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Abstract

Since 2017, the Transformer-based models play
critical roles in various downstream Natural
Language Processing tasks. However, a com-
mon limitation of the attention mechanism uti-
lized in Transformer Encoder is that it can-
not automatically capture the information of
word order, so explicit position embeddings
are generally required to be fed into the target
model. In contrast, Transformer Decoder with
the causal attention masks is naturally sensi-
tive to the word order. In this work, we focus
on improving the position encoding ability of
BERT with the causal attention masks. Further-
more, we propose a new pre-trained language
model DecBERT and evaluate it on the GLUE
benchmark. Experimental results show that (1)
the causal attention mask is effective for BERT
on the language understanding tasks; (2) our
DecBERT model without position embeddings
achieve comparable performance on the GLUE
benchmark; and (3) our modification acceler-
ates the pre-training process and DecBERT w/
PE achieves better overall performance than
the baseline systems when pre-training with
the same amount of computational resources.

1 Introduction

In recent years, Transformer model proposed by
Vaswani et al. (2017) has supplanted the widely-
used LSTM (Hochreiter and Schmidhuber, 1997)
as an indispensable component of many NLP sys-
tems. There are two branches of model variant:
Transformer Encoder and Transformer Decoder.
The Encoder-based Language Models, e.g., BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019)
and DeBERTa (He et al., 2020), have achieved
great success on many natural language under-
standing benchmarks (e.g. GLUE (Wang et al.,
2019b) and SuperGLUE (Wang et al., 2019a)).
The Decoder-based Language Models such as GPT-
family (Radford and Narasimhan, 2018; Radford

∗ equal contribution

et al., 2019; Brown et al., 2020) have shown supe-
rior performances on natural language generation.
All of them utilize the Multi-Head Self-Attention
(MHA) mechanism (Vaswani et al., 2017). Since
MHA is designed as an order-invariant mechanism
(Lee et al., 2019), Transformer Encoder without
the help of position embeddings should share the
same intuitions with the bag-of-word model. On
the other hand, in Transformer Decoder, the causal
attention masks make the MHA different from that
of the Transformer Encoder. Specifically, Tsai et al.
(2019) have proved that MHA with such attention
masks is not permutation equivalent, indicating that
Transformer Decoder is sensitive to word order.

It is noticed that several studies focus on enrich-
ing the position information of BERT to improve
the performance of natural language understand-
ing (Dai et al., 2019; Dufter et al., 2020; He et al.,
2020; Wu et al., 2021a; Ke et al., 2021), e.g., intro-
ducing extra learnable parameters to trace the word
order. Previous analysis also indicate that the lower
layers of BERT tend to capture rich surface-level
language structural information such as position
information (Jawahar et al., 2019). In this paper,
to improve the language understanding of BERT,
we propose to enrich the position information in
the lower hidden layers instead of introducing extra
learnable positional parameters.

To this end, we firstly design analysis experi-
ments to examine the effectiveness of causal atten-
tion masks in terms of capturing position informa-
tion. Then we propose a new pre-trained language
model DecBERT by adding the causal attention
masks into the lower layers of BERT (e.g., the first
two layers) to enhance the position encoding ability.
In this way, our proposed model is naturally sensi-
tive to word order. Then we pre-train our DecBERT
as a masked language model, following the same
objective as BERT. To verify whether our modifica-
tion can help BERT trace word order, we also make
a comparison with a variant of our DecBERT that
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excludes any position embeddings. The experimen-
tal results show that DecBERT w/o PE has 77 times
(4.59 vs. 353.97) lower valid PPL score than BERT
w/o PE and achieves comparable performance with
BERT w/ PE on downstream tasks, corroborating
the effectiveness of our modification. Furthermore,
DecBERT w/ PE achieves better performances than
BERT on most downstream tasks when pre-training
with the same amount of time and computational
resources. By analyzing the pre-training process,
we find that our modification can also accelerate
pre-training.

