
Second-order Document Similarity Metrics for Transformers
Jarkko Lagus

Department of Computer Science
University of Helsinki

jarkko.lagus@helsinki.fi

Niki Loppi
NVIDIA

nloppi@nvidia.com

Arto Klami
Department of Computer Science

University of Helsinki
arto.klami@helsinki.fi

Abstract

The similarity of documents represented using
static word embeddings is best measured us-
ing second-order metrics accounting for the co-
variance of the embeddings. Transformers pro-
vide superior representations for words com-
pared to static embeddings, but document rep-
resentation and similarity evaluation are cur-
rently often done using simple mean pooling.
We explain how the second-order metrics can
be used also with transformers, and evaluate
the value of improved metrics in this context.

1 Introduction

Many NLP models rely on pretrained representa-
tions, either static embeddings (e.g. Word2Vec by
Mikolov et al. (2013)) or context-aware models like
transformers (e.g. BERT by Devlin et al. (2018))
that process text sequentially but still represent
each word or subword with a fixed-dimensional
latent representation. These models are then fine-
tuned to solve specific tasks, by continuing to train
the representations while optimizing for the task
performance.

Longer documents cannot be directly modeled
by most transformers, but a representation can be
obtained by processing them in smaller units (e.g.
sentences) and then pooling the representations of
the individual words. The pooling method is often
a simple mean or max pooling, but despite the sim-
plicity, such approaches work relatively well both
with static embeddings (Wieting et al., 2015; Arora
et al., 2017; Gupta et al., 2020) and transformers
(Devlin et al., 2018; Reimers and Gurevych, 2019).

For instance, Torki (2018); Nikolentzos et al.
(2017); Muzellec and Cuturi (2018) and Lagus et al.
(2019) have shown that for static embeddings the
similarities can be more accurately captured by ac-
counting for the covariance structure of the word
matrix using so-called second-order metrics. We
study whether this holds also for transformers. This
is not obvious upfront, since transformers process

documents sequentially and hence capture some
document-level information already in (sub)word
representations, and directly fine-tuning the repre-
sentations for accurate document comparison may
enable even mean pooling to capture some of the
same information the second-order representations
use.

We explain how model-agnostic second-order
metrics can be used with transformers, provide de-
tails for fine-tuning both full-rank (Torki, 2018)
and low-rank (Mu et al., 2017; Yang et al., 2018;
Lagus et al., 2019) metrics using the new pooling
functions, and evaluate them in three tasks. We
focus on precomputable document representations,
not relying on similarity comparisons that require
cross-encoding the document pairs like in the orig-
inal BERT paper by Devlin et al. (2018). This
makes the methods suitable for online processing
and enables caching representations in a database.
Second-order metrics have computational overhead
in isolation, but the fine-tuning process is domi-
nated by other parts of the model and hence the
added computation time is small, even for low-rank
metrics that require propagating gradients through
singular-value decomposition (SVD). We show that
second-order metrics improve document similarity
comparison in two languages and for two trans-
former models, but do not help for sentence simi-
larity.

2 Document Metrics

We denote by A ∈ Rn×d a matrix that collects
the d-dimensional representations of the n words
occurring in the document as its rows.

The first-order metrics compress A into a d-
dimensional vector, typically using the mean a =
1
n1

TA, where 1 is n-dimensional vector of ones,
and compare the documents e.g. by cosine similar-
ity Scos(a, b) = (a ·b)(‖a‖‖b‖)−1 where b denotes
the mean vector for another document B (typically
with different n). See Arora et al. (2017) for details



(e.g. weighting) for static embeddings and Reimers
and Gurevych (2019) for use with transformers.

The second-order metrics are based on
covariance-like products ATA ∈ Rd×d capturing
both variance and correlation between the repre-
sentation dimensions. Several slightly different
metrics have been proposed: Torki (2018) vector-
ized the covariance and combined it with the mean
pooling, Lagus et al. (2019) derived a second-order
metric from pair-wise cosine similarity of all word
pairs in the two documents, and Muzellec and Cu-
turi (2018) used Wasserstein metric to compare
second-order representations. Next, we describe
the specific metric of Lagus et al. (2019) that sup-
ports also low-rank computation proposed for com-
putational reasons but note that the other metrics
can be implemented as minor modifications.

