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Abstract

The similarity of documents is typically com-
puted using fairly simple similarity measures,
such as mean or maximum pooling of word
representations followed by vector cosine simi-
larity. This results in fast computation but com-
pared to second-order or matrix-based similar-
ity measures loses information. In this work,
we investigate the value of matrix similarity
measures for document similarity comparison
in full-length patent retrieval tasks and intro-
duce two new metrics motivated by the Schat-
ten p-norm. The new similarity measures are
based on singular values and involve learnable
parameters to be optimized for a given evalu-
ation task. We show that tuning the similarity
measures for a specific task improves the simi-
larity comparison accuracy.

1 Introduction

1.1 Document representations and similarity
For natural language processing tasks, we typically
represent words and documents as numerical vec-
tors, since they allow mathematically simple com-
parisons (e.g. similarity between two documents)
and are space-efficient. Modern vector representa-
tion methods are highly informative for individual
words and even long documents can be represented
as relatively low-dimensional vectors. Already sim-
ple mean pooling can work well in practice (Con-
neau et al., 2018), and further developments such as
smart weighting schemes (Arora et al., 2017; Gupta
et al., 2020), directly learned document vector rep-
resentations (Le and Mikolov, 2014; Chen, 2017),
and especially the contextual embeddings and trans-
former models (Vaswani et al., 2017; Devlin et al.,
2018) have pushed the limits of what one can en-
code into a vector. Transformers, however, have
often very high computational cost (Sharir et al.,
2020) and simpler methods and better similarity
measures based on static word representations still
have their place in many applications.

We step outside such vector-shaped represen-
tations and directly work with a full matrix A ∈
Rn×d that stores d-dimensional representations for
n words appearing in the document. We explore
the value of covariance pooling and singular value
(SV) based similarity measures in patent similarity
comparison tasks, and show that in the case of static
embeddings, these similarity measures outperform
mean vector representations in full document com-
parison tasks.

The key contribution of this work is the introduc-
tion of new matrix similarity measures for docu-
ment similarity. We explain how submultiplicative
norms can be converted into a metric resembling
cosine similarity, providing a family of similarity
measures building on the Schatten p-norm (later
just p-norm) computed using SVs of covariance
pooling. We then introduce new similarity mea-
sures that are based on the same SVs but map them
to similarity scores in a more flexible manner. The
new similarity measures have learnable parameters
that are tuned for a specific end task and hence can
learn to represent relevant information better.

1.2 Matrix metrics

We define a matrix similarity measure to be a func-
tion f(A,B) ∈ R that assigns similarity score for
document matrices A ∈ Rn×d and B ∈ Rm×d,
where d is the dimensionality of the word embed-
ding vectors (here d = 300), n is the amount of
tokens in the document A, and m is the amount of
tokens in document B.

The similarity between matrices can be defined
in multiple ways. The most straightforward ones
– such as Word mover’s distance (Kusner et al.,
2015) (also known as Bures-Wasserstein distance
(Bhatia et al., 2019)) or pairwise comparison of all
possible word pairs in a matrix – can be directly
applied on matrices with an arbitrary number of
rows, and hence for documents of arbitrary lengths.
Some other similarity measures assume A and B



to be the same shape. To apply those for docu-
ment comparisons, we need to first preprocess the
document matrices suitably; we here call this step
pooling. The simplest pooling approach is padding
the shorter document with suitably many rows of
zeros, whereas a more general approach is to use
covariance pooling where we use ATA ∈ Rd×d

and BTB ∈ Rd×d as the inputs for the similarity
measure. Covariance pooling has been shown to
have beneficial properties as a document representa-
tion (Torki, 2018; Lagus et al., 2019). As d is often
large, for the smaller size we can use SVD pool-
ing where only k leading singular vectors of the
covariance representation are used. This can have a
regularizing effect in addition to lowering memory
and computational costs (Lagus et al., 2019).

1.3 Patent retrieval as context

We evaluate the measures in the context of patent
applications, as an example domain with long but
structured documents. Tools for handling patent
documents are in high demand due to the high labor
cost of manual inspection. This is especially the
case for the invalidity search stage, aiming to find
relevant patents that could possibly cause issues
with e.g. patent infringement, or lead to delays or
rejection of the application. Over the years, there
has been lots of research on how to automate dif-
ferent parts of the process (Balsmeier et al., 2018;
Aristodemou and Tietze, 2018) and on end-to-end
solutions (Gao et al., 2022) for specific tasks. In
addition to trying to solve specific tasks, there have
been efforts toward creating patent-text-specific
language models (Lee and Hsiang, 2020; Bekamiri
et al., 2021). The patent domain is ideal for ex-
ploring alternative similarity measures as the docu-
ments are often tens of pages long and better meth-
ods are needed to use the full information.

2 New similarity measures

This section introduces our technical contribu-
tions. We first explain how submultiplicative ma-
trix norms can be used for deriving a similarity
measure between two matrices and provide a fam-
ily of measures building on the p-norm, computed
using SVs of the covariance pooling of document
matrices. We then introduce a family of more ex-
pressive matrix similarity measures, replacing the
matrix norm with alternative functions of the SVs.
The new measures have learnable parameters that
can be fine-tuned for a given task.