The contributions of this work are summarised
as follows:

• We propose a novel pre-train model DecBERT
utilizing the causal attention masks to enhance
language understanding of BERT.

• We show that DecBERT w/o PE has compara-
ble performance with BERT w/ PE, indicating
that the causal attention masks are effective
for modeling word order.

• When pre-training with the same amount of
time and computational resources, DecBERT
w/ PE achieves lower validation PPL and bet-
ter overall performance on GLUE than BERT.

2 Background: Transformer

Transformer is a neural network model proposed
by Vaswani et al. (2017), which relies on the
multi-head self-attention (MHA) mechanism.

Input Layer. Due to the order-invariance of
MHA (Lee et al., 2019), a token embedding is
added with a position embedding as the input of
Transformer Encoder or Decoder:

hi = TE(xi) + PE(i), (1)

where xi is a token at the ith position. TE is a to-
ken embedding matrix and PE is a position embed-
ding matrix. In the paper of Vaswani et al. (2017),
they use a fixed sinusoidal PE:

PE[i, 2j] = sin(i/100002j/dm),

PE[i, 2j + 1] = cos(i/100002j/dm),
(2)

where j is the dimension and dm is the model size.
In the later work, Devlin et al. (2019) choose to
use a learnable PE matrix.

Multi-head Self-attention (MHA). MHA takes
a sequence of vectors h = [h1, h2, ..., hn] as input.
Then they are transformed into three different vec-
tors, query (Q), key (K) and value (V), by three
linear transformations and passed to the multi-head
self-attention (MHA). The computation process of
a single head is:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V,

(3)
where dk is the dimension of a single head. MHA

repeats the same process for h heads. The outputs
of all heads are concatenated together and passed
through a linear projection WO again:

Hi = Attention(Qi,Ki, Vi),

MHA(Q,K, V ) = concat(H1, ...,Hh)W
O.

(4)

Transformer Encoder and Decoder. An En-
coder layer consists of multi-head attention fol-
lowing with a feed-forward network (FFN). The
outputs of MHA and FFN are passed through a Lay-
erNorm (Ba et al., 2016) with residual connections
(He et al., 2016). Then we stack multi-layer to
form a Transformer Encoder. The difference be-
tween Decoder and Encoder is that Decoder uses
the causal attention masks to mask the attention
values of the subsequent tokens so that Decoder
can only decode tokens relying on the tokens in the
past.1

3 Methodology

In this section, we first analyze the relationship
between Transformer Decoder and position embed-
dings (section 3.1). Based on this analysis, we in-
ject the causal attention masks into BERT to create
our new pre-trained language models, DecBERT
(section 3.2).

3.1 Transformer Decoder and Position
Embeddings

Previous studies (Tsai et al., 2019) indicate
that Transformer Decoder with causal attention
masks is sensitive to word order. We wonder
whether Transformer Decoder can perform well
without position embeddings. We assume that
if Transformer Decoder without any position

1We do not consider the Encoder-Decoder Seq2seq struc-
ture with cross attention here. Encoder and Decoder are used
independently.

1186



TRM Layer

TRM Layer

TRM Layer

TRM Layer 
w/ Attention Masks 
(from left to right) 

TRM Layer 
w/ Attention Masks 
(from left to right) 

TRM Layer

TRM Layer 
w/ Attention Masks 
(from right to left) 

TRM Layer 
w/ Attention Masks 
(from left to right) 

TRM Layer

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

(d) Causal Attention Masks

from right to left

from left to right
0 = Masked, 1 = Unmasked

(c) DecBERT-Diff(b) DecBERT-Same(a) BERT

x(N-2)

Figure 1: Model structures of BERT and DecBERT. TRM refers to the Transformer layer.

embeddings still retains comparable performance
with its counterpart with position embeddings, it
will corroborate that the causal attention masks are
helpful for Transformer to encode word order. To
this end, we design a straightforward experiment of
causal language modeling respectively on English
and Chinese data as followed.