The second-order metrics compare ATA and
BTB. A metric normalized to range [−1, 1] can be
conveniently expressed as SF (ATA,BTB) using
the general similarity measure

SF (X,Y ) =
〈X,Y 〉F
‖X‖F‖Y ‖F

, (1)

where 〈X,Y 〉F = Tr
(
XTY

)
is the Frobenius in-

ner product and ‖X‖F =
√
〈X,X〉F.

The obvious drawback of the metric is that ATA
has O(d2) elements, compared to O(d) of the
mean representation. Lagus et al. (2019) showed
that forming the covariance matrix can be avoided
by computing SVD of A: If A = UΣV T then
ATA = V ΣUTUΣV T = V Σ2V T , and the trace
term can be evaluated using the SVDs of the two
document matrices. They also demonstrated empir-
ically that a low-rank approximation for the metric,
using Ak = ΣkV

T
k ≈ A with k � min(n, d) com-

ponents has a regularizing effect while reducing
computation time compared to full-rank matrices.

3 Fine-tuning Second-order Metrics

Fine-tuning of transformers is done end-to-end for
a model that combines four parts: the embedding
model E(·), a pooling function P (·), the similar-
ity metric S(·, ·) and some eventual loss function
L(·, ·) that compares the similarities with ground
truths. If we denote by A = E(dA) the matrix
formed by the embedding model processing a text
sequence and by S̃ the ground truth similarity, the
objective to be trained with respect to parameters
of E(·), starting with the pretrained values, is

L(S(P (E(dA)), P (E(dB))), S̃(dA, dB)).

3.1 Pooling for Second-order Metrics
The current modeling pipelines building on mean
pooling Pmean(A) = 1

n1
TA can be re-used with

second-order metrics, by re-writing the metrics
as a combination of a generalized pooling func-
tion and a distance measure. For this, we assume
P (A) to be any function that transforms A to a
fixed-dimensional representation (vector or matrix).
Then we can define the new pooling functions

Pcov(A) = ATA and Psvd(A, k) =
√

ΣkV
T
k ,

where Σk and Vk refer to matrices that retain the
singular values and vectors corresponding to k
largest values. In the experiments, we also use
additional method derived from Pcov(·) named,
Pcov(·, k) where the dimensionality reduction to
k dimensions is done after the fine-tuning in the
prediction phase. Then the three metrics for docu-
ment comparison can be written as

mean : Scos(Pmean(A), Pmean(B)),

full-rank : SF (Pcov(A), Pcov(B)),

low-rank : SF (Psvd(A, k), Psvd(B, k)).

This unified formulation makes it easy to imple-
ment the second-order metrics as part of stan-
dard processing pipelines. The implementation
of the second-order metrics, compatible with the
sentence-transformers library by Reimers and
Gurevych (2019), is made available on GitHub1.

The size of Pcov(·) is quadratic in d and hence
can be large, which is generally considered a chal-
lenge in the case of static embeddings. In the con-
text of transformers, however, this is insignificant
since we are anyway fine-tuning a typically very
large model. The practical computation is hence
largely dominated by the other parts of the pipeline
(see Section 4 for empirical validation).

3.2 Differentiable SVD
Fine-tuning for full-rank second-order metrics does
not require special treatment, but for low-rank met-
rics we need to propagate gradients through the
singular value decomposition used for approximat-
ing ATA as described in Section 2. Deep learning
frameworks offer differentiable SVD implementa-
tions out-of-the-box, providing multiple approxi-
mate algorithms with varying properties. While
the forward pass through SVD is relatively fast
and stable for all choices, the backward pass is

1https://github.com/jalagus/second-order-transformers



more costly and prone to instabilities arising from
ill-conditioned document matrices. We found the
CPU version of torch.svd_lowrank, imple-
menting the algorithm of Halko et al. (2011), to be
the most stable and hence use that.

Another challenge is the sign ambiguity over
the matrices U and V . The pooling function
Psvd(·, k) =

√
ΣkV

T
k is hence not unique which

causes issues with the distance computation; some
components might point to opposite directions
while still encoding the same information.

To address these issues we explicitly recon-
struct the covariance matrix ATA to improve back-
ward pass stability and remove the sign ambiguity.
The pooling is thus implemented as Psvd(A, k) =
UkΣkV

T
k . This has no practical effect on computa-

tion speed as it is dominated by other components
of the full model. Since ATA is symmetric, the U
and V matrices will be identical and it is enough to
save the matrix D =

√
ΣkV

T
k and reconstruct the

full covariance inference-time using DTD. The
space requirement is then O(kd).

