
Detecting Security Patches in Java Projects Using NLP Technology
Andrea Stefanoni1,2,3, Šarūnas Girdzijauskas2, Christina Jenkins3, Zekarias T. Kefato2,

Licia Sbattella1, Vincenzo Scotti1, and Emil Wåreus4

1DEIB, Politecnico di Milano, Via Golgi 42, 20133, Milano (MI), Italy
2KTH Royal Institute of Technology, Brinellvägen 8, 114 28 Stockholm, Sweden
3Devoteam Creative Tech, Klara Östra Kyrkogata 2B, 111 52 Stockholm, Sweden

4Debrided AB , Nordenskiöldsgatan 17, 211 19 Malmö, Sweden
andrea2.stefanoni@mail.polimi.it sarunasg@kth.se
christina.jenkins@devoteam.com zekarias@kth.se

licia.sbattella@polimi.it vincenzo.scotti@polimi.it
emil.wareus@microfocus.com

Abstract

Known vulnerabilities in software are solved
through security patches; thus, applying such
patches as soon as they are released is crucial
to protect from cyber-attacks. The diffusion
of open source software allowed to inspect the
patches to understand whether they are security
related or not. In this paper, we propose some
solutions based on state-of-the-art deep learn-
ing technologies for Natural Language Process-
ing for security patches detection. In the exper-
iments, we benchmarked our solutions on two
data sets for Java security patches detection.
Our models showed promising results, outper-
forming all the others we used for comparison.
Interestingly, we achieved better results train-
ing the classifiers from scratch than fine tuning
existing models.

1 Introduction

The use of Open Source Software (OSS) has be-
come a common practice in proprietary projects,
especially thanks to the speed up in software pro-
duction and the costs reduction (Vaughan-Nichols,
2015). However, this practice comes with the risk
of introducing vulnerabilities in private code-bases.
In this context, we introduce the concept of security
patches: a security patch is a special type of code
patch, which is a set of changes to be applied to
some software to update, fix, or improve it. These
security patches are designed to solve code vulner-
abilities that causes the exposure to cyber-attacks.

The aforementioned code vulnerabilities have
been categorised using different notations. The
most famous are the Common Vulnerabilities and
Exposures (CVE) and the Common Weakness Enu-
meration (CWE); both provide a description of the
vulnerabilities discovered and the second one is
organised hierarchically. Moreover, there exists
data bases containing a list of vulnerable commits

(changes to the software code base) like the Na-
tional Vulnerability Database (NVD) and the Soft-
ware Assurance Reference Dataset (SARD), which
offer an helpful reference to understand these vul-
nerabilities. They contain examples of vulnerable
code paired with the non-vulnerable counterpart,
thus providing test cases for software production.

In this work we focus on OSS projects in Java
maintained on GitHub. On this platform, a commit
represent an update to the code base and is com-
posed of two parts: commit message (a short de-
scription in natural language of the updated piece(s)
of code) and patch (sometimes called code changes,
it consists of one or more hunks). Hunks are the
differences between the old version and the new
version of source code files. These hunks are usu-
ally surrounded by context lines of the original
untouched source code and marked with line num-
bers. Deleted rows are marked with an initial -,
while the added rows start with a +.

Usually, in the process of software development,
the software maintainers are overwhelmed by the
number of patches released in their dependencies,
which can refer to one of those OSS projects. Since
applying patches requires extra work and down-
time, it is important to prioritise security patches.
In this sense, we propose a method based on Nat-
ural Language Processing (NLP) technologies to
analyse the code modified in the patch, focusing
on the semantics expressed in the code, to detect
security patches, and thus allow to prioritise them.

We organise this paper as follows: in Section 2
we present the related research works for code anal-
ysis and classification, in Section 3 we presents
the data sets we used as benchmarks in the experi-
ments, in Section 4 we provide an overview of the
models we considered and how we used them to
tackle the detection task, in Section 5 we present
the experimental approach we followed and the re-

https://www.cve.org/
https://www.cve.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://nvd.nist.gov
https://nvd.nist.gov
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/
https://github.com


sults we obtained, and in Section 6 we provide final
remarks and propose possible future extensions.