Basic Model. Our basic model is an 8-layer
Transformer Decoder with 768 embedding size,
3072 feedforward layer hidden size, 12 attention
heads and GELU activation function (Hendrycks
and Gimpel, 2020), which is a smaller version of
GPT and has 95M trainable parameters for English
model and 77.5M for Chinese model.2 We find
that if we use a standard 12-layer GPT, the number
of trainable parameters will be higher than the
number of tokens in the WikiText-103 dataset.
This has a risk to cause over-fitting, so we choose
to use an 8-layer model.

Data and Training. We resort to two publicly
available wikipedia datasets. The first one is the
English WikiText-103 (Merity et al., 2017). We
train and evaluate our language models on the stan-
dard splits of the WikiText-103, which contains
1.8M sentences for training and 3.76k sentences
for evaluation. The second one is the Chinese
Wikipedia which contains about 9.28M sentences.
We randomly select 34k sentences for evaluation
and 9.25M for training. We use Fairseq (Ott et al.,
2019) to pre-process all the data into the binary
files. All the English data is tokenized by Senten-

2The Chinese vocabulary size is smaller than English, so
the Chinese model has fewer parameters.

Transformer Decoder w/o PE w/ PE
WikiText-103 23.52 23.37
Chinese Wiki 12.96 12.75

Table 1: Transformer Decoders perplexity (PPL) on
WikiText-103 and Chinese Wikipedia validation sets.
PE refers to the learnable position embeddings.

cePiece tokenizer (Kudo and Richardson, 2018),
which is the same as RoBERTa. All Chinese data
is tokenized by character.

All models are trained with Fairseq. The train-
ing objective is the Causal Language Modeling
objective. We use a batch size of 128 and train
for 100k steps, optimized by Adam (Kingma and
Ba, 2015). We also use the polynomial learning
rate decay with 10k warmup steps. All models use
the same hyper-parameters. We list the details in
the Appendix. We use two NVIDIA A100 40GB
GPUs to train each model. For the WikiText-103,
it costs about 10 hours per model. For the Chinese
Wikipedia, it costs about 8.5 hours per model.

Results and Discussion. Table 1 presents the
perplexity (PPL) scores of Transformer Decoders
with or without position embeddings on WikiText-
103 and Chinese Wikipedia validation sets. Trans-
former Decoder w/o PE achieves comparable per-
formance with its counterpart with learnable PE,
which is only about 0.2 higher. This result reveals
that the additional performance gain brought by
position embeddings is small. Only relying on its
causal attention masks, Transformer Decoder still
can perform well. Combing our experiment and the
previous studies (Tsai et al., 2019; Irie et al., 2019),
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the causal attention masks can make Transformer
sensitive to word order.

3.2 Our DecBERT Model

In section 3.1, we conclude that Transformer with
the causal attention masks is naturally sensitive to
word order. Since the position information is in-
evitable for BERT, we propose to enhance existing
BERT model based on causal attention masks.

In this paper, we intend to add the causal atten-
tion masks into all or some hidden layers of BERT.
In this way, the specific layers with such masks
are sensitive to word order by design, which can
enhance the position encodings ability of BERT.
Such framework can further result in better lan-
guage understanding performances, e.g., in pre-
trained language modeling, casual attention masks
were added on all 12 layers of GPT (Radford and
Narasimhan, 2018). However, comparing with
BERT (Devlin et al., 2019), we observe that GPT
lags behind BERT on almost all downstream tasks.3

This is because self-attention mechanism with such
masks only consider one-side information flow, it
cannot process the input sentence comprehensively
and has a high risk of language information loss.
Therefore, we can conjecture that it is not effective
to use the causal attention masks in all hidden lay-
ers. There is a strong need to maintain a balance
between the gain of position encoding ability and
the loss of language information.

