@inproceedings{luo-etal-2022-decbert,
title = "{D}ec{BERT}: Enhancing the Language Understanding of {BERT} with Causal Attention Masks",
author = "Luo, Ziyang and
Xi, Yadong and
Ma, Jing and
Yang, Zhiwei and
Mao, Xiaoxi and
Fan, Changjie and
Zhang, Rongsheng",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-naacl.89/",
doi = "10.18653/v1/2022.findings-naacl.89",
pages = "1185--1197",
abstract = "Since 2017, the Transformer-based models play critical roles in various downstream Natural Language Processing tasks. However, a common limitation of the attention mechanism utilized in Transformer Encoder is that it cannot automatically capture the information of word order, so explicit position embeddings are generally required to be fed into the target model. In contrast, Transformer Decoder with the causal attention masks is naturally sensitive to the word order. In this work, we focus on improving the position encoding ability of BERT with the causal attention masks. Furthermore, we propose a new pre-trained language model \textit{DecBERT} and evaluate it on the GLUE benchmark. Experimental results show that (1) the causal attention mask is effective for BERT on the language understanding tasks; (2) our \textit{DecBERT} model without position embeddings achieve comparable performance on the GLUE benchmark; and (3) our modification accelerates the pre-training process and \textit{DecBERT w/ PE} achieves better overall performance than the baseline systems when pre-training with the same amount of computational resources."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-etal-2022-decbert">
<titleInfo>
<title>DecBERT: Enhancing the Language Understanding of BERT with Causal Attention Masks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ziyang</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yadong</namePart>
<namePart type="family">Xi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiwei</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoxi</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changjie</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rongsheng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Since 2017, the Transformer-based models play critical roles in various downstream Natural Language Processing tasks. However, a common limitation of the attention mechanism utilized in Transformer Encoder is that it cannot automatically capture the information of word order, so explicit position embeddings are generally required to be fed into the target model. In contrast, Transformer Decoder with the causal attention masks is naturally sensitive to the word order. In this work, we focus on improving the position encoding ability of BERT with the causal attention masks. Furthermore, we propose a new pre-trained language model DecBERT and evaluate it on the GLUE benchmark. Experimental results show that (1) the causal attention mask is effective for BERT on the language understanding tasks; (2) our DecBERT model without position embeddings achieve comparable performance on the GLUE benchmark; and (3) our modification accelerates the pre-training process and DecBERT w/ PE achieves better overall performance than the baseline systems when pre-training with the same amount of computational resources.</abstract>
<identifier type="citekey">luo-etal-2022-decbert</identifier>
<identifier type="doi">10.18653/v1/2022.findings-naacl.89</identifier>
<location>
<url>https://aclanthology.org/2022.findings-naacl.89/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>1185</start>
<end>1197</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DecBERT: Enhancing the Language Understanding of BERT with Causal Attention Masks
%A Luo, Ziyang
%A Xi, Yadong
%A Ma, Jing
%A Yang, Zhiwei
%A Mao, Xiaoxi
%A Fan, Changjie
%A Zhang, Rongsheng
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Findings of the Association for Computational Linguistics: NAACL 2022
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F luo-etal-2022-decbert
%X Since 2017, the Transformer-based models play critical roles in various downstream Natural Language Processing tasks. However, a common limitation of the attention mechanism utilized in Transformer Encoder is that it cannot automatically capture the information of word order, so explicit position embeddings are generally required to be fed into the target model. In contrast, Transformer Decoder with the causal attention masks is naturally sensitive to the word order. In this work, we focus on improving the position encoding ability of BERT with the causal attention masks. Furthermore, we propose a new pre-trained language model DecBERT and evaluate it on the GLUE benchmark. Experimental results show that (1) the causal attention mask is effective for BERT on the language understanding tasks; (2) our DecBERT model without position embeddings achieve comparable performance on the GLUE benchmark; and (3) our modification accelerates the pre-training process and DecBERT w/ PE achieves better overall performance than the baseline systems when pre-training with the same amount of computational resources.
%R 10.18653/v1/2022.findings-naacl.89
%U https://aclanthology.org/2022.findings-naacl.89/
%U https://doi.org/10.18653/v1/2022.findings-naacl.89
%P 1185-1197
Markdown (Informal)
[DecBERT: Enhancing the Language Understanding of BERT with Causal Attention Masks](https://aclanthology.org/2022.findings-naacl.89/) (Luo et al., Findings 2022)
ACL