2 Related work

NLP is the area of Artificial Intelligence (AI) fo-
cused on the analysis and synthesis of human lan-
guage. Recently, the introduction of Deep Learn-
ing-based techniques in this area has pushed signif-
icantly forward the state-of-the-art on many prob-
lems. In particular, the development of Deep Prob-
abilistic Language Models based on the Trans-
former Architecture (Vaswani et al., 2017) like
GPT (Brown et al., 2020), BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020) seems to have
enabled an impressive step forward. These models
for sequence analysis are pre-trained on large text
data sets doing simple tasks like next token/word
prediction and can be fine-tuned for any problem,
yielding impressive results due to the informative
hidden representations learnt during pre-training.

These same models and techniques used for nat-
ural language, can be also applied for artificial lan-
guages, such as programming languages. In fact,
according to the Naturalness Hypothesis (Hindle
et al., 2016; Allamanis et al., 2018), we can treat
source code in the same way of a document writ-
ten in plain natural language. As a result, deep
learning models for sequence and graph processing
have been actively used to process code, includ-
ing vulnerability classification (Otter et al., 2018;
Semasaba et al., 2020; Wu, 2021).

The application of deep learning techniques to
source code analysis evolved similarly to natural
language. Early solution tackled the problem of
extracting a distributed continuous representation
of code pieces similarly to early works for NLP
based on embeddings (i.e., vector semantic repre-
sentations).

Initially, word embedding models for NLP used
static and shallow embedding matrices to project
words into compact and dense representations
(Mikolov et al., 2013a,b; Pennington et al., 2014;
Bojanowski et al., 2017). Such word representa-
tions can be further combined to obtain semantic
vectors representing sentences (Pagliardini et al.,
2018; Arora et al., 2017; Zhelezniak et al., 2019;
Muffo et al., 2021, 2022) or even entire documents
(Le and Mikolov, 2014; Chen, 2017; Hosseini et al.,
2022).

Following these approaches, Code2Vec (Alon
et al., 2019) was developed to extract distributed

representations of the tokens in a piece of code.
However, Code2Vec exploits more complex struc-
tures than vanilla word emebedding models, like
Abstract Syntax Trees (AST), to compute the vector
representations.

More recently, models for contextual representa-
tion from sequence analysis have emerged: Code-
BERT (Feng et al., 2020) , for instance, employs the
BERT auto-encoder to carry out source code and
natural language analysis, serving as impressive
feature extraction model that can be used on many
downstream tasks, including vulnerability detec-
tion. There are also pre-trained models trained di-
rectly for patch analysis, like CommitBERT (Jung,
2021), however their accessibility is still limited.

Besides feature extraction for code analysis,
many works focused also on specific tasks. In the
context of security patch detection/classification,
many solution work on C/C++ data sets (due to
to higher data availability) and employ multiple
sub-models to break down the input analysis.

In the case of SPI (Zhou et al., 2022) and
PatchRNN (Wang et al., 2021), both models
use multiple Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) networks fed
using Word2Vec embeddings trained on C code
tokens. SPI uses two LSTMs to extract features
respectively from the added and deleted lines of
code in a patch and it further enhance the input
with the commit message to carry out the classifi-
cation. PatchRNN uses a twin LSTM solution to
analyse the code before and after the patch with the
information from the commit message to classify
the patch. Both models encode the commit mes-
sage using standard embedding techniques, namely
Word2Vec, and use a mixture of experts to combine
the results of code analysis with that of the commit
messages. Differently, CC2Vec (Hoang et al., 2020)
processes only the code changes and exploits the
hierarchical structure of a patch (divided into token,
line, and hunk) thorough a Hierarchical Attention
Network (HAN). It analyses with two separate net-
works added and deleted lines and the post-process
together the extracted feature vectors. This last
approach was employed also for the classification
of C language patches to identify the stable ones.