In order to determine which layer(s) should add
casual attention masks, we refer to the BERTology
work (Jawahar et al., 2019) that conduct compre-
hensive experiments to analyze and interpret the
information captured by each layer of BERT. The
experimental results indicate that the lower layers
of BERT capture rich language structure informa-
tion. The position information is also a common
structure information, so that we propose to add
the causal attention masks into the lower layers
(e.g., the first two layers4) to improve the position
encoding ability of BERT. We denote our model as
DecBERT. There are two versions of our model,
DecBERT-Same and DecBERT-Diff. All of them
are 12-layer base size models.

• DecBERT-Same: This model has a similar
3Although GPT and BERT are pre-trained with different

objectives, the comparison is reasonable due to the same down-
stream tasks.

4We conducted massive experiments by adding the masks
in the first, first-two, or first-three layer(s), and the first-two
layers achieve the best performance.

structure as BERT (see Figure 1(a)), but we
use the causal attention masks to convert the
first two Encoder layers into two Decoder lay-
ers with the same direction (from left to right).
So the 12-layer model has 10 Encoder layers
and 2 Decoder layers, which is shown in Fig-
ure 1(b). In this way, the first two layers are
naturally sensitive to word order;

• DecBERT-Diff: This model is designed to
enhance DecBERT-Same to gain more lan-
guage information from different encoding
directions. This model has a same structure
as DecBERT-Same, except the second De-
coder layer that has the opposite direction
(from right to left). Figure 1(c) illustrates the
model structure.

One would think that DecBERT is similar to
Transformer with RNN layer (Neishi and Yoshi-
naga, 2019). Note that DecBERT is quite different
from it, because DecBERT has similar structure as
BERT and both of them require the same amount
of computational time, which is much faster than
that of Transformer with RNN.

4 Experiments and Results

4.1 Experimental Setup
Our experiments can be separated into two parts,
small-scale pre-training scenario and large-scale
pre-training scenario. Since the small-scale pre-
training consumes much less time and fewer com-
putational resources, we intend to answer several
research questions in this part:

• Can DecBERT without any position embed-
dings still understand language well?

• Can DecBERT with position embeddings out-
perform BERT?

• Is using different directional causal attention
masks more helpful than using the same direc-
tional?

• Why can DecBERT benefit from the causal
attention masks, how do such masks affect the
pre-training process?

For the large-scale pre-training scenario, we in-
tend to examine whether the performance gap be-
tween our DecBERT and BERT will be diminished
after scaling up the pre-training data size and time.
Such settings can present a more comprehensive
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view of whether our modification can benefit the
pre-trained language models.

For a fair comparison, we re-implement BERT
and pre-train it with the same settings as DecBERT
in the small-scale and large-scale pre-training. We
denote it as BERT-reImp.

Small-scale Pre-training Scenario. The pre-
training data is the widely-used English Wikipedia
Corpus. We randomly select 158.4M sentences
for training and 50k sentences for validation. The
pre-training objective is the Masked Language
Modeling objective. We use a batch size of 256
and pre-train for 200k steps, optimized by Adam.
All models use the same hyper-parameters. We list
the details in the Appendix. We use four NVIDIA
A100 40GB GPUs to pre-train each model, costing
about 34.5 hours per model.

Large-scale Pre-training Scenario. Limited by
time and computational resources, it is impossible
for us to pre-train all models in the small-scale
pre-training scenario from scratch in this setting.
Thus, we decide to pre-train the best model in
the small-scale scenario and the baseline model
BERT-reImp w/ PE in this part. We use a large
amount of pre-training data (around 160GiB5).
The batch size is set to 4096 and the pre-training
steps are 300k. We pre-train each model with 8
NVIDIA A100 40GB GPUs, costing about 15 days
per model. The hyper-parameters details can be
also seen in the Appendix.

Fine-tuning. To evaluate the language under-
standing ability of our models, we fine-tune them
with 8 tasks of GLUE benchmark (Wang et al.,
2019b), including SST-2 (Socher et al., 2013),
QNLI (Rajpurkar et al., 2016), MNLI (Williams
et al., 2018), QQP,6 MRPC (Dolan and Brockett,
2005), CoLA (Warstadt et al., 2019), RTE7 and
STS-B (Cer et al., 2017). All fine-tuning hyper-
parameters details are listed in the Appendix.

