@inproceedings{vasquez-etal-2022-heterocorpus,
title = "{H}etero{C}orpus: A Corpus for Heteronormative Language Detection",
author = "V{\'a}squez, Juan and
Bel-Enguix, Gemma and
Andersen, Scott Thomas and
Ojeda-Trueba, Sergio-Luis",
editor = "Hardmeier, Christian and
Basta, Christine and
Costa-juss{\`a}, Marta R. and
Stanovsky, Gabriel and
Gonen, Hila",
booktitle = "Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.gebnlp-1.23",
doi = "10.18653/v1/2022.gebnlp-1.23",
pages = "225--234",
abstract = "In recent years, plenty of work has been done by the NLP community regarding gender bias detection and mitigation in language systems. Yet, to our knowledge, no one has focused on the difficult task of heteronormative language detection and mitigation. We consider this an urgent issue, since language technologies are growing increasingly present in the world and, as it has been proven by various studies, NLP systems with biases can create real-life adverse consequences for women, gender minorities and racial minorities and queer people. For these reasons, we propose and evaluate HeteroCorpus; a corpus created specifically for studying heterononormative language in English. Additionally, we propose a baseline set of classification experiments on our corpus, in order to show the performance of our corpus in classification tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vasquez-etal-2022-heterocorpus">
<titleInfo>
<title>HeteroCorpus: A Corpus for Heteronormative Language Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Vásquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gemma</namePart>
<namePart type="family">Bel-Enguix</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Thomas</namePart>
<namePart type="family">Andersen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergio-Luis</namePart>
<namePart type="family">Ojeda-Trueba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Basta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hila</namePart>
<namePart type="family">Gonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years, plenty of work has been done by the NLP community regarding gender bias detection and mitigation in language systems. Yet, to our knowledge, no one has focused on the difficult task of heteronormative language detection and mitigation. We consider this an urgent issue, since language technologies are growing increasingly present in the world and, as it has been proven by various studies, NLP systems with biases can create real-life adverse consequences for women, gender minorities and racial minorities and queer people. For these reasons, we propose and evaluate HeteroCorpus; a corpus created specifically for studying heterononormative language in English. Additionally, we propose a baseline set of classification experiments on our corpus, in order to show the performance of our corpus in classification tasks.</abstract>
<identifier type="citekey">vasquez-etal-2022-heterocorpus</identifier>
<identifier type="doi">10.18653/v1/2022.gebnlp-1.23</identifier>
<location>
<url>https://aclanthology.org/2022.gebnlp-1.23</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>225</start>
<end>234</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HeteroCorpus: A Corpus for Heteronormative Language Detection
%A Vásquez, Juan
%A Bel-Enguix, Gemma
%A Andersen, Scott Thomas
%A Ojeda-Trueba, Sergio-Luis
%Y Hardmeier, Christian
%Y Basta, Christine
%Y Costa-jussà, Marta R.
%Y Stanovsky, Gabriel
%Y Gonen, Hila
%S Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F vasquez-etal-2022-heterocorpus
%X In recent years, plenty of work has been done by the NLP community regarding gender bias detection and mitigation in language systems. Yet, to our knowledge, no one has focused on the difficult task of heteronormative language detection and mitigation. We consider this an urgent issue, since language technologies are growing increasingly present in the world and, as it has been proven by various studies, NLP systems with biases can create real-life adverse consequences for women, gender minorities and racial minorities and queer people. For these reasons, we propose and evaluate HeteroCorpus; a corpus created specifically for studying heterononormative language in English. Additionally, we propose a baseline set of classification experiments on our corpus, in order to show the performance of our corpus in classification tasks.
%R 10.18653/v1/2022.gebnlp-1.23
%U https://aclanthology.org/2022.gebnlp-1.23
%U https://doi.org/10.18653/v1/2022.gebnlp-1.23
%P 225-234
Markdown (Informal)
[HeteroCorpus: A Corpus for Heteronormative Language Detection](https://aclanthology.org/2022.gebnlp-1.23) (Vásquez et al., GeBNLP 2022)
ACL
- Juan Vásquez, Gemma Bel-Enguix, Scott Thomas Andersen, and Sergio-Luis Ojeda-Trueba. 2022. HeteroCorpus: A Corpus for Heteronormative Language Detection. In Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP), pages 225–234, Seattle, Washington. Association for Computational Linguistics.