Concerning Java-specific solutions for security
patches classification, Commit2Vec (Lozoya et al.,
2021) represent the closest work to the one we ap-
resent in this paper. However, the data set used
by Commit2Vec is only partially available, making



impossible a direct comparison with our work. The
Commit2Vec model is based on Code2Vec embed-
dings: it encodes the AST of previous and current
versions code (with respect to the patch), then an at-
tention layer further processes the embedded code
differences to perform the classification.

All the aforementioned works use binary classes
division to categorise the security patches, while we
are also interested in macro-classes identification.

Recent results showed that handcrafted features
and a Random Forest classifier (Breiman, 2001)
are sufficient to obtain reasonable performances on
a set of ten macro-classes derived by the original
CVE labels (Wang et al., 2020).

3 Data

To the end of this work, we focused only on Java se-
curity patches. In particular, we used three separate
data sets: the first two are private data collections,
while the latter is publicly available and was cu-
rated by Ponta et al. (2019).

We merged the first two data sets into one com-
prising 123 000 samples (i.e., code patches, with
1157 being related to security issues). Samples
from the former data set use a binary labelling sys-
tem, while those from the latter used both CVE and
CWE notations. After merging, labels were uni-
formed to the binary system with the two classes be-
ing security and non-security. The training set was
composed of 933 and 918 samples (respectively
for the two classes) and the test set was composed
of 224 and 239 samples (respectively for the two
classes). To cope with the unbalance in the data set
we undersampled the non-security class.

The third data set (Ponta et al., 2019) is com-
posed of 1175 security patches labelled with the
CVE notation. Due to the high number of different
classes, that would have prevented effectively train-
ing a classifier, we first converted the CVE notation
to CWE (yielding 605 different classes instances)
and then we clustered manually the resulting labels
down to five:

Improper management of resources patches to
solve vulnerabilities connected to resources
and variables (e.g., buffer overflow).

Cryptography features patches to solve vulnera-
bilities connected to data security and infor-
mation leakage.

Authentication errors patches to solve vulnera-

bilities connected to access control, authenti-
cation, and user sessions.

Other all the security patches that don’t fall under
the previous categories (e.g., channel errors).

Non-security complementary class to the security
patches (e.g., bug fixes, new features, etc.).
Samples from this class were taken randomly
from the first two data sets.

Pre-processing steps of all data sets consisted in:

• the extraction of added and deleted lines from
the patches;

• replacement of comments, strings, and num-
bers with as many special tokens;

• splitting of function and variable names (we
used the most common naming conventions
like snake case, camel case, and kebab case);

• deletion of special characters and stopwords
(with the exception of java specific ones).

We divided code tokens on spaces and lowercased
to all non-special tokens.

4 Methodology

In the following, we describe how we encoded the
input sequence representing the code to analyse
and the neural network models we considered to
carry out the classification task. We distinguished
between baseline models, used to get an idea of the
performances achievable on the considered data
sets, and advanced models, which exploit more
complex architectures to obtain the best results.

4.1 Embedding
As happens for natural language, we converted the
sequence of tokens written in Java into a continu-
ous vector representation compatible with neural
networks. For this task we considered different
embedding models:

Uninitialised embeddings we employed 32-
dimensional randomly initialised embeddings
we trained with the overall models.

Word2Vec we trained a 100-dimensional embed-
ding model on the code contained in the pri-
vate data sets.

Code2Vec we resorted to a pre-trained model with
128-dimensional embeddings.



Tests showed that uninitialised embeddings yield
a better representations for our task. This is also
supported by the results we report in Section 5:
uninitialised models achieve the best scores.

4.2 Baseline models
We considered two baseline classification models:

XGBoost (Chen and Guestrin, 2016) we trained
this model on handcrafted features, similar
to those used by Wang et al. (2020), and we
employed a count encoder for the patch.

LSTM we employed this baseline similarly to the
work on Commit2Vec, we employed this base-
line; however, we fed it with the added and
deleted lines concatenated with a special sep-
arator token.