4.2 Small-scale Pre-training

Table 2 presents the pre-training perplexity scores
of all systems on the validation set. Table 3 shows
the performance of different systems on the GLUE

5The details of our pre-training corpus can be seen in the
Appendix.

6https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

7https://aclweb.org/aclwiki/Recognizing_Textual_Entailment

Models w/ PE Valid PPL
Baseline
BERT-reImp False 353.97
BERT-reImp True 4.28
Ours (w/o position embeddings)
DecBERT-Same False 4.59
DecBERT-Diff False 4.59
Ours (w/ position embeddings)
DecBERT-Same True 4.12
DecBERT-Diff True 4.07

Table 2: The validation set perplexity of all models
in small-scale pre-training scenario. (w/ PE = with
learnable position embeddings)

benchmark. One can notice that our proposed
models achieve lower valid PPL scores and higher
overall scores on the downstream tasks.

Can DecBERT without any position embed-
dings still understand language well? Since
the self-attention of Transformer Encoder is
order-invariant, the extra position information is
inevitable for it to model language. Otherwise,
it just becomes a bag-of-word model. From
Table 2, we can find that the valid PPL score of
BERT-reImp w/o PE is up to 353.97, which is
about 82 times higher than its counterpart with
position embeddings (4.28), revealing that this
bag-of-word model cannot model language well.
However, one can notice that DecBERT does not
have such phenomenon. The valid PPL score of
DecBERT w/o PE is only about 0.5 higher than
DecBERT w/ PE. Compared with BERT-reImp
w/o PE, the causal attention masks can decrease
the PPL score by a large margin (from 353.97
to 4.59). After fine-tuning on downstream tasks,
Table 2 indicates that DecBERT-Same/Diff w/o PE
retains the same level performance as BERT-reImp
w/ PE. These results reveal that DecBERT still
can understand language well without the help of
position embeddings, which is in line with our
experimental results in section 3.1.

Can DecBERT with position embeddings
outperform BERT? Table 2 shows that both
DecBERT-Same and DecBERT-Diff have lower
validation PPL scores than BERT-reImp (w/ PE).
After fine-tuning on the downstream tasks, Table 3
reveals that they also have better performance on
most tasks. These results confirm our belief that
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Models SST-2 QNLI QQP RTE MNLI-m/mm MRPC STS-B Avg.
Small-scale pretraining results on the dev sets
BERT-reImp 89.56 89.24 90.14 64.40 80.14/80.62 86.60 86.22 83.37
Ours (w/o position embeddings)
DecBERT-Same 89.58 89.50 90.16 62.68 79.56/80.42 85.88 86.58 83.05
DecBERT-Diff 90.30 88.86 90.28 59.28 79.78/80.78 86.08 86.06 82.68
Ours (w/ position embeddings)
DecBERT-Same 90.12 89.18 90.32 64.78 80.48/80.64 86.24 86.34 83.51
DecBERT-Diff 90.78 89.56 90.08 65.98 80.92/81.26 85.86 86.24 83.84

Table 3: Different small-scale pre-training models’ performance on the dev sets of GLUE benchmark. All results
are averaged over five different random seeds (1, 2, 3, 4 and 5). MNLI-m is the matched version and MNLI-mm is
the mismatched version. All tasks except STS-B use accuracy as their evaluation metrics. STS-B uses the Spearman
rank correlation. The results are reported as r × 100. Bold indicates the best score for each task.