2.1 From matrix norm to similarity measure
Any submultiplicative matrix norm ∥A∥ satisfying
∥AB∥ ≤ ∥A∥∥B∥ can be used as a basis for a
normalized similarity measure between matrices
A and B. If we denote the norm (or norm-like
function) with S(·), we get the general formula

D(A,B, S(·)) := S(ATB)

S(ATA)1/2S(BTB)1/2
. (1)

This measure is a natural extension to the standard
cosine similarity between vectors. Due to submul-
tiplicativity, it is always within the range [−1, 1].
Even though the measure will not in general be a
proper metric, we will have higher similarity when
A and B are similar in terms of the norm and can
use it for similarity comparisons.

We build on a particular family of submultiplica-
tive norms called Schatten p-norms, defined as

Sp(A) :=

(∑
n

spn(A)

)1/p

, (2)

where p ∈ [1,∞) and sn(A) is the nth SV of
the matrix A in descending order. The normal-
ized similarity measure can then be expressed as
D(A,B, Sp(·)) in the general notation of Eq. (1).
This family generalizes several well-known norms:
for p = 2 we get the Frobenius norm, for p = 1 it
corresponds to the trace norm, and for p = ∞
we get the operator norm. Lagus et al. (2019)
presented the similarity measure of Eq. (1) in the
specific context of the Frobenius form, but here
we consider the general formulation for arbitrary
norms and norm-like functions.

For p ∈ (0, 1) the p-norm is a quasinorm as it
does not fulfill the triangle inequality, but we still
have D(A,B, Sp(·)) ∈ [−1, 1] and hence get a
normalized similarity measure. The p-quasinorm
has gained traction in other matrix applications
such as low-rank matrix recovery (Zhang et al.,
2019) and image denoising (Xie et al., 2016).

2.2 Learnable similarity measures
The measure (1) depends on the norm. Instead of
assuming a specific norm in advance, we propose
using a slightly more flexible parametric family
of norms. We can then optimize the parameters
of the norm directly for a task where the distance
measure is used. The p-norm (2) itself has the
parameter p which can be learned to maximize a
task performance, such as retrieval accuracy.



For more flexibility, we propose extensions of
the p-norm that involve additional control parame-
ters. We start from the observation that the p-norm
is based on SVs, and construct two alternatives that
use SVs as inputs.

The simplest extension

Sw,p(A) :=

(∑
n

(
wnsn(A)

)p)1/p

(3)

weights each SV independently but otherwise re-
tains the functional form of the p-norm. This gener-
alization is still a norm, since for any matrix A, we
can always find matrix A′ where si(A′) = wisi(A).
One motivation for this norm is the observation of
Arora et al. (2017) that removing the direction of
the largest singular vector reduces the effect of the
most common words that are often uninformative.
For p = 1 (denoted as Sw,1(·) later on) we obtain
simple weighting as special case of the more gen-
eral weighting. Alternatively, we can interpret the
weights wn as a form of an attention mechanism.

As a still more flexible alternative, we consider
directly mapping the SVs of ATB to the similarity
with a flexible model. We can then include the
normalization within the measure itself, and hence
get directly a replacement for Eq. (1). For this, we
use a small neural network

DNN (A,B) = T (R(R(s(ATB)W1)W2)W3),

where R(·) is a the rectified linear unit activation
function and the layer weights

W1 ∈ Rd×500,

W2 ∈ R500×500, and

W3 ∈ R500×1.

Finally, the hyperbolic tangent T (·) at the end en-
sures the output is normalized between [−1, 1].
Each layer has also a bias term of suitable size,
which is omitted here for conciseness. The net-
work architecture could be further tuned by stan-
dard architecture search and hence this architecture
is to be seen as one practical example of the more
general approach.

3 Experiments

We evaluate the proposed similarity measures in
the context of patents. When patent examiners eval-
uate the novelty of a patent application, there are
different kind of prior art that is to be considered.

The X citations are prior work that can alone lead
to a rejection, while the A citations describe the
state of the art, but are not immediate reasons for
rejection. Differentiating between these categories
can be useful, for example, in retrieval tasks where
we want to rank the patents by their relevance to the
original document. If we know the relative order-
ing of each citation class, we can reorder the search
results to highlight the most relevant documents,
i.e. in this case Xs before As.

Patents themselves consist of two main parts,
Claims and Description, where the Claims part
describes the actual claims that are being made and
the description part is a more free-form description
of the invention overall. For this reason, the Claims
part is usually much shorter and less noisy than
the Description part, while the Description part is
more thorough and thus contains more fine-grained
information. We evaluate the similarity measures
for both cases to provide two parallel sets of results.

3.1 Data and evaluation
Documents and encoding The dataset consist
of 3,500 full-length patent applications acquired
from the United States Patent and Trademark Of-
fice, with average document length being 37,754
characters for the Descriptions and 1,907 charac-
ters for the Claims. We encode the patent docu-
ments using English 300-dimensional fastText
embeddings (Joulin et al., 2016) and form the co-
variance matrices of dimensionality 300× 300 of
each document as the representation.