4.3 Advanced models
As premised, a part from the baselines, we con-
sidered more complex models. For many of them
we considered a base version and the patch ver-
sion, were the internal model is replicated to anal-
yse separately added and deleted lines as in the
work on PatchRNN. We leveraged both pre-trained
models coming from previous works or generic
uninitialised models:

PatchRNN inspired by the original work, we used
twin recurrent networks to encode separately
added and deleted lines. We used Gated Re-
current Units (GRU) (Cho et al., 2014) with
64 hidden units to build this model.

HAN as for the PatchRNN, we took inspiration
from the HAN used in CC2Vec, and imple-
mented a three layer version of it (respectively
for word, hunk and file level). In each layer
we used GRUs, with 64 hidden units, and at-
tention was computed on top of it. During the
hyperparameters search, we fixed the number
of files to two and hunks to three for the sake
of parallelisation.

CodeBERT we employed a pre-trained trans-
former trained on source code as it is common
practice nowadays in NLP tasks. The input
structure is the same of the LSTM baseline.
We used both the original pre-trained model
and a variant available via the Transfomers
library (Wolf et al., 2020) (alternative model
link). Additionally, for this model we tested
both fine-tuning and simple transfer learning.

PatchCodeBERT we used the pre-trained Code-
BERT to build a twin version of it, replicating
the initial model and feeding one with the
added lines and one with the deleted lines.

Transformer we considered an uninitialised
Transformer encoder with bi-directional atten-
tion (as BERT), thus re-proposing a smaller
version of CodeBERT.

PatchTransformer similarly to what we did with
the Transformer and CodeBERT, we used a
smaller uninitialised version of PatchCode-
BERT that we trained from scratch.

Since many of the models we considered use
separate encoders for added and deleted lines in
the patches, we developed a merging layer working
on the intermediate hidden vectors. The proposed
layer, similarly to the one employed by CC2Vec,
concatenates the two vectors, their product, their
difference, and their cosine and euclidean distances.
The resulting vector is passed through a final classi-
fication layer. The remaining models directly apply
the final projection on the hidden representation.

5 Experiments and results

Table 1: Results on the private data sets.

Method F1

Validation Test

XGBoost 0.692± 0.033 0.695
LSTM 0.823± 0.008 0.829

PatchRNN 0.696± 0.007 0.635
HAN 0.787± 0.007 0.777
CodeBERT 0.767± 0.019 0.764
PatchCodeBERT 0.731± 0.023 0.728
Transformer 0.841± 0.014 0.870
PatchTranformer 0.831± 0.014 0.827

Table 2: Results on the data set by Ponta et al. (2019).

Method macro F1

Validation Test

LSTM 0.661± 0.054 0.607
Transformer 0.667± 0.033 0.635
PatchTranformer 0.643± 0.020 0.601

https://huggingface.co/mrm8488/codebert-base-finetuned-detect-insecure-code


We divided the experiments following the data
sets division. First, we trained multiple models
on the private data sets with the binary labelling
system. We selected the best models from the first
step for training on the third data set with the five
macro-categories. To assess the goodness of the
results we measured the F1-score achieved by the
classifiers on the test and validation sets. The F1-
score on the third data set is computed applying
macro averaging among the macro-categories. Re-
sults on validation sets are reported as avg. ± std
because we applied 3-fold cross validation.

We reported the results on the private data sets
in Table 1. The transformer based solutions clearly
outperformed the other models we considered. In
this case we employed a 2 layers Transformer net-
work with 32 hidden units, 4 attention heads, and
a maximum of 768 tokens in the input sequence.
Interestingly Transformer, LSTM, and PatchTrans-
former models, which achieved the best results,
didn’t undergo any pre-training, indicating that fine-
tuning may be counterproductive in some cases.

We reported the results on the third data set in
Table 2. Here we considered only the three best
methods from the first experiment. The results
confirmed those of the private data sets: the Trans-
former model performed better than all the other
considered solutions. In this case we increased
the hidden units size of the Transformer to 128.
The drop in the F1-score with respect to the previ-
ous experiment was expected since we moved to a
multi-class problem where the issue of unbalance
has most probably harmed the performances.