Models SST-2 QNLI QQP RTE MNLI-m/mm CoLA MRPC STS-B Avg.
Large-scale pretraining results on the test sets
BERT-reImp 94.7 91.5 89.4 66.5 85.9/85.1 56.3 85.4 86.8 82.4
DecBERT-Diff 94.5 92.0 89.3 72.0 86.8/85.5 59.6 86.0 86.8 83.6

Table 4: Different large-scale pre-training models’ performance on the test sets of GLUE benchmark. All tasks
except STS-B and CoLA use accuracy as their evaluation metrics. STS-B uses the Spearman rank correlation.
CoLA uses the Matthews correlation coefficient. The results are reported as r × 100. Bold indicates the best score
of our models for each task.

our models can benefit from the causal attention
masks. Such masks enhance the position encoding
ability of BERT, leading to better language
understanding ability.

Is using different directional causal attention
masks helpful? The only difference between
DecBERT-Same and DecBERT-Diff is that we
adopt a different directional causal attention mask
in the second layer. Table 2 shows that DecBERT-
Diff w/ PE achieves the lowest validation PPL score
(4.07). After fine-tuning on the downstream tasks,
it also has the best overall score. These results
confirm our belief that DecBERT can benefit
from using different directional attention masks.
Though the first two layers of DecBERT-Diff only
consider one-side information flow, the model can
learn to process different directional information
in the first two layers. This design maintains a
better balance between the gain of position en-
coding ability and the loss of language information.

Why can DecBERT benefit from the causal at-
tention masks? The experimental results in the
previous part indicate that the causal attention
masks can increase the model’s position encod-
ing ability. Then such ability leads to better lan-
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Figure 2: The pre-training loss of the first 16k steps.
(Small-scale pre-training)

guage understanding ability. However, the relation
between these two abilities remains unclear. We
analyze the pre-training process of our models to
give a possible explanation.

Our models’ pre-training loss curves are pre-
sented in Figure 2 and 3. Since the randomly ini-
tialized Multi-head Self-Attention of BERT is a
“balance” structure without any inductive bias, the
model needs to learn suitable position embeddings
to trace the word order during pre-training. In Fig-
ure 2, one can notice that the pre-training process
of BERT-reImp w/ PE can be divided into four
stages: (1) starting stage (0-1000 steps), (2) plateau
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Figure 3: The pre-training loss of the last 120k steps.
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stage (1000-8000 steps), (3) “diving” stage (8000-
10000 steps) and (4) convergence stage (10000-
final steps). In the starting and plateau stages,
BERT-reImp w/ PE has almost the same training
loss as its counterpart without PE, which indicates
that it is still a bag-of-word model and does not
know how to make use of the position information.
In the “diving” stage, the training loss of BERT-
reImp w/ PE decreases rapidly, while BERT-reImp
w/o PE starts to converge. This reveals that the
word order information becomes more useful for
models to understand language in such stage. In
the convergence stage, the training loss decreases
slowly to the end of the whole pre-training process.

So, how do the causal attention masks affect
the pre-training process? The first two layers of
DecBERT can break the “balance” of the multi-
head self-attention by design. The position bias
from the attention masks makes the first two layers
sensitive to word order information. In Figure 2,
one can notice that the plateau stage of DecBERT is
shortened (from around 7000 to 3000 steps). This
reveals that DecBERT does not need to spend as
much time as BERT to learn to make use of the
position information. It can escape from the bag-
of-words sub-optimal point faster. Though the gap
between BERT-reImp w/ PE and DecBERT-Diff
w/ PE become smaller in the convergence stage,
Figure 3 indicates that DecBERT-Diff w/ PE still
has lower training loss in the whole pre-training
process.

4.3 Large-scale Pre-training

In the large-scale pre-training scenario, we intend
to verify whether our modification still achieves bet-
ter performance. From Figure 4 and Table 4, one
can find that the experimental results are similar to
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Figure 4: The PPL scores on validation set from epoch
5 to epoch 15 of our models. (Large-scale pre-training)

the small-scale pre-training scenario. For the vali-
dation PPL, DecBERT-Diff achieves lower scores
than BERT-reImp in the whole pre-training pro-
cess. Especially, at the 13th epoch (265k steps), the
valid PPL score of DecBERT-Diff is 3.48, which is
the same as BERT-reImp at the 15th epoch (300k
steps). This suggests that the pre-training process
of DecBERT-Diff is about 2 epochs faster than
BERT-reImp. Combing our previous analysis, one
advantage of our modification is that it can ac-
celerate the pre-training process. Comparing the
downstream tasks, one can also notice that the per-
formance gap between DecBERT-Diff and BERT-
reImp even becomes larger. The average score is
1.2 points higher.

