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Abstract

Surface Realization in Natural Language Gen-
eration (NLG) is the task of deriving the surface
form of a sentence (the actual words) from an
underlying representation. Following recent ad-
vances in deep learning, several models have
been proposed for different NLG sub-tasks in-
cluding surface realization. Most of these mod-
els require a large amount of training data, how-
ever, acquiring accurately labeled data is labo-
rious and expensive. In this work, we study
how synthetically generated labeled data can
be leveraged to improve the performance of a
surface realization model. By pre-training a lan-
guage model on automatically labeled data and
then fine-tuning it on manually labeled data,
our approach improved the state-of-the-art per-
formance on the standard English datasets from
the deep track of the Multilingual Surface Re-
alization (MSR) workshop (Belz et al., 2020)
by more than 10% BLEU score.1

1 Introduction

The goal of Natural Language Generation (NLG) is
to generate text in human languages (e.g. English)
for a wide range of applications such as report
generation, text summarization, and conversation
modeling. NLG involves both content planning
(selecting the content to communicate) and sur-
face realization. Surface realization (SR), the last
step of the NLG pipeline, aims to derive the sur-
face form of a sentence (the actual words) from an
underlying representation by choosing the proper
word forms (inflection, punctuation, and format-
ting) and determining their correct order (syntactic
realization) (Hovy et al., 1996; Reiter and Dale,
2000).

Recent advances in Natural Language Process-
ing (NLP) and Deep Neural Networks (DNN) have
led to drastic improvements in many NLP systems,

1The code is available at https://github.com/
CLaC-Lab/SR_LM

some of which have even achieved human-level
performance (Läubli et al., 2018). Similarly to
many NLP models, surface realization models
have also benefited from these advancements.
DNN models usually require a large amount
of labeled data for training; however, creating
accurate and reliable training data is an expensive
and time consuming task. In this work, we show
how we can improve the performance of surface
realization by pre-training a language model
on a large synthetically generated dataset and
then fine-tuning it on a smaller manually labeled
dataset.
To measure the effectiveness of our approach, we
followed the protocol of the Multilingual Surface
Realization (MSR) Workshops (Mille et al., 2018,
2019; Belz et al., 2020), and generated the surface
form of sentences from their dependency parse
trees. To create the synthetic data, we used
the automatic dependency parser Stanza (Qi
et al., 2020) to parse the unlabeled WikiText
corpus (Merity et al., 2017). Using different
sizes of manually labeled and synthetic data, we
investigated the effects of the proposed pre-training
phase. Although the synthetic data may contain
noisy annotations compared to manually labeled
data and may come from a different distribution
(e.g. different textual genre or discourse domain),
results show that its sheer size allows the model to
learn the general gist of the task in the pre-training
phase and leads to an increase in performance in
SR achieving state-of-the-art performance on the
deep track with the English datasets of the MSR
workshops.

2 Background

2.1 Multilingual Surface Realization (MSR)

The Multilingual Surface Realization (MSR) work-
shops have organized shared tasks aimed at bring-
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ing together researchers interested in surface ori-
ented Natural Language Generation problems and
share resources to that end (Mille et al., 2018, 2019;
Belz et al., 2020). The shared task aimed to gener-
ate the surface form of sentences given their Uni-
versal Dependency (UD) structures. Two tracks
were proposed: the shallow and the deep tracks.
For the shallow track, word order information and
the inflected form of words were removed from the
UD structure and the task aimed to determine the
correct order of words and inflect them. In the deep
track, in addition to word ordering and inflection,
functional words (in particular, auxiliaries, func-
tional prepositions and conjunctions) and surface-
oriented morphological information were removed
from the UD structure and had to be recovered by
the models.