The same space reduction for the representation
can be obtained by fine-tuning using the full-rank
covariance and computing the low-rank representa-
tion using SVD only after the training is done. This
approach does not need a differentiable SVD, but
as we will later show it performs worse in practice.

4 Experiments

We demonstrate second-order metrics in three ex-
ample cases; sentence similarity on the STS bench-
mark (Cer et al., 2017) and two document similarity
tasks. For all experiments, we compare the three
alternative pooling methods and provide results for
alternative embedding methods.

4.1 STS Benchmark: Sentence Similarity

Even though our main goal is to provide tools for
longer documents, we also evaluate the methods
in the STS sentence matching benchmark. The
STS experiment was conducted using the sentence-
tranformers library, by replacing only the pool-
ing method and the distance computation accord-
ing to the proposed metric. We compared three
pooling operations (mean, covariance, and SVD
with k = 1) for three transformers, BERT (De-
vlin et al., 2018), TinyBERT (Turc et al., 2019),
and RoBERTa (Liu et al., 2019), and for com-
pleteness include also results on static GloVe em-
beddings (Pennington et al., 2014). The sentence-

Table 1: Sentence similarity on STS benchmark.

Model Pooling IC MC WT
BERT Pcov(·) 0.5957 0.8831 16.59
BERT Psvd(·, 1) 0.5900 0.8838 336.37
BERT Pmean(·) 0.5932 0.8775 11.67
TinyBERT Pcov(·) 0.6932 0.7975 3.29
TinyBERT Psvd(·, 1) 0.6930 0.7962 20.38
TinyBERT Pmean(·) 0.6937 0.7823 3.20
RoBERTa Pcov(·) 0.6463 0.8874 16.32
RoBERTa Psvd(·, 1) 0.6446 0.8875 312.63
RoBERTa Pmean(·) 0.6500 0.8857 12.03
GloVe Pcov(·) 0.7425 0.7425 -
GloVe Psvd(·, 1) 0.6517 0.6517 -
GloVe Pmean(·) 0.7163 0.7163 -

tranformers library handles the input tokenization
and the default mean pooling serves as a baseline
representing the current practice in the field.

Table 1 shows the Pearson correlation with true
similarity. Here IC denotes the initial correlation
before fine-tuning and MC denotes the maximum
correlation during fine-tuning. We report results
on the development set, following the practice of
cross-encoding with [SEP] tags by (Devlin et al.,
2018) and using the sentence-transformers library
for easy reproduction. We ran each configuration
for 15 epochs using a batch size of 16. WT denotes
the wall-time (minutes) taken to complete the entire
fine-tuning process. All reported numbers are aver-
ages of five complete fine-tuning runs on different
seeds, and our baseline results with Pmean(·) are in
line with those reported in sentence-transformers.

For all embedding methods, using a second-
order metric improves the similarity compared to
mean pooling, but the gain is considerably smaller
for the three transformers (below 1%) compared
to the static embeddings (3.6%). For transform-
ers the low-rank metrics perform identically with
full-rank, whereas for GloVe using full-rank is pre-
ferred, matching the result of Lagus et al. (2019)
for STS. Without fine-tuning the transformers are
worse than static embeddings, highlighting the well
known importance of fine-tuning them. In conclu-
sion, second-order metrics can be used with trans-
formers already for sentence comparison, but the
gain is very small and due to the need of computing
SVD on CPU the computation is slower.

4.2 Full-length document experiments

Second-order metrics are expected to be more use-
ful for longer documents, and hence we evaluate
them on two document similarity tasks. In both
experiments, triplet loss (Schultz and Joachims,



Table 2: Document similarity: Finnish news

Model Pooling Initial Acc Acc
FinBERT Pmean(·) 0.499 0.626
FinBERT Pcov(·) 0.325 0.663
FinBERT Pcov(·, 1) - 0.484
FinBERT Pcov(·, 5) - 0.591
FinBERT Psvd(·, 1) - 0.644
FinBERT Psvd(·, 5) - 0.644
fastText Pmean(·) - 0.194
fastText Pcov(·) - 0.073

2004) is used as the optimization target and hyper-
parameter optimization is done using grid search,
performing computation on CPU because of insta-
bility of SVD computations on GPU.