All results in this part indicate that our modifi-
cation is effective not only in the small-scale pre-
training, but also in the large-scale pre-training. It
can accelerate the pre-training process. When pre-
training with the same amount of computational
resources, our modification can achieve better per-
formance on masked language modeling and down-
stream tasks.

4.4 Discussion

The analysis and experimental results detailed in
the previous sections point out an interesting find-
ing that the pre-training process of BERT can be di-
vided into different stages. A similar phenomenon
also can be found in the work of Kovaleva et al.
(2021). In their work, they find that both scaling
factors and biases of the Layer Normalization begin
to diverge from their initialization values quickly
in the “diving” stage. Especially, one/two specific
neurons of the biases have larger and larger abso-
lute values. Luo et al. (2021) indicates that such
neurons are highly related to the positional informa-
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tion. These complement our possible explanation
that in the plateau stage, the model needs to learn
suitable position embeddings. Then in the “diving”
stage, the model learns to adopt such embeddings
to better model language. Our DecBERT models
indicate that breaking the “balance” by design can
help BERT better capture the position information,
which leads to better performance.

One would wonder how about the fixed sinu-
soidal position embeddings. With such embed-
dings, BERT does not need to learn suitable po-
sition embeddings during pre-training. Based on
our previous analysis, the plateau stage is possible
to disappear. To examine whether such position
embeddings are better, we conduct an extra small-
scale pre-training experiment. The pre-training loss
curve is in Figure 5, revealing that the plateau stage
indeed disappears. This is in line with our previ-
ous results. However, in the convergence stage, we
find that BERT with the sinusoidal PE has higher
pre-training loss than using the learnable PE. This
indicates that the learnable position embeddings
are more suitable for BERT.

5 Related Work

The previous works (Vaswani et al., 2017; Shaw
et al., 2018; Huang et al., 2019; Dai et al., 2019;
Child et al., 2019) indicate that the self-attention
mechanism of Transformer Encoder is permutation
equivalent, so it needs to use the position embed-
ding. Tsai et al. (2019) have proved that Decoder’s
self-attention is not permutation equivalent, indi-
cating that Decoder is not a bag-of-word model as
Encoder, but they do not conduct further analysis
on Decoder’s position encoding ability. Apart from
the analysis, Irie et al. (2019) train the Transformer
Language Models with speech dataset. They find

that models without position embeddings have
lower perplexity scores. Schlag et al. (2021a) intro-
duce a new Linear Transformer Language Model
with fast weight memories (Schmidhuber, 1992;
Schlag et al., 2021b), which has lower perplexity
without position encodings on the WikiText-103
dataset.

Furthermore, an explosion of work focuses on
proposing a better method to add the position infor-
mation into the pre-trained language model. Dufter
et al. (2021) give a comprehensive introduction
of different position encodings methods of Trans-
former. They divide position encodings into three
approaches. One line of such work is to add posi-
tion embeddings to the input before it is fed to the
actual Transformer model (Vaswani et al., 2017;
Shaw et al., 2018; Devlin et al., 2019; Kitaev et al.,
2020; Liu et al., 2020; Press et al., 2020; Wang
et al., 2020). The second line of work directly mod-
ify the attention matrix (Dai et al., 2019; Dufter
et al., 2020; He et al., 2020; Wu et al., 2021a; Ke
et al., 2021; Su et al., 2021). The last one combine
the first two approaches together. However, all of
them focus on introducing an extra set of parame-
ters to trace the word order. Our work chooses to
make use of the causal attention masks.