2.2 Previous Work

Participants in the Multilingual Surface Realization
(MSR) workshops proposed different models to ad-
dress the surface realization task. Many of these
models use dedicated sub-modules for each sub-
task. For example the ADAPT center (Elder, 2020)
proposed a biLSTM sequence-to-sequence model
with a copy mechanism to generate the surface
form of sentences. They augmented the training
set with 4.5M sentences from two sources, Wiki-
Text (Merity et al., 2017) and CNN stories (Her-
mann et al., 2015), and chose sentences that had
at least 80% word overlap with the labeled dataset
to ensure that they have a similar distribution. The
BME-TUW system (Recski et al., 2020) used an In-
terpreted Regular Tree Grammar to retrieve the cor-
rect order of tokens then used a biLSTM sequence-
to-sequence model to inflect the words. The IMS
system (Yu et al., 2020) tackled the surface realiza-
tion problem as a Traveling Salesperson Problem,
and used a biaffine attention model to calculate the
bigram scores for the output sequence. Finally, they
used a biLSTM for the inflection module. Simi-
larly to the ADAPT center, IMS also used Wiki-
Text and CNN stories to augment their training
data with 200K synthetic samples, however, by
considering the branching factors of the tree, they
tried to keep the distribution of the augmented data
close to the labeled datasets. The data augmenta-
tion that ADAPT and IMS used differ from our
proposed solution as they both tried to keep the
distribution of the augmented data as similar as
possible to the manually labeled data by applying

filtering rules. In contrast, our approach does not
enforce the distributions to be similar, and lets the
domain adaptation to be performed automatically
during the fine-tuning phase.

Because of their simplicity and effectiveness,
several approaches have used language models for
surface realization. The NILC system (Cabezudo
and Pardo, 2020) proposed to use GPT-2 (Radford
et al., 2019) and linearization using the parenthe-
ses approach. We argue that when the number of
nodes grows, the model has difficulties in captur-
ing the relations between them. The Concordia
system (Farahnak et al., 2020) used BART (Lewis
et al., 2020) for surface realization, however, the
relation between nodes was represented with the
actual words. This approach may cause problems
when a word appears more than once in a sentence
as the model cannot capture the exact structure of
the tree. Our approach is also based on language
models, however, it differs from theirs as indices
are used to encode the edges in the UD structure
instead of the actual tokens (see Section 4).

a large team of writer handle the script

root

det
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nsubj
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Figure 1: Example of UD dependency parse tree for the
sentence A large team of writers handled the script.

3 Data

In this section, we first present the MSR manually
labeled datasets we used for our experiments and
then discuss how we created the synthetic dataset.

3.1 Manually Labeled Datasets

For our experiments, we used the English datasets
provided by the MSR workshop (Belz et al., 2020).
These datasets are modified versions of the Univer-
sal Dependency (UD) datasets (de Marneffe et al.,
2014) where the order of the tokens is shuffled
and the inflected form of the tokens are removed.
Table 1 presents statistics of these datasets. As
Table 1 shows, the largest dataset (EWT) contains
only ≈12K training samples which makes it hard
to train an DNN model based solely on these sam-
ples.



Dataset train dev test

EWT 12,543 2,002 2,077
GUM 2,914 707 778
LinES 2,738 912 914
ParTUT 1,781 156 153

Table 1: Number of samples in the English MSR
datasets.

3.2 Synthetically Generated Dataset
In order to generate synthetic data, we used the
WikiText dataset (Merity et al., 2017), extracted
from Wikipedia articles. The WikiText dataset
comes from a different domain compared to the
MSR datasets2 which makes it a suitable candidate
to study the domain adaptation between the two
text genres. We extracted the first 500K sentences
after filtering non-English sentences and sentences
longer than 150 characters3 to create our synthetic
dataset. We used Stanza (Qi et al., 2020) to parse
the sentences and create their UD structure. Using
the script provided by the MSR workshop (Belz
et al., 2020), we generated the synthetic dataset
in the same format as provided by the workshop.
Figure 1 shows a visual representation of the depen-
dency tree structure of a sample from the dataset.

