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Abstract

This paper presents new feature functions and
an efficient training approach to discrimina-
tive keyword spotting. A 5-dimensional fea-
ture function is derived from a frame-based
phoneme classifier and a pitch detector. The
mechanism by which each feature function
finds a correspondence between the keyword-
specific variables and the speech segment is
discussed. Multiple aspects of the keyword,
that the feature functions capture, are explored.
The keyword-scoring function along with the
positive and negative data associated with a
keyword is defined. A computationally inten-
sive operation in keyword training is identi-
fied and an approach is developed to reduce
the training more tractable. The proposed ap-
proach is implemented with a set of 10 key-
words and benchmarked against a traditional
lattice-based keyword search on a real-world
dataset, and the results are discussed.

1 Introduction

Keyword spotting refers to the detection of specific
words in a speech stream. This is different from
automatic speech recognition(ASR) in the sense
that models are built exclusively for the keywords.
Keyword spotting is used in large-scale audio in-
dexing and retrieval, wake-up word for devices,
etc. Traditionally hidden Markov model(HMM)
based approaches have been used in keyword spot-
ting (Bahl et al., 1986; Rohlicek et al., 1989; Rose
and Paul, 1990; Szöke et al., 2005). Keywords are
modelled using keyword-specific HMMs and the
rest of the speech is modelled using background
models (Wilpon et al., 1990). The likelihood ra-
tio of a speech segment running through a key-
word HMM to the background speech HMM is
used to detect the keyword. Phone lattice keyword
search (Young et al., 1997) searches for the se-
quence of phonemes of the keyword in the phone
lattice generated during N-best Viterbi decoding.

The lattice search can be improved by dynamic pro-
gramming and minimum edit distance (James and
Young, 1994; Thambiratnam and Sridharan, 2005).
Optimizations like unique arc per-second pruning
and posting-list merging (Gales et al., 2017) are
employed to prune the lattice for faster keyword
search, especially in low-resource keyword spot-
ting. In a low-resource environment, the lattice
search has been further optimized using web data
for language model training (Mendels et al., 2015)
and stimulated training (Ragni et al., 2017).

A phone lattice can be rescored using different
approaches to make the path scores more relevant.
Acoustic word embeddings (Piunova et al., 2019),
lattice context information (Chen and Wu, 2017),
word-burst (Ma et al., 2014) have been used to
rescore the lattices. Future word contexts have been
exploited using recurrent neural language models
to rescore the lattices (Chen et al., 2019). Rather
than using a single feature, multiple features like
hierarchical bottleneck features (Riedhammer et al.,
2013), smoothened posteriors (Chen et al., 2014),
and multilingual bottleneck features (Menon et al.,
2018b) are also used for keyword spotting. To
increase robustness, especially in noisy and chan-
nel degraded environments, feature fusion (Mitra
et al., 2014) is used. Generally, the keyword spot-
ter works on top of ASR. Recently, ASR-free ap-
proaches (Menon et al., 2018b; Audhkhasi et al.,
2017; Menon et al., 2018a) are also proposed for
keyword spotting. This is especially useful in low-
resource settings.

Neural networks are often used in conjunction
with HMMs for keyword spotting (Rath et al., 2014;
Chen and Lee, 2013). Different neural network ar-
chitectures like deep neural networks (Chen et al.,
2014), convolutional neural networks (Sainath and
Parada, 2015), compressed time delay neural net-
works (Sun et al., 2017), recurrent networks (Li
et al., 1992; Fernández et al., 2007), long short-
term memory(lstm) (Wollmer et al., 2009) have



been employed for keyword detection in speech.
Recently transformers have been used for keyword
spotting in speech (Berg et al., 2021). In this paper,
we follow the framework defined in (Keshet et al.,
2009), where a set of feature functions are defined
and a weight vector, corresponding to each key-
word, is trained in an online discriminative manner.
While training, a minimum margin is specified be-
tween the keywords and all the other words. In
the original setting, the authors derive most of the
feature functions directly from the spectral level
features, while we use an intermediate layer of a
frame classifier and a pitch detector, sitting atop
the spectral layer, and deriving feature functions
out of it.

