@inproceedings{reyes-saldivar-2022-insulin,
title = "An insulin pump? Identifying figurative links in the construction of the drug lexicon",
author = "Reyes, Antonio and
Saldivar, Rafael",
editor = "Ghosh, Debanjan and
Beigman Klebanov, Beata and
Muresan, Smaranda and
Feldman, Anna and
Poria, Soujanya and
Chakrabarty, Tuhin",
booktitle = "Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.flp-1.16",
doi = "10.18653/v1/2022.flp-1.16",
pages = "118--124",
abstract = "One of the remarkable characteristics of the drug lexicon is its elusive nature. In order to communicate information related to drugs or drug trafficking, the community uses several terms that are mostly unknown to regular people, or even to the authorities. For instance, the terms jolly green, joystick, or jive are used to refer to marijuana. The selection of such terms is not necessarily a random or senseless process, but a communicative strategy in which figurative language plays a relevant role. In this study, we describe an ongoing research to identify drug-related terms by applying machine learning techniques. To this end, a data set regarding drug trafficking in Spanish was built. This data set was used to train a word embedding model to identify terms used by the community to creatively refer to drugs and related matters. The initial findings show an interesting repository of terms created to consciously veil drug-related contents by using figurative language devices, such as metaphor or metonymy. These findings can provide preliminary evidence to be applied by law agencies in order to address actions against crime, drug transactions on the internet, illicit activities, or human trafficking.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="reyes-saldivar-2022-insulin">
<titleInfo>
<title>An insulin pump? Identifying figurative links in the construction of the drug lexicon</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Reyes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rafael</namePart>
<namePart type="family">Saldivar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tuhin</namePart>
<namePart type="family">Chakrabarty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>One of the remarkable characteristics of the drug lexicon is its elusive nature. In order to communicate information related to drugs or drug trafficking, the community uses several terms that are mostly unknown to regular people, or even to the authorities. For instance, the terms jolly green, joystick, or jive are used to refer to marijuana. The selection of such terms is not necessarily a random or senseless process, but a communicative strategy in which figurative language plays a relevant role. In this study, we describe an ongoing research to identify drug-related terms by applying machine learning techniques. To this end, a data set regarding drug trafficking in Spanish was built. This data set was used to train a word embedding model to identify terms used by the community to creatively refer to drugs and related matters. The initial findings show an interesting repository of terms created to consciously veil drug-related contents by using figurative language devices, such as metaphor or metonymy. These findings can provide preliminary evidence to be applied by law agencies in order to address actions against crime, drug transactions on the internet, illicit activities, or human trafficking.</abstract>
<identifier type="citekey">reyes-saldivar-2022-insulin</identifier>
<identifier type="doi">10.18653/v1/2022.flp-1.16</identifier>
<location>
<url>https://aclanthology.org/2022.flp-1.16</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>118</start>
<end>124</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An insulin pump? Identifying figurative links in the construction of the drug lexicon
%A Reyes, Antonio
%A Saldivar, Rafael
%Y Ghosh, Debanjan
%Y Beigman Klebanov, Beata
%Y Muresan, Smaranda
%Y Feldman, Anna
%Y Poria, Soujanya
%Y Chakrabarty, Tuhin
%S Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F reyes-saldivar-2022-insulin
%X One of the remarkable characteristics of the drug lexicon is its elusive nature. In order to communicate information related to drugs or drug trafficking, the community uses several terms that are mostly unknown to regular people, or even to the authorities. For instance, the terms jolly green, joystick, or jive are used to refer to marijuana. The selection of such terms is not necessarily a random or senseless process, but a communicative strategy in which figurative language plays a relevant role. In this study, we describe an ongoing research to identify drug-related terms by applying machine learning techniques. To this end, a data set regarding drug trafficking in Spanish was built. This data set was used to train a word embedding model to identify terms used by the community to creatively refer to drugs and related matters. The initial findings show an interesting repository of terms created to consciously veil drug-related contents by using figurative language devices, such as metaphor or metonymy. These findings can provide preliminary evidence to be applied by law agencies in order to address actions against crime, drug transactions on the internet, illicit activities, or human trafficking.
%R 10.18653/v1/2022.flp-1.16
%U https://aclanthology.org/2022.flp-1.16
%U https://doi.org/10.18653/v1/2022.flp-1.16
%P 118-124
Markdown (Informal)
[An insulin pump? Identifying figurative links in the construction of the drug lexicon](https://aclanthology.org/2022.flp-1.16) (Reyes & Saldivar, Fig-Lang 2022)
ACL