4 Model

Following the success of pre-trained language mod-
els (LMs) for data-to-text generation tasks (Kale
and Rastogi, 2020; Harkous et al., 2020; Farah-
nak et al., 2020), we used an encoder-decoder LM
for surface realization. The input and output of
an encoder-decoder LM is in linear form (text-to-
text); however, surface realization is a data-to-text
task. In order to use LM, the input UD structure
had to be linearized. Among the features avail-
able in the UD structure, we considered lemma
(the lemmatized form of tokens), FEATS (morpho-
logical information), HEAD (the parent in the tree
structure), and deprel (dependency relation to
the head) and represented each node in the linear
format:

index : lemma FEATS : head_index <deprel>

then concatenated all nodes together. Figure 2
shows the linearized representation of the example
from Figure 1 used for the shallow track. In this

2The EWT dataset contains sentences from five genres
of web media: weblogs, newsgroups, emails, reviews, and
Yahoo! answers.

3This value was chosen because 90% of the samples in
EWT are shorter than 150 characters.

example, the parent of the word script is node 5
which is the index for word handle. To train the
LM, we used the surface form of the sentence as
the target. The model learns to generate the surface
form given the linearized UD structure, hence, it
learns to perform both syntactic and morphological
realization simultaneously.

4 : script Sing : 5 <obj> # 3 : writer Plur : 7 <nmod> #

9 : . : 5 <punct> # 6 : large Pos : 7 <amod> # 7 : team

Sing : 5 <nsubj> # 5 : handle Ind Plur 3 Past Fin : ROOT

<root> # 1 : the Def Art : 4 <det> # 8 : of : 3 <case> # 2 :

a Ind Art : 7 <det>

Figure 2: Linearized representation of the UD structure
of Figure 1.

5 Experiments and Results

5.1 Experimental Setup
In order to understand the effect of synthetic data
on the performance of the ordering model, we con-
ducted several experiments using different sizes
of synthetic data to pre-train the model, then fine-
tuning it on the manually labeled datasets and mea-
suring the performance on the MSR test sets (see
Table 1). For all experiments, we used the pre-
trained BART (Lewis et al., 2020) large model. We
used the AdamW (Loshchilov and Hutter, 2019)
optimization algorithm with a learning rate of 1e-5
and batch size of 4 to train our models. We pre-
trained the models for 5 epochs on the synthetic
data and fine-tuned them for 5 more epochs on the
manually labeled data. For comparative purposes,
we also trained the models without the pre-training
phase, and trained them for 15 epochs on the man-
ually labeled data. We choose the model with the
highest performance on the development sets.

5.2 Results
Table 2 compares the performance of training the
encoder-decoder language model using different
sizes of synthetic data for pre-training. Our ex-
periments suggest that the pre-training phase can
improve the performance of the model by 3.90%
and 5.21% in BLEU score for the shallow and deep
tracks respectively on the EWT dataset. However,
the improvement on the other three datasets are
more significant, ranging from 12.76% to 25.65%,
as these datasets have much fewer training sam-
ples compared to EWT. The improvement of pre-
training on synthetic data is higher for the deep



Shallow Track Deep Track

EWT ∆ GUM ∆ LinES ∆ ParTUT ∆ EWT ∆ GUM ∆ LinES ∆ ParTUT ∆

#
sy

nt
he

tic
sa

m
pl

es
fo

r
pr

e-
tr

ai
ni

ng

0 80.79 _ 71.63 _ 69.62 _ 67.84 _ 64.31 _ 48.74 _ 40.61 _ 49.23 _

100K 84.38 3.59 86.27 14.64 82.38 12.76 86.98 19.14 68.10 3.79 68.61 19.87 64.28 23.67 69.50 20.27
200K 84.62 3.83 86.84 15.21 83.00 13.38 86.69 18.85 69.02 4.71 69.21 20.47 65.29 24.65 69.25 20.02
500K 84.69 3.90 86.76 15.13 83.18 13.56 87.66 19.82 69.52 5.21 70.19 21.45 66.26 25.65 71.38 22.15

Table 2: BLEU score of models pre-trained with different sizes of synthetic data. ∆ reports the difference of the
pre-trained models to training without the pre-training phase (i.e. 0 synthetic data).

