@inproceedings{mechura-2022-taxonomy,
title = "A Taxonomy of Bias-Causing Ambiguities in Machine Translation",
author = "M{\v{e}}chura, Michal",
editor = "Hardmeier, Christian and
Basta, Christine and
Costa-juss{\`a}, Marta R. and
Stanovsky, Gabriel and
Gonen, Hila",
booktitle = "Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.gebnlp-1.18/",
doi = "10.18653/v1/2022.gebnlp-1.18",
pages = "168--173",
abstract = "This paper introduces a taxonomy of phenomena which cause bias in machine translation, covering gender bias (people being male and/or female), number bias (singular you versus plural you) and formality bias (informal you versus formal you). Our taxonomy is a formalism for describing situations in machine translation when the source text leaves some of these properties unspecified (eg. does not say whether doctor is male or female) but the target language requires the property to be specified (eg. because it does not have a gender-neutral word for doctor). The formalism described here is used internally by a web-based tool we have built for detecting and correcting bias in the output of any machine translator."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mechura-2022-taxonomy">
<titleInfo>
<title>A Taxonomy of Bias-Causing Ambiguities in Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Měchura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Basta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hila</namePart>
<namePart type="family">Gonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces a taxonomy of phenomena which cause bias in machine translation, covering gender bias (people being male and/or female), number bias (singular you versus plural you) and formality bias (informal you versus formal you). Our taxonomy is a formalism for describing situations in machine translation when the source text leaves some of these properties unspecified (eg. does not say whether doctor is male or female) but the target language requires the property to be specified (eg. because it does not have a gender-neutral word for doctor). The formalism described here is used internally by a web-based tool we have built for detecting and correcting bias in the output of any machine translator.</abstract>
<identifier type="citekey">mechura-2022-taxonomy</identifier>
<identifier type="doi">10.18653/v1/2022.gebnlp-1.18</identifier>
<location>
<url>https://aclanthology.org/2022.gebnlp-1.18/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>168</start>
<end>173</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Taxonomy of Bias-Causing Ambiguities in Machine Translation
%A Měchura, Michal
%Y Hardmeier, Christian
%Y Basta, Christine
%Y Costa-jussà, Marta R.
%Y Stanovsky, Gabriel
%Y Gonen, Hila
%S Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F mechura-2022-taxonomy
%X This paper introduces a taxonomy of phenomena which cause bias in machine translation, covering gender bias (people being male and/or female), number bias (singular you versus plural you) and formality bias (informal you versus formal you). Our taxonomy is a formalism for describing situations in machine translation when the source text leaves some of these properties unspecified (eg. does not say whether doctor is male or female) but the target language requires the property to be specified (eg. because it does not have a gender-neutral word for doctor). The formalism described here is used internally by a web-based tool we have built for detecting and correcting bias in the output of any machine translator.
%R 10.18653/v1/2022.gebnlp-1.18
%U https://aclanthology.org/2022.gebnlp-1.18/
%U https://doi.org/10.18653/v1/2022.gebnlp-1.18
%P 168-173
Markdown (Informal)
[A Taxonomy of Bias-Causing Ambiguities in Machine Translation](https://aclanthology.org/2022.gebnlp-1.18/) (Měchura, GeBNLP 2022)
ACL