6 Conclusion

In this paper we evaluated different approaches for
security patches detection in Java OSS using NLP
technologies. Despite the general improvements in
many NLP tasks due to the use of pre-trained mod-
els, in our experiments we found that uninitialised
models yield better results than fine-tuned ones;
this is most probably due to the insufficient pres-
ence of Java code in the pre-training of the consid-
ered models. Differently from previous works, we
also noticed that using separate sub-models yields
worse performances than using a single model.

In the future we are willing to work on two com-
plementary directions. On one side we are inter-
ested in exploring other pre-trained models to re-
fine, either sequential or graph ones. On the other
side we are interested in working on larger data

sets; thus exploiting C/C++ resources can be use-
ful to produce improved models than can be then
transferred to under-resourced languages like Java.

References
Miltiadis Allamanis, Earl T. Barr, Premkumar T. De-

vanbu, and Charles Sutton. 2018. A survey of ma-
chine learning for big code and naturalness. ACM
Comput. Surv., 51(4):81:1–81:37.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019. code2vec: learning distributed rep-
resentations of code. Proc. ACM Program. Lang.,
3(POPL):40:1–40:29.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A
simple but tough-to-beat baseline for sentence embed-
dings. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomás Mikolov. 2017. Enriching word vectors with
subword information. Trans. Assoc. Comput. Lin-
guistics, 5:135–146.

Leo Breiman. 2001. Random forests. Mach. Learn.,
45(1):5–32.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Minmin Chen. 2017. Efficient vector representation for
documents through corruption. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, August 13-17, 2016, pages 785–794.
ACM.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In Proceedings of SSST@EMNLP 2014,

https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1023/A:1010933404324
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=B1Igu2ogg
https://openreview.net/forum?id=B1Igu2ogg
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012


Eighth Workshop on Syntax, Semantics and Structure
in Statistical Translation, Doha, Qatar, 25 October
2014, pages 103–111. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su,
and Premkumar T. Devanbu. 2016. On the natural-
ness of software. Commun. ACM, 59(5):122–131.

Thong Hoang, Hong Jin Kang, David Lo, and Julia
Lawall. 2020. Cc2vec: distributed representations
of code changes. In ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, pages 518–529. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Marjan Hosseini, Alireza Javadian Sabet, Suining He,
and Derek Aguiar. 2022. Interpretable fake news
detection with topic and deep variational models.
CoRR, abs/2209.01536.

Tae-Hwan Jung. 2021. Commitbert: Commit message
generation using pre-trained programming language
model. CoRR, abs/2105.14242.

Quoc V. Le and Tomás Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Proceed-
ings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June
2014, volume 32 of JMLR Workshop and Conference
Proceedings, pages 1188–1196. JMLR.org.

Rocío Cabrera Lozoya, Arnaud Baumann, Antonino
Sabetta, and Michele Bezzi. 2021. Commit2vec:
Learning distributed representations of code changes.
SN Comput. Sci., 2(3):150.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 3111–3119.

Matteo Muffo, Roberto Tedesco, Licia Sbattella, and
Vincenzo Scotti. 2021. Static fuzzy bag-of-words: a
lightweight and fast sentence embedding algorithm.
In 4th International Conference on Natural Language
and Speech Processing, Trento, Italy, November 12-
13, 2021, pages 176–185. Association for Computa-
tional Linguistics.

Matteo Muffo, Roberto Tedesco, Licia Sbattella, and
Vincenzo Scotti. 2022. Static Fuzzy Bag-of-Words:
Exploring Static Universe Matrices for Sentence Em-
beddings, pages 101–121. Springer International Pub-
lishing, Cham.

Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita.
2018. A survey of the usages of deep learning in
natural language processing. CoRR, abs/1807.10854.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2018. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 1-6,
2018, Volume 1 (Long Papers), pages 528–540. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1532–1543. ACL.