In section 2, we review the discriminative key-
word spotting framework. The training algorithm,
feature functions, and positive and negative vectors
are defined. A computationally efficient approach
to reduce the individual keyword training time is
discussed in detail. In section 3, the experimen-
tal details of benchmarking the proposed approach
against a traditional lattice-based keyword search
are discussed. Section 4 concludes the paper.

2 Problem Setting

First, we define an acoustic tuple (X,P, F ) to be
a set of vectors derived from passing a speech seg-
ment through a frame classifier and a pitch detector.
X is the decoded phoneme string sequence with
softmax probability sequence P for an utterance
of length T frames. F is the sequence of pitch
values. A keyword k is associated with a set of pos-
itive acoustic tuples (X+

k , P
+
k , F

+
k ) and negative

acoustic tuples (X−
k , P

−
k , F

−
k ). The superscript +

implies the presence of the keyword in the speech
segment and − indicates its absence. Next, we
define a feature function φ that takes the form

φ : (Vk, X, P, F )→ R5 (1)

A feature function broadly takes 2 classes of ar-
guments and maps them into a feature space. Vk
is associated with the orthographic representation
of the keyword k and (X,P, F ) is associated with
a given speech segment. Vk involves the variables
like the distribution of the ideal duration of the key-
word, dictionary entries of the keyword, number
of voiced segments in the keyword, distribution of
the ideal duration of the voiced segments in the
keyword, etc. The feature function must output
similar vector values in some distance sense for the

same keyword with similar speech segments. The
scoring function for keyword k takes the form

f = wk.φ(Vk, X, P, F ) (2)

where wk is the keyword-specific weight vector.

2.1 Training
Given a set of positive and negative acoustic tu-
ples, we wish to learn the weight vector wk for the
keyword k. The algorithm operates in an online
manner. Let wki−1 be the weight at the i− 1th iter-
ation. To find wki , we first calculate (X∗

k , P
∗
k , F

∗
k )

as,

(X∗
k , P

∗
k , F

∗
k ) =

max
(Xk,Pk,Fk)

wki−1 .φ(Vk, X
−
k , P

−
k , F

−
k ) (3)

(X∗
k , P

∗
k , F

∗
k ) is the worst possible negative acous-

tic tuple for wk at the i− 1th stage. In the i-th step,
this has to be penalized. Define ∆i as,

∆i =
1

|X+||X−|
[
φ(Vk, X

+
k , P

+
k , F

+
k )

−φ(Vk, X
∗
k , P

∗
k , F

∗
k )] (4)

To find wki from wki−1 , the following optimiza-
tion problem has to be solved.

wki = min
w
||w − wki−1 ||

s.t. w.∆i ≥ 1
(5)

The solution to this optimization problem is

wki = wki−1 + δi∆i (6)

where δi = min

{
A,

1− wki−1 .∆i

||∆i||2

}
(7)

where A is a complexity-accuracy tradeoff parame-
ter. The optimization in equation (5) ensures that
the new weight vector wki−1 is close to the cur-
rent weight vector wki , yet obeying the margin
requirement. The correctness of this online update
is proved in (Crammer et al., 2006).

In the original setting (Keshet et al., 2009), the
authors use feature functions that map a tuple of an
acoustic vector, a phoneme sequence, and an align-
ment sequence to a real vector. For a keyword, each
training unit consists of the phoneme sequence cor-
responding to the keyword along with a positive
and negative acoustic vector. At any stage in train-
ing, the worst possible acoustic negative tuple is



Figure 1: Density of softmax probability of /f/

the tuple that consists of the keyword phoneme
sequence, negative acoustic vector, and the worst
possible alignment sequence. In our framework,
the acoustic tuples and the feature functions inher-
ently capture the alignment sequence, so that we
can get away without having an explicit alignment
sequence variable.

