@inproceedings{mondal-etal-2022-expertneurons,
title = "{E}xpert{N}eurons at {F}in{C}ausal 2022 Task 2: Causality Extraction for Financial Documents",
author = "Mondal, Joydeb and
Bhat, Nagaraj and
Sarkar, Pramir and
Reza, Shahid",
editor = "El-Haj, Mahmoud and
Rayson, Paul and
Zmandar, Nadhem",
booktitle = "Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.fnp-1.22",
pages = "128--130",
abstract = "In this paper describes the approach which we have built for causality extraction from the financial documents that we have submitted for FinCausal 2022 task 2. We proving a solution with intelligent pre-processing and post-processing to detect the number of cause and effect in a financial document and extract them. Our given approach achieved 90{\%} as F1 score(weighted-average) for the official blind evaluation dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mondal-etal-2022-expertneurons">
<titleInfo>
<title>ExpertNeurons at FinCausal 2022 Task 2: Causality Extraction for Financial Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joydeb</namePart>
<namePart type="family">Mondal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nagaraj</namePart>
<namePart type="family">Bhat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pramir</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shahid</namePart>
<namePart type="family">Reza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mahmoud</namePart>
<namePart type="family">El-Haj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Rayson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadhem</namePart>
<namePart type="family">Zmandar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper describes the approach which we have built for causality extraction from the financial documents that we have submitted for FinCausal 2022 task 2. We proving a solution with intelligent pre-processing and post-processing to detect the number of cause and effect in a financial document and extract them. Our given approach achieved 90% as F1 score(weighted-average) for the official blind evaluation dataset.</abstract>
<identifier type="citekey">mondal-etal-2022-expertneurons</identifier>
<location>
<url>https://aclanthology.org/2022.fnp-1.22</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>128</start>
<end>130</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ExpertNeurons at FinCausal 2022 Task 2: Causality Extraction for Financial Documents
%A Mondal, Joydeb
%A Bhat, Nagaraj
%A Sarkar, Pramir
%A Reza, Shahid
%Y El-Haj, Mahmoud
%Y Rayson, Paul
%Y Zmandar, Nadhem
%S Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F mondal-etal-2022-expertneurons
%X In this paper describes the approach which we have built for causality extraction from the financial documents that we have submitted for FinCausal 2022 task 2. We proving a solution with intelligent pre-processing and post-processing to detect the number of cause and effect in a financial document and extract them. Our given approach achieved 90% as F1 score(weighted-average) for the official blind evaluation dataset.
%U https://aclanthology.org/2022.fnp-1.22
%P 128-130
Markdown (Informal)
[ExpertNeurons at FinCausal 2022 Task 2: Causality Extraction for Financial Documents](https://aclanthology.org/2022.fnp-1.22) (Mondal et al., FNP 2022)
ACL