Most similar to our modification in Section 3.2,
Im and Cho (2017) propose a self-attention based
model which achieve better performance on SNLI
task (Bowman et al., 2015) without the help of ex-
plicit position encodings. However, their models
are different from the standard Transformer and
use extra local attention masks to control the in-
formation flow. With the popularity of the Trans-
former model in the Computer Vision field, some
works propose different methods to make Vision
Transformer know word order implicitly (Chu et al.,
2021; Yuan et al., 2021; Wu et al., 2021b), but all
of them modify the models with convolution neural
network (Lecun et al., 1998).

6 Conclusion

In this work, we introduce a new pre-trained model,
called DecBERT, adopting the causal attention
masks to enhance the language understanding of
BERT. We conduct a series of experiments to verify
the effectiveness of our models. Experimental re-
sults indicate that our proposed models achieve bet-
ter performance than BERT on most downstream
tasks when pre-training with the same amount of
data and computational resources. Moreover, our
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analysis also indicates that our models can acceler-
ate the pre-training process.
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A Hyper-parameters Details

Hyper-parameter w/ or w/o PE
Number of Layers 8
Hidden size 768
FNN inner hidden size 3072
Attention Heads 12
Attention Head size 64
Dropout 0.1
Warmup Steps 10k
Max Steps 100k
Learning Rates 5e-5
Batch Size 128
Weight Decay 0.001
Learning Rate Decay Polynomial
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.998
Gradient Clipping 0.1
Random Seed 1

Table 5: Hyper-parameters for pre-training the Trans-
former Decoder Causal Language Models.
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Hyper-parameter BERT/DecBERT
Number of Layers 12
Hidden size 768
FNN inner hidden size 3072
Attention Heads 12
Attention Head size 64
Dropout 0.1
Warmup Steps 24k
Max Steps 500k
Learning Rates 3e-4
Batch Size 4096
Weight Decay 0.01
Learning Rate Decay Tri_stage
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.98
Gradient Clipping 2.0

Table 7: Hyper-parameters for pre-training the BERT
and DecBERT (large-scale pre-training).

Hyper-parameter BERT/DecBERT
Number of Layers 12
Hidden size 768
FNN inner hidden size 3072
Attention Heads 12
Attention Head size 64
Dropout 0.1
Warmup Steps 10k
Max Steps 200k
Learning Rates 1e-4
Batch Size 256
Weight Decay 0.01
Learning Rate Decay Polynomial
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.98
Gradient Clipping 0.5
Random Seed 1

Table 6: Hyper-parameters for pre-training the BERT
and DecBERT (small-scale pre-training).

B The details of the large-scale
pre-training corpus

The first part is the same as BERT. We use the
English wikipedia dump (about 17 GiB) and the
bookcorpus (Zhu et al., 2015) (about 4 GiB). The
second part is based on the Pile dataset (Gao et al.,
2020), which is a large datasets with 800 GiB di-
verse text data. We randomly extract 64 GiB data

from the Pile-cc block, 35 GiB data from the Open-
WebText2 block and 43 GiB data from the Books3
block. The overall size of all data is about 163 GiB.
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Hyper-parameter MNLI QNLI QQP RTE SST-2 MRPC STS-B CoLA
Learning Rates 1e-5 1e-5 1e-5 2e-5 1e-5 {1e-5, 2e-5} 2e-5 1e-5
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 32 32 32 16 32 16 16 16
Warmup Steps 7432 1986 28318 122 1256 137 214 320
Max Steps 123873 33112 113272 2036 20935 2296 3598 5336
Adam ϵ 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Gradient Clipping 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 8: Hyper-parameters for fine-tuning all models on downstream tasks. All models use the polynomial learning
rate decay. Most of the hyper-parameters are recommended by Fairseq https://github.com/pytorch/
fairseq/tree/main/examples/roberta/config/finetuning.
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