2.2 Feature Functions

We define foreign frames of a keyword as the
frames that belong to the phonemes which do not
fall in any dictionary entry of the keyword. φ1 is
the percentage of relevant phonemes detected in
sequence in X , in the total number of phonemes in
the dictionary entry of the keyword, expressed in
decimal. φ1 captures the relevance of phonemes in
the speech segment to the keyword. φ2 is the per-
centage of the relevant frames detected in sequence,
in the total number of frames in X , expressed in
decimal.
φ3 is based on the observation that, for a frame

based phoneme classifier with a softmax output, the
density of softmax probability for true positive and
false positive phoneme detections are different for
different phonemes. φ3 is the average ratio of the
density of frame softmax probability of true posi-
tives to the false positives of the frames detected
correctly in sequence. Fig.1 and Fig.2 plots the
density of the softmax probability of true positive
and false positive detections of the phonemes /f/
and /aa/. The plot is generated from the frame la-
belled data dtrain2, which is explained in section 3.
At the peak, the density of true positives is greater
than that of false positives. If a set of consecutive
frames are detected as /f/, and if all the frames have

Figure 2: Density of softmax probability of /aa/

a softmax probability greater than 0.95, it is more
probable that all the frames are true positives. φ3
is calculated as follows.

φ3(Vk, X, P, F ) =

{
1
N

∑
i
ftp(pi;xi)
ffp(pi;xi)

50% rec.

0 else
(8)

where ftp(xi; pi) and ffp(xi; pi) are the densities
of the softmax probability pi evaluated on the true
positive and the false positive softmax probability
density curve of the phoneme xi. N is the number
of relevant frames detected in sequence. φ3 returns
0 if less than 50% phonemes in the best possible
dictionary entry of the keyword are detected in
sequence.
φ4 captures how well the total duration of the

detected voiced regions in the speech segment
matches the ideal total voiced duration of the key-
word. The ideal total voiced duration of a key-
word is the sum of all the voiced durations in
the keyword and is represented by a normal den-
sity,N (µvoiced, σ

2
voiced). Likewise, φ5 captures how

well the duration between the voiced regions at
the starting and the ending of the speech segment
matches the ideal duration between the voiced re-
gions at the boundaries. φ5 is also represented by
a normal density N (µbetween voiced, σ

2
between voiced).

φ5 in a sense captures the length of the keyword.
φ5 mandates the keywords to have atleast 2 voiced
segments. If there are no 2 voiced regions detected
in a speech segment, φ5 outputs 0.

2.3 Negative Data

Negative data corresponds to the speech segments
where a given keyword is absent. For a big dataset,



the number of speech segments that can be selected
where a particular keyword is absent is enormous.
We employ a simple heuristic to cut short the num-
ber of such speech segments. We compute the av-
erage duration d of a keyword from the positive in-
stances of that keyword. From an arbitrary starting
frame t, all the speech segments from (t, t+ d/2)
to (t, t + 3d/2) are treated as separate negative
instances of the keyword k, and the correspond-
ing negative acoustic tuples are computed. This
makes it extremely skewed to negative instances
compared to the positive instances of a keyword.

For a keyword, the calculation of the worst possi-
ble acoustic tuple involves the dot product compu-
tation of all the negative instances with the present
weight vector w as expressed in equation (3). This
is computationally expensive as the number of neg-
ative instances is often much more than the number
of positive training instances of a keyword. To
solve this problem, we first compute the convex
hull of all the negative vectors of a keyword. Then,
take the dot product of the current weight vector
with all the extremal points in the convex hull and
assign the extremal point with the highest dot prod-
uct as the worst possible acoustic tuple for the cur-
rent weight vector.

2.4 Analysis

Consider a finite set of points P in Rd. Let C be
the convex hull constructed on the set P . Let E
be the set of extremal points of the convex hull.
E ⊂ P . Let x be a point outside C. Let · denote
the dot product.