Training For the models that require learning
the parameters, we use PyTorch (Paszke et al.,
2019) library to do gradient-based optimization
using 2,000 samples as the training set and 500
samples as the validation set. We use triplet loss
as the loss function setting one of the models as
the distance function and the margin (chosen using
hyperparameter optimization) to 0.5. The loss for
one instance for the measure in Eq. (1) is then

max(D(A,P, S(·))−D(A,N, S(·)) + 0.5, 0),

and for the neural network model it is

max(DNN (A,P )−DNN (A,N) + 0.5, 0),

where A is the encoded original document, P is
the encoded X citation (positive sample), N is the
encoded A citation (negative sample), and S(·) is
a norm-like measure. Optimization is terminated
once the result on the validation set decreases for
three consecutive evaluations.



Figure 1: a) Development of singular value weights as a function of iterations for the model Sw,1. b) Development
of the weights and p for the model Sw,p. Only first 70 out of 300 weights are shown; the rest are effectively zero.

Dataset Mean S0.1 S0.2 S0.5 S1.0 S1.5 S2.0 S5.0 S∞ Sopt Sw,1 Sw,p DNN

Claims 0.566 0.593 0.601 0.580 0.594 0.577 0.558 0.545 0.545 0.603 0.588 0.589 0.642
Descr. 0.553 0.549 0.558 0.573 0.520 0.504 0.496 0.482 0.482 0.574 0.525 0.574 0.652

Table 1: Numerical results. Mean shows the baseline of mean vector with cosine similarity. Free-form neural
network model DNN is clearly the best for both tasks.

Evaluation Finally we evaluate the trained
model using a test set of 1,000 triplets, measur-
ing the distance from the anchor to both positive
and negative samples and counting how often the
positive sample is closer to the anchor than the neg-
ative sample, i.e. the X citation ranks higher than
the A citation. As the baseline, we use the standard
mean vector combined with cosine similarity.

3.2 Results

Results are reported in Table 1. We first inspect
the accuracy using standard p-norm by grid search
over p. The main observation is that small values
of p are the best, so that p = 1 is the best of the
proper norms in both cases and the highest overall
accuracy is obtained with quasinorms with p < 1.
The best p clearly outperforms the baseline of mean
vector and cosine similarity (Mean); for Claims we
improve from 0.566 to 0.601 with p = 0.2 and
for Descriptions from 0.553 to 0.573 with p =
0.5. Large p are clearly worse and all p > 3 are
effectively equivalent to p = ∞.

Instead of evaluating the metric for a range of
p, we can directly optimize over p. For both cases,
the solution (Sopt), slightly improves from the one
chosen amongst the grid of alternatives as expected,
with optimal values of p = 0.884 for Claims and
p = 0.327 for Descriptions. One technical aspect
we note is that when p ∈ (0, 1) the function is
non-convex (Shang et al., 2020) and can have mul-
tiple local optima within this range, but we did not
observe this to be a problem in practice.

The weighted extension of p-norm of (3) is de-
noted here by Sw,p. Figure 1 (a) illustrates the
learned weights (as function of iteration) for fixed
p = 1, demonstrating how the measure assigns
more weight for the first 10 or so SVs. Figure 1
(b) illustrates the behavior of the weights and p
when optimized jointly, and reveals quite different
phenomena: Instead of small p it is now better to
use large p and down-weight many of the early sin-
gular vectors. For both Claims and Descriptions,
the weighted variant Sw,p outperforms the mean
baseline, but does not provide an improvement over
Sopt and for Claims it remains worse. One advan-
tage of these measures is that – as seen here – the
similarity measures only depend on a fairly small
number of SVs; it is enough to compute some tens
of the SVs rather than all 300.

The still more flexible neural network measure
DNN works well, reaching the highest accuracy
for both Claims and Descriptions, with substantial
improvement also over Sopt. This verifies that SVs
of ATB can be used as the basis for accurately mea-
suring similarity between documents. Importantly,
we have high accuracy also for the full-length doc-
uments (Descriptions) that are challenging for all
other similarity measures.

4 Conclusions

We set out to investigate how similarity measures
based on matrix norms work in document similarity
comparisons in the context of patent retrieval. We
focused on similarity measures based on singular



values of the inner product of the two document
matrices, motivated by the p-norm. Our main con-
tribution was introducing new parametric similarity
measures that build on the same singular values but
are fine-tuned for the specific task at hand, and we
showed how a direct neural network mapping the
singular values to a distance outperforms both stan-
dard mean representation as well as our attempts
of more constrained and interpretable measures. In
this work we did not fine-tune the neural network
architecture to maximize the accuracy but rather
used a generic small network, but for practical use
the network architecture could be tuned to further
improve the accuracy.

While the work was done in the context of static
embeddings and patent data, the applicability is not
limited to these. Likely any full-document compari-
son task can benefit from richer representations and
the contextual embedding models should enhance
the results even further.
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