Serena Elisa Ponta, Henrik Plate, Antonino Sabetta,
Michele Bezzi, and Cédric Dangremont. 2019. A
manually-curated dataset of fixes to vulnerabilities of
open-source software. In Proceedings of the 16th In-
ternational Conference on Mining Software Reposito-
ries, MSR 2019, 26-27 May 2019, Montreal, Canada,
pages 383–387. IEEE / ACM.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Abubakar Omari Abdallah Semasaba, Wei Zheng, Xi-
aoxue Wu, and Samuel Akwasi Agyemang. 2020.
Literature survey of deep learning-based vulnerabil-
ity analysis on source code. IET Softw., 14(6):654–
664.

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362
https://doi.org/10.1145/3377811.3380361
https://doi.org/10.1145/3377811.3380361
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.2209.01536
https://doi.org/10.48550/arXiv.2209.01536
http://arxiv.org/abs/2105.14242
http://arxiv.org/abs/2105.14242
http://arxiv.org/abs/2105.14242
http://proceedings.mlr.press/v32/le14.html
http://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1007/s42979-021-00566-z
https://doi.org/10.1007/s42979-021-00566-z
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://aclanthology.org/2021.icnlsp-1.9/
https://aclanthology.org/2021.icnlsp-1.9/
https://doi.org/10.1007/978-3-031-11035-1_10
https://doi.org/10.1007/978-3-031-11035-1_10
https://doi.org/10.1007/978-3-031-11035-1_10
http://arxiv.org/abs/1807.10854
http://arxiv.org/abs/1807.10854
https://doi.org/10.18653/v1/n18-1049
https://doi.org/10.18653/v1/n18-1049
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1109/MSR.2019.00064
https://doi.org/10.1109/MSR.2019.00064
https://doi.org/10.1109/MSR.2019.00064
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1049/iet-sen.2020.0084
https://doi.org/10.1049/iet-sen.2020.0084


Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Steven Vaughan-Nichols. 2015. It’s an open-source
world: 78 percent of companies run open-source soft-
ware.

Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, Sushil
Jajodia, Sanae Benchaaboun, and Frank Geck. 2021.
Patchrnn: A deep learning-based system for security
patch identification. In 2021 IEEE Military Commu-
nications Conference, MILCOM 2021, San Diego,
CA, USA, November 29 - Dec. 2, 2021, pages 595–
600. IEEE.

Xinda Wang, Shu Wang, Kun Sun, Archer L. Batcheller,
and Sushil Jajodia. 2020. A machine learning ap-
proach to classify security patches into vulnerability
types. In 8th IEEE Conference on Communications
and Network Security, CNS 2020, Avignon, France,
June 29 - July 1, 2020, pages 1–9. IEEE.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November
16-20, 2020, pages 38–45. Association for Computa-
tional Linguistics.

Jiajie Wu. 2021. Literature review on vulnera-
bility detection using NLP technology. CoRR,
abs/2104.11230.

Vitalii Zhelezniak, Aleksandar Savkov, April Shen,
Francesco Moramarco, Jack Flann, and Nils Y. Ham-
merla. 2019. Don’t settle for average, go for the max:
Fuzzy sets and max-pooled word vectors. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing
Liu, and Yang Liu. 2022. SPI: automated identifi-
cation of security patches via commits. ACM Trans.
Softw. Eng. Methodol., 31(1):13:1–13:27.

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software/
https://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software/
https://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software/
https://doi.org/10.1109/MILCOM52596.2021.9652940
https://doi.org/10.1109/MILCOM52596.2021.9652940
https://doi.org/10.1109/CNS48642.2020.9162237
https://doi.org/10.1109/CNS48642.2020.9162237
https://doi.org/10.1109/CNS48642.2020.9162237
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2104.11230
http://arxiv.org/abs/2104.11230
https://openreview.net/forum?id=SkxXg2C5FX
https://openreview.net/forum?id=SkxXg2C5FX
https://doi.org/10.1145/3468854
https://doi.org/10.1145/3468854