Proposition 1 There exists atleast one point e ∈
E with the condition, x · e ≥ x · i ∀ i ∈ P −E.

Proof Let us consider R2. Let b be a point in C
such that x · b ≥ x · p. Further, there are 2 cases.

1. b ∈ E. In this case, Proposition 1 is proved.

2. b /∈ E. In this case, b is a point in a line
segment b1b2 with endpoints in E. Assume
a hyperplane, H = {z|x · z = x · p}. In R2,
H is a line. We loosely label a point c inside
H , if x · c < x · p. Now there are 4 possible
cases.

(a) The line segment b1b2 is such that x·b1 >
x · p and x · b2 > x · p. Both b1 and b2
are outside points. Proposition 1 stands
true.

(b) The line segment b1b2 intersects H . For
b1,

x · b1 = x · p+ x · (b1 − p)
x · (b1 − p) < 0 b1 is inside H

x · b1 < x · p (9)

Similarly for b2,

x · b2 = x · p+ x · (b2 − p)
x · (b2 − p) > 0 b2 is outside H

x · b2 > x · p (10)

Proposition 1 stands true.
(c) Same case as above, where b2 is insideH

and b1 outside H . Proposition 1 stands
true.

(d) Both x · b2 < x · p and x · b1 < x · p. i.e,
both b1 and b2 are inside H . If this is the
case,

x · b = x · [λb1 + (1− λ)b2] (11)

= λx · b1 + (1− λ)x · b2 (12)

< x · p (13)

which is against the initial assumption
x ·b ≥ x ·p. Hence this case is infeasible.

Note that the convex hull computation is a one-
time operation for a keyword, and is computed
in the feature space. Once the convex hull of the
negative points of a keyword, i.e, E is computed,
the equation (3) becomes

(X∗
k , P

∗
k , F

∗
k ) =

max
(Xk,Pk,Fk)

wki−1 .φ(Vk, X
−
k , P

−
k , F

−
k )

where φ(Vk, X
−
k , P

−
k , F

−
k ) ∈ E (14)

3 Experimental Details & Results

Voxforge dataset (Voxforge.org) is used in the ex-
periments. The Voxforge dataset is a real-world
non-curated dataset that perfectly captures the real-
world noise and the acoustic characteristics of dif-
ferent recording equipment. Approximately 40
hours of data(dtrain1) is forced aligned using Kaldi
(Povey et al., 2011) and a baseline multilayer per-
ceptron(MLP) frame classifier, with the architec-
ture 351x1000x1000x1000x41, is built using ICSI
Quicknet (Johnson) with perceptual linear predic-
tion(plp) coefficients as the feature input. Standard
English phonemes are used as the target. Given a



Figure 3: ROC of discriminative keyword spotting

9 frame plp input, with each frame corresponding
to 25ms with 15ms overlap, the classifier outputs
a probability vector of size 41, each component
corresponding to a phoneme, and the phoneme
corresponding to the highest probability is treated
as the recognized phoneme. For identifying the
voiced regions, an autocorrelation-based pitch de-
tector (Huckvale) is used. A pitch range of 40-
600Hz is used and any value outside is discarded.
Pitch values are computed on a 50ms time win-
dow and boundary adjusted with the output of the
frame classifier. A pitch segment with a pitch dif-
ference between the adjacent frames within a 20Hz
threshold is treated as a voiced region.

A separate 20 hours of data dtrain2 is used to
learn the parameters in φ3, φ4 and φ5. This goes
into the keyword-specific variable Vk. Another 20
hours of speech data is run through the baseline
classifier and the pitch detector to get the dmeta.
Keyword present areas in dmeta are manually la-