EWT GUM LinES ParTUT

BLEU NIST DIST BLEU NIST DIST BLEU NIST DIST BLEU NIST DIST

Shallow
Track

BME (Recski et al., 2020) 57.25 12.52 65.23 60.77 12.10 62.86 55.98 11.78 61.44 61.37 10.22 58.39
Concordia (Farahnak et al., 2020) 70.71 12.70 77.94 66.98 11.62 69.87 62.70 11.30 68.62 67.05 9.83 71.59
IMS (Yu et al., 2020) 85.67 13.74 87.74 89.70 12.98 91.97 85.30 12.97 86.48 89.37 11.05 88.73
ADAPT (Elder, 2020) 87.50 13.81 90.35 _ _ _ _ _ _ _ _ _

Our Approach 84.69 13.58 88.82 86.76 12.65 89.12 83.18 12.59 85.72 87.66 10.91 86.80

Deep
Track

NILC (Cabezudo and Pardo, 2020) 45.19 9.96 64.83 53.92 9.00 60.42 41.04 9.09 61.18 43.41 8.24 59.74
Concordia (Farahnak et al., 2020) 58.44 11.61 73.66 53.92 10.51 67.02 47.96 9.93 64.33 50.54 8.57 62.39
IMS (Yu et al., 2020) 58.66 11.61 79.23 53.92 11.25 76.47 50.45 10.89 73.1 50.11 9.26 72.98

Our Approach 69.52 12.54 82.43 70.19 11.64 80.93 66.26 11.37 78.81 71.38 9.99 77.88

Table 3: Comparison of our approach (models pre-trained on 500K synthetic sentences and fine-tuned on each
dataset) with previous models proposed for the deep track of MSR 2020.

track compared to the shallow track as the task
is more complex in the sense that the model not
only needs to learn the inflection and ordering of
words, it also needs to guess the removed functional
words.

In comparison with previous participating mod-
els of MSR 2020 (Belz et al., 2020) (see Table 3),
our approach is not able to outperform the previous
work on the shallow track. However, it improves
the state-of-the-art performance by a large margin
(more than 10% in BLEU score) on in the deep
track on all datasets which shows the superiority of
our proposed approach.

5.3 Analysis

We analysed the results of the models to better
understand the benefits and drawbacks of our ap-
proach.

Pre-training seems to facilitate domain adaption,
as a single epoch of fine-tuning is enough for the
model to adapt to the domain of the manually la-
beled dataset (see Appendix A.1).

Pre-training can significantly reduce the need for
manual data. We fine-tuned the pre-trained models
using subsets of the manually labeled data. Results
shows that with pre-training, using only 10% of the
data achieves better performance than training on
all manually labeled data without the pre-training
phase (see Appendix A.2).

Finally, through a manual inspection of the gen-
erated sentences (see Appendix A.3), we deter-

mined that most errors should actually be consid-
ered correct alternatives to the ground truth. Better
automatic measures should be developed to mea-
sure the performance of surface realization to ac-
count for linguistic variations.

6 Conclusion and Future Work

In this paper, we showed that pre-training on syn-
thetic data is beneficial for surface realization even
when the data comes from a different distribution
than the training data. We also showed that the pre-
training phase not only improves the performance
of the model, but also helps the model to con-
verge faster on the training data. The proposed pre-
training phase for LM improved the state-of-the-art
performance on the standard English datasets from
the deep track of the MSR workshop (Belz et al.,
2020) by more than 10% BLEU score.

