@inproceedings{sengupta-etal-2022-back,
title = "Back to the Roots: Predicting the Source Domain of Metaphors using Contrastive Learning",
author = "Sengupta, Meghdut and
Alshomary, Milad and
Wachsmuth, Henning",
editor = "Ghosh, Debanjan and
Beigman Klebanov, Beata and
Muresan, Smaranda and
Feldman, Anna and
Poria, Soujanya and
Chakrabarty, Tuhin",
booktitle = "Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.flp-1.19/",
doi = "10.18653/v1/2022.flp-1.19",
pages = "137--142",
abstract = "Metaphors frame a given target domain using concepts from another, usually more concrete, source domain. Previous research in NLP has focused on the identification of metaphors and the interpretation of their meaning. In contrast, this paper studies to what extent the source domain can be predicted computationally from a metaphorical text. Given a dataset with metaphorical texts from a finite set of source domains, we propose a contrastive learning approach that ranks source domains by their likelihood of being referred to in a metaphorical text. In experiments, it achieves reasonable performance even for rare source domains, clearly outperforming a classification baseline."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sengupta-etal-2022-back">
<titleInfo>
<title>Back to the Roots: Predicting the Source Domain of Metaphors using Contrastive Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Meghdut</namePart>
<namePart type="family">Sengupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milad</namePart>
<namePart type="family">Alshomary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Henning</namePart>
<namePart type="family">Wachsmuth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tuhin</namePart>
<namePart type="family">Chakrabarty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Metaphors frame a given target domain using concepts from another, usually more concrete, source domain. Previous research in NLP has focused on the identification of metaphors and the interpretation of their meaning. In contrast, this paper studies to what extent the source domain can be predicted computationally from a metaphorical text. Given a dataset with metaphorical texts from a finite set of source domains, we propose a contrastive learning approach that ranks source domains by their likelihood of being referred to in a metaphorical text. In experiments, it achieves reasonable performance even for rare source domains, clearly outperforming a classification baseline.</abstract>
<identifier type="citekey">sengupta-etal-2022-back</identifier>
<identifier type="doi">10.18653/v1/2022.flp-1.19</identifier>
<location>
<url>https://aclanthology.org/2022.flp-1.19/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>137</start>
<end>142</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Back to the Roots: Predicting the Source Domain of Metaphors using Contrastive Learning
%A Sengupta, Meghdut
%A Alshomary, Milad
%A Wachsmuth, Henning
%Y Ghosh, Debanjan
%Y Beigman Klebanov, Beata
%Y Muresan, Smaranda
%Y Feldman, Anna
%Y Poria, Soujanya
%Y Chakrabarty, Tuhin
%S Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F sengupta-etal-2022-back
%X Metaphors frame a given target domain using concepts from another, usually more concrete, source domain. Previous research in NLP has focused on the identification of metaphors and the interpretation of their meaning. In contrast, this paper studies to what extent the source domain can be predicted computationally from a metaphorical text. Given a dataset with metaphorical texts from a finite set of source domains, we propose a contrastive learning approach that ranks source domains by their likelihood of being referred to in a metaphorical text. In experiments, it achieves reasonable performance even for rare source domains, clearly outperforming a classification baseline.
%R 10.18653/v1/2022.flp-1.19
%U https://aclanthology.org/2022.flp-1.19/
%U https://doi.org/10.18653/v1/2022.flp-1.19
%P 137-142
Markdown (Informal)
[Back to the Roots: Predicting the Source Domain of Metaphors using Contrastive Learning](https://aclanthology.org/2022.flp-1.19/) (Sengupta et al., Fig-Lang 2022)
ACL