Table 1: Number of extremal points on the convex hull

Keyword # Extremal Points
australia 126
existence 133
schedule 178
powerful 124

mysterious 204
hundred 172
daylight 264
fighting 151
quickly 181
stopped 152

Figure 4: ROC of lattice keyword spotting

belled at the word level, and the positive and nega-
tive training segments (X,P, F ) of each keyword
are generated. The positive and negative segments
of each keyword are converted to points in the fea-
ture space. The convex hull is computed for all
the negative data points and the weight vector is
trained as described in subsection 2.1 for all the
keywords. The value of the complexity-accuracy
tradeoff parameter A is set to 1. Ten keywords
are chosen, depending on the frequency, duration,
and presence of voiced regions in the boundaries.
Table 1 shows the number of extremal points on
the convex hull computed from a random sample
of 20000 points of negative instances of each key-
word. Although the number of extreme points of
the convex hull of a set is dependent on how the
points are distributed, from Table 1, it is clear that
atleast an order of magnitude reduction in the com-
putation of dot product is attained. The convex hull
is computed as explained in (Barber et al., 1996).

20 hours of data dtest is used for testing. The
occurrence of all the keywords is manually time
labelled and positive and negative points are gener-
ated for all keywords in the feature space. Speech
segments, for creating the negative points in the
feature space, are generated in the manner speci-
fied in subsection 2.4. The scoring function for a
speech instance against a keyword takes the form
as expressed in equation (2).

The discriminative keyword spotter is bench-
marked against a lattice-based keyword search us-
ing Kaldi. Kaldi is trained using the same dtrain
and is decoded into a lattice using dtest. Multi-
ple phoneme paths through the lattice are searched
for keywords. While searching through the lat-



Figure 5: Number of states vs number of all possible
paths in the lattice

tice, constraints like reducing the number of cycles
and pruning the maximum length of paths, are em-
ployed to reduce the search space. We discard the
lattice with states more than 500000. The acoustic
score in the lattice is ignored. A bigram language
model is used for decoding. The phoneme path
through the lattice is divided into chunks of the
size of the dictionary entry, and the length of the
longest subsequence with the dictionary entry of
the keyword is found. We consider a keyword to be
detected if the longest subsequence length between
a phoneme chunk in the lattice path and the dictio-
nary entry is above a certain number of phonemes.

Fig.3 and Fig.4 plots the ROC curve of the dis-
criminative keyword spotter and the lattice key-
word spotter for various keywords. The number
of phonemes detected in sequence is used as the
threshold in Fig.4. It is clear that lattice keyword
spotting is superior compared to discriminative key-
word spotting. Lattice keyword spotting operates
with a language model, while the discriminative
spotter is purely acoustic in nature. Moreover, the
number of possible paths through a lattice can be
large, whereas the discriminative keyword spotter
selects speech segments linearly in a recording for
locating the keywords. Fig.5 plots the number of
all possible paths against the number of states in the
lattice, for a small subset of testing data. The maxi-
mum number of possible states is limited to 5000.
As the number of states in the lattice increases, the
number of possible paths also increases. A lattice
decoded with a 4-gram language model constrains
the number of possible paths compared to that with
a bigram.

4 Conclusion

A set of 5 robust feature functions derived from a
frame classifier and a pitch detector, for the discrim-
inative approach to the keyword spotting problem,
is presented. The feature functions along with the
positive and negative training instances of the key-
word are defined. The mechanism by which each
feature function finds a correspondence between
the keyword-specific variables and the speech seg-
ment is discussed in detail. Multiple aspects of
the keyword, that the feature functions capture, are
explored. A computationally intensive operation
in keyword training is identified. An approach
that makes keyword training more efficient, is pre-
sented, proved, and discussed in detail. The pro-
posed approach is implemented with a set of 10
keywords with the Voxforge dataset. To bench-
mark our approach, a lattice-based keyword search
is implemented in Kaldi with the same dataset and
the results are compared. ROC curves are plotted
for each keyword separately.

The approach shows how feature functions de-
rived from multiple aspects of speech, can be com-
bined to predict the keyword. In the future, the
same framework can be used to incorporate more
features like formants, acoustic-phonetic character-
istics, phoneme-specific spectrogram features, etc
for better keyword recognition.
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