As of future work, we plan to conduct similar
experiments on previously proposed models such
as ADAPT (Elder, 2020) and IMS (Yu et al., 2020).
We also plan to run cross-language experiments
to see whether the knowledge learned from one
language can be transferred to another language.
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A Detailed Analysis

A.1 Domain Adaptation
Figure 3 compares the BLEU scores of training
models for the deep track on the EWT dataset
with and without pre-training on 500K synthetic
samples with different training epochs. As the fig-
ure shows, for the pre-trained model, the domain
adaptation phase is almost completed after the first
epoch while the non-pre-trained model continues
to improve even after 10 epochs.
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Figure 3: The BLEU score on the EWT test set for all
epochs when training the models for the deep track, with
and without pre-training on 500K synthetic samples.

A.2 Size of Training Data
Table 2 shows that pre-training on synthetic data
before fine-tuning on manually labeled data can
improve the overall performance of the model. In
order to better understand the importance of the
size of manually labeled training data, we limited
its size and fine-tuned the model on different sizes
of manually labeled training data. Table 4 shows
the performances of the model after fine-tuning
on different subsets of the EWT dataset. As Ta-
ble 4 shows, fine-tuning solely on 1K samples can
achieve better performance compared to no pre-
training and using the full EWT dataset (last row
of Table 4). However, by increasing the number
of training samples (from 1K to 12.5K), we can
achieve a higher performance when pre-training.
This indicates that even though the pre-training
phase is helpful for the task, it is not sufficient to re-
place the manually labeled training data altogether.

# synthetic
samples

# manually
labeled samples

BLEU NIST DIST

500K 0 37.87 8.09 61.04

500K 1K 64.54 11.88 78.50
500K 2K 65.70 12.00 78.93
500K 5K 67.35 12.33 80.76
500K 10K 68.79 12.43 81.80
500K 12.5K 69.52 12.54 82.43

0 12.5K 64.31 11.64 77.80

Table 4: Comparison of the performance of the encoder-
decoder model using different sizes of training data
for the fine-tuning on a model pre-trained with 500K
synthetic samples.

A.3 Error Analysis
We manually inspected the errors generated by our
models. While a few generated sentences did con-
tained true errors, most can be regarded as correct
alternatives to the ground truth. Table 5 shows a
few examples. One common correct alternative
was related to the generation of contractions as in
Ex. 1. This type of error occurs because the MSR
input structure of the token to generate (it) does not
contain any feature that give the model a clue as
to whether the token should be contracted or not.
In Ex. 2, the model failed to generate the expected
punctuation in the deep track, yet the generated
sentence is a correct alternative to the ground truth.
In Ex. 3, the word order in the generated outputs is
not identical to the ground truth; however, they are
grammatically correct and convey the same mean-
ing. In Ex. 4, the output of the shallow model
is indeed a true error as it is not grammatically
correct; however, the deep model generated a gram-
matically correct output but again it is not identical
to the expected output. Finally, in Ex. 5 and 6,
show examples of correct alternative to number
formatting compared to the ground truth.
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Ex. 1
Ground Truth i ’ll post highlights . . .

Ex. 2
Ground Truth two weeks later , and the violence continues .

Output of Shallow i will post highlights . . . Output of Shallow two weeks later , and the violence continues .
Output of Deep i will post highlights . . . Output of Deep two weeks later and the violence continues .

Ex. 3
Ground Truth they own blogger , of course .

Ex. 4
Ground Truth we have this report ?

Output of Shallow of course , they own blogger . Output of Shallow have we this report ?
Output of Deep of course they own blogger . Output of Deep do we have this report ?

Ex. 5
Ground Truth compensation : $ 60000 - 70000

Ex. 6
Ground Truth . . . said that there was a 10 to 50 % chance . . .

Output of Shallow compensation : $ 60,000 - 70,000 Output of Shallow . . . said that there was a 10 to 50 % chance . . .
Output of Deep compensation : $ 60000 - 70000 Output of Deep . . . said there was a 10 - 50 % chance . . .

Table 5: Sample errors generated by the shallow and deep models pre-trained on 500K synthetic data and fine-tuned
on the EWT dataset.