Finnish news data We use data from the Finnish
national broadcasting company Yle 2, of news ar-
ticles written in easy-to-read Finnish, a morpho-
logically rich language. We form an artificial task
where each article is split into two equal-sized parts
and the goal is to retrieve the correct second part
(amongst the set of all second parts) using the first
part as a query. For the triplet loss, we use the sec-
ond half of a random document from the training
set as the negative anchor.

For fine-tuning, we split the dataset of 600
triplets into 500 training samples and 100 valida-
tion samples. We use FinBERT (Virtanen et al.,
2019) model and fine-tune it for 15 epochs, evalu-
ating the final accuracy on a fresh set of 1500 sam-
ples. For baseline computations, we use Finnish
fastText embeddings.

Patent data As a real document similarity com-
parison task, we consider a patent retrieval task.
When patents are applied, multiple kinds of prior
art might lead to rejection. Here we consider two
types of prior art, namely X and A citations. The
X citations are prior work that can alone lead to a
rejection, while the A citations describe the state of
the art, but are not immediate reasons for rejection.
An ideal model would hence rank the X citations
ahead of A citations.

Patent documents are split into two main parts,
claims and description. We only use the claims part
– containing approximately 2,100 character per doc-
ument – that defines the exact claims of the inven-
tion, leaving out the more free-form description.
For training, we split a proprietary dataset acquired

2http://urn.fi/urn:nbn:fi:lb-2019121205

Table 3: Document similarity: Patent retrieval

Model Pooling Initial Acc Acc
TinyBERT Pmean(·) 0.553 0.885
TinyBERT Pcov(·) 0.606 0.901
TinyBERT Pcov(·, 1) - 0.836
TinyBERT Pcov(·, 5) - 0.867
TinyBERT Psvd(·, 1) - 0.844
TinyBERT Psvd(·, 5) - 0.879
fastText Pmean(·) - 0.566
fastText Pcov(·) - 0.592

from the United States Patent and Trademark Of-
fice of 1000 triplets into 800 training samples and
200 validation samples. In each triplet, the anchor
is the patent document, the positive sample is any
X citation of that patent and the negative sample
is any A citation of that same patent. We fine-tune
TinyBERT model for 15 epochs and evaluate it on
a fresh set of 1000 documents. Static embeddings
are used as a baseline.

Results The results for both tasks, reported in Ta-
bles 2 and 3, are similar. The main observations are
(a) transformers clearly outperform static embed-
dings, (b) fine-tuning for document similarity com-
parisons improves accuracy dramatically, and (c)
the second-order metrics outperform the standard
mean pooling clearly, with improvements of 3.7
and 1.6 percentage points for the two tasks (Pcov(·)
vs Pmean(·)). In conclusion, the second-order met-
rics are useful also in the case of transformers.

On both tasks, the total computation time for the
low-rank models is only approximately 5% higher
(not shown), due to need for fewer iterations for
SVD, and hence the choice of the metric can be
made purely based on the accuracy. Here the full-
rank (Pcov(·)) metrics slightly outperformed the
low-rank ones (Psvd(·, k)), but the latter may still
be beneficial due to smaller representations. Fi-
nally, we see that extracting a low-rank representa-
tion from a model fine-tuned for the full-rank met-
ric (denoted by Pcov(·, k)) is worse than directly
fine-tuning for the low-rank metric. As there is no
notable difference in computational cost, we do not
recommend doing this.

5 Conclusions

Transformers provide richer representations for text
compared to static embeddings. For documents,
the current practice is to use averages of the word



representations for similarity comparisons, which
is naive compared to the richer representations and
distance metrics used for static embeddings.

We investigated the use of second-order met-
rics in the case of transformers, showed how they
can be implemented into existing pipelines using
pooling functions, and empirically demonstrated
consistent improvement in similarity comparisons.
The gain is smaller than with static embeddings
but especially for longer documents still clear and
consistent across different setups. Even though the
improvement is not particularly large, the metrics
are easy to use and hence we recommend practi-
tioners to evaluate performance for both first-order
and second-order metrics – at least the full-rank
one that does not have computational overhead –
and select the best metric on a validation data.
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