@inproceedings{titung-alm-2022-teaching,
title = "Teaching Interactively to Learn Emotions in Natural Language",
author = "Titung, Rajesh and
Alm, Cecilia",
editor = "Blodgett, Su Lin and
Daum{\'e} III, Hal and
Madaio, Michael and
Nenkova, Ani and
O'Connor, Brendan and
Wallach, Hanna and
Yang, Qian",
booktitle = "Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.hcinlp-1.6",
doi = "10.18653/v1/2022.hcinlp-1.6",
pages = "40--46",
abstract = "Motivated by prior literature, we provide a proof of concept simulation study for an understudied interactive machine learning method, machine teaching (MT), for the text-based emotion prediction task. We compare this method experimentally against a more well-studied technique, active learning (AL). Results show the strengths of both approaches over more resource-intensive offline supervised learning. Additionally, applying AL and MT to fine-tune a pre-trained model offers further efficiency gain. We end by recommending research directions which aim to empower users in the learning process.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="titung-alm-2022-teaching">
<titleInfo>
<title>Teaching Interactively to Learn Emotions in Natural Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rajesh</namePart>
<namePart type="family">Titung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cecilia</namePart>
<namePart type="family">Alm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Bridging Human–Computer Interaction and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Su</namePart>
<namePart type="given">Lin</namePart>
<namePart type="family">Blodgett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hal</namePart>
<namePart type="family">Daumé III</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Madaio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ani</namePart>
<namePart type="family">Nenkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanna</namePart>
<namePart type="family">Wallach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Motivated by prior literature, we provide a proof of concept simulation study for an understudied interactive machine learning method, machine teaching (MT), for the text-based emotion prediction task. We compare this method experimentally against a more well-studied technique, active learning (AL). Results show the strengths of both approaches over more resource-intensive offline supervised learning. Additionally, applying AL and MT to fine-tune a pre-trained model offers further efficiency gain. We end by recommending research directions which aim to empower users in the learning process.</abstract>
<identifier type="citekey">titung-alm-2022-teaching</identifier>
<identifier type="doi">10.18653/v1/2022.hcinlp-1.6</identifier>
<location>
<url>https://aclanthology.org/2022.hcinlp-1.6</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>40</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Teaching Interactively to Learn Emotions in Natural Language
%A Titung, Rajesh
%A Alm, Cecilia
%Y Blodgett, Su Lin
%Y Daumé III, Hal
%Y Madaio, Michael
%Y Nenkova, Ani
%Y O’Connor, Brendan
%Y Wallach, Hanna
%Y Yang, Qian
%S Proceedings of the Second Workshop on Bridging Human–Computer Interaction and Natural Language Processing
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F titung-alm-2022-teaching
%X Motivated by prior literature, we provide a proof of concept simulation study for an understudied interactive machine learning method, machine teaching (MT), for the text-based emotion prediction task. We compare this method experimentally against a more well-studied technique, active learning (AL). Results show the strengths of both approaches over more resource-intensive offline supervised learning. Additionally, applying AL and MT to fine-tune a pre-trained model offers further efficiency gain. We end by recommending research directions which aim to empower users in the learning process.
%R 10.18653/v1/2022.hcinlp-1.6
%U https://aclanthology.org/2022.hcinlp-1.6
%U https://doi.org/10.18653/v1/2022.hcinlp-1.6
%P 40-46
Markdown (Informal)
[Teaching Interactively to Learn Emotions in Natural Language](https://aclanthology.org/2022.hcinlp-1.6) (Titung & Alm, HCINLP 2022)
ACL