item metadata to embeddings reflecting the rich information of the item, which can be matched with dialog context. The PLM then consumes the context-aware item embeddings and dialog context to generate high-quality recommendations and responses. Experimental results on the benchmark dataset ReDial show that our model obtains state-of-the-art results on both recommendation and response generation tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2022-improving">
<titleInfo>
<title>Improving Conversational Recommendation Systems’ Quality with Context-Aware Item Meta-Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bowen</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cong</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Zuo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhou</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A key challenge of Conversational Recommendation Systems (CRS) is to integrate the recommendation function and the dialog generation function smoothly. Previous works employ graph neural networks with external knowledge graphs (KG) to model individual recommendation items and integrate KGs with language models through attention mechanism for response generation. Although previous approaches prove effective, there is still room for improvement. For example, KG-based approaches only rely on entity relations and bag-of-words to recommend items and neglect the information in the conversational context. We propose to improve the usage of dialog context for both recommendation and response generation using an encoding architecture along with the self-attention mechanism of transformers. In this paper, we propose a simple yet effective architecture comprising a pre-trained language model (PLM) and an item metadata encoder to integrate the recommendation and the dialog generation better. The proposed item encoder learns to map item metadata to embeddings reflecting the rich information of the item, which can be matched with dialog context. The PLM then consumes the context-aware item embeddings and dialog context to generate high-quality recommendations and responses. Experimental results on the benchmark dataset ReDial show that our model obtains state-of-the-art results on both recommendation and response generation tasks.</abstract>
<identifier type="citekey">yang-etal-2022-improving</identifier>
<identifier type="doi">10.18653/v1/2022.findings-naacl.4</identifier>
<location>
<url>https://aclanthology.org/2022.findings-naacl.4</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>38</start>
<end>48</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Conversational Recommendation Systems’ Quality with Context-Aware Item Meta-Information
%A Yang, Bowen
%A Han, Cong
%A Li, Yu
%A Zuo, Lei
%A Yu, Zhou
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Findings of the Association for Computational Linguistics: NAACL 2022
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F yang-etal-2022-improving
%X A key challenge of Conversational Recommendation Systems (CRS) is to integrate the recommendation function and the dialog generation function smoothly. Previous works employ graph neural networks with external knowledge graphs (KG) to model individual recommendation items and integrate KGs with language models through attention mechanism for response generation. Although previous approaches prove effective, there is still room for improvement. For example, KG-based approaches only rely on entity relations and bag-of-words to recommend items and neglect the information in the conversational context. We propose to improve the usage of dialog context for both recommendation and response generation using an encoding architecture along with the self-attention mechanism of transformers. In this paper, we propose a simple yet effective architecture comprising a pre-trained language model (PLM) and an item metadata encoder to integrate the recommendation and the dialog generation better. The proposed item encoder learns to map item metadata to embeddings reflecting the rich information of the item, which can be matched with dialog context. The PLM then consumes the context-aware item embeddings and dialog context to generate high-quality recommendations and responses. Experimental results on the benchmark dataset ReDial show that our model obtains state-of-the-art results on both recommendation and response generation tasks.
%R 10.18653/v1/2022.findings-naacl.4
%U https://aclanthology.org/2022.findings-naacl.4
%U https://doi.org/10.18653/v1/2022.findings-naacl.4
%P 38-48
Markdown (Informal)
[Improving Conversational Recommendation Systems’ Quality with Context-Aware Item Meta-Information](https://aclanthology.org/2022.findings-naacl.4) (Yang et al., Findings 2022)
ACL