
Handling Class Imbalance when Detecting Dataset Mentions with
Pre-trained Language Models

Yousef Younes, Brigitte Mathiak
GESIS – Leibniz-Institute for the Social Sciences

Cologne, Germany
{yousef.younes,brigitte.mathiak}@gesis.org

Abstract

Understanding the links between datasets and
publications is a hard task. Yet it is very impor-
tant to improve dataset discovery and FAIR-
ness of research data. However, only a few
datasets with such high-quality links exist. Hu-
man annotations are the gold standard for pro-
ducing such links, but it is a time-consuming
manual task, much of which is spent reading
text that is not connected to dataset mentions
at all. In this paper, we propose a filter to
pre-screen scientific publications’ sections, so
that we can find candidates for dataset men-
tions reliably. For this, we test both BERT
and RoBERTa on sections content as well as
on sections title. The main challenge is the in-
herent imbalance in the data, which we tackle
using different imbalance handling techniques,
such as re-sampling and variations of the loss
function. The best result was obtained when
using RoBERTa on section contents by com-
bining re-sampling, balanced focal loss, and a
recall-biased validation metric to get a fairly
high recall and acceptable precision. The
source code and the best obtained model are
available here 1.

1 Introduction

Manual textual annotation is a very cumbersome
and expensive process, yet it acts as the gold stan-
dards that is used for training computational learn-
ing models (Pustejovsky and Stubbs, 2012). Un-
fortunately, this importance turned to be a bottle-
neck for NLP because the annotation is a time-
consuming, laborious, yet error-prone process. To
alleviate these difficulties, a lot of tools have been
introduced to pre-process the data in order to re-
duce the amount of human effort needed and to
make that effort more focused on the essential task
that can not be automated (Pan and Yang, 2009).

1https://github.com/YousefYounes15/
dataset_mention_detection

Detecting research dataset mentions in text (Fan
et al., 2022) is an example of an NLP task that
needs manually annotated data to train a model.

Research datasets play a crucial role in science.
They act as a unifying point that allows comparison
of different research ideas and also facilitate repro-
ducibility of results (Wilkinson et al., 2016). For
these reasons, the problem of finding datasets men-
tion in research papers has gotten more attention
recently (Zhao et al., 2018). To tackle this problem,
researchers like in (Färber et al., 2021)(Mesbah
et al., 2018) treat it as a domain-specific, super-
vised NER task that needs annotated dataset to op-
erate on. The Coleridge dataset 2 used in Kaggle’s
”Show US the Data” competition is an example of
such dataset in which research papers are annotated
with the datasets mentioned in them. One of the
challenges that annotators face when doing such
annotation is the sparsity of these mentions in sci-
entific text. By sparsity, we mean that most of the
texts do not have dataset mentions and only a small
amount contains such mentions. This sparsity has
negative consequences not only on the annotation
process but also on the annotation result. During an-
notation, the annotators spend a lot of time reading
texts that do not contain dataset mentions. Natu-
rally, the resulting annotated dataset is imbalanced
towards the samples without mentions.

One way to help annotators is to perform block-
ing (Azzalini et al., 2021) in order to pick the texts
that contain dataset mentions so they can focus on
them. To achieve this, we define a binary classifica-
tion task in which we classify text as belonging to
the negative class (N) when it does not have dataset
mention and to the positive class (P) when it has.
For example, the following excerpt ”...classification
problem on a subset of ADNI database consisting

2https://www.kaggle.com/c/
coleridgeinitiative-show-us-the-data/
data

https://github.com/YousefYounes15/dataset_mention_detection
https://github.com/YousefYounes15/dataset_mention_detection
https://www.kaggle.com/c/coleridgeinitiative-show-us-the-data/data
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https://www.kaggle.com/c/coleridgeinitiative-show-us-the-data/data


of 531 subjects with sMRI and DTI scans...” makes
the paper’s section that contains it belongs to the P
class since ANDI is an abbreviation for a dataset.
From here onward, N and P will be used to refer to
the negative and positive classes respectively.

Our goal is to get a binary classifier with the
highest possible P-recall and high precision as well.
Such classifier will help reduce the time and effort
needed for the manual annotation. To achieve this
goal we chose to work with language models as-
suming that the context plays a vital role for the
task at hand. Since our data is imbalanced, we used
the chance to compare the performance of two pop-
ular models: BERT (Kenton and Toutanova, 2019)
and RoBERTa (Liu et al., 2019) on such data. To
the best of our knowledge, there is no such com-
parison in the literature. We have experimented
on different parts of sections content and also on
the sections title to find out which settings work
better. We also have used different imbalance rem-
edy techniques like re-sampling and cost-sensitive
learning i.e., balanced focal loss.

The contributions of this paper can be outlined
in the following points:

• Re-sampling has more effect than cost-
sensitive learning on language model-based
classifiers.

• We can not depend on sections title to perform
this classification using language models, al-
beit dataset mentions are more present under
particular section titles.

• RoBERTa outperforms BERT even when the
data is imbalanced.

• The best results with a P-recall of 86% were
achieved with RoBERTa when combining re-
sampling, cost-sensitive learning, and a recall-
oriented validation metric.

The rest of this paper is organized as follows.
Section 2 reviews how text classification was im-
proved by word embeddings before it summarizes
bias handling techniques. Section 3 describes the
data that we used in the paper before it gives de-
tails on the different loss functions used in the ex-
periments. Section 4 describes the experimental
settings then it reports the results of the different
experiments. After that, the results are discussed in
section 5. Finally, the paper concludes in section 6.

2 Related Work

2.1 Text Classification with Deep Learning
Text classification is a supervised machine learn-
ing task in which a given piece of text is predicted
to belong to a class of a set of predefined classes
(Vijayan et al., 2017). To perform this task, many
traditional algorithms such as Naive Bayes, Sup-
port Vector Machines (SVM), Tree-based models
(Kowsari et al., 2019); and modern neural-based al-
gorithms such as RNN, CNN, DBN have been used
(Minaee et al., 2021). All of these models share
a common problem to which each has devised a
different solution which is text representation.

Transfer learning is a learning framework that
revolutionized the field of machine learning by
breaking the isolation of both tasks and models
(Pan and Yang, 2009). It enables a model which
is trained on one task to transfer the knowledge it
gained to another related task via fine-tuning (Tor-
rey and Shavlik, 2010). As a sub-field of machine
learning, NLP witnessed a huge leap due to transfer
learning thanks to the introduction of pre-trained
word embeddings.

Word embeddings are one of the most success-
ful examples of transfer learning because they
are learned in one task and used to solve other
tasks. Earlier word embeddings such as word2vec
(Mikolov et al., 2013a)(Mikolov et al., 2013b) and
GloVe (Pennington et al., 2014) represent a word
by a high-dimensional vector. The similarities be-
tween words are reflected as similarities between
their vector representations. These embeddings are
usually used to initialize new models but the whole
model needs to be re-trained from scratch on the
new data. That is why they are known as shallow
transfer learning. Contextual embeddings are an
improvement over word embeddings in which the
context of the word is involved in its representation
(Liu et al., 2020). Pretrained language models such
as ELMo (Peters et al., 2018), GPT-n (Radford
et al., 2019)(Brown et al., 2020), BERT (Kenton
and Toutanova, 2019), RoBERTa (Liu et al., 2019)
are used to obtain this type of representation. Un-
like word embeddings, these models are usually
used as part of new models which are fine-tuned on
the data for a particular task. This significantly re-
duces the need for huge training data thus reducing
the computational cost.

The great success achieved by language models
clearly indicates the vital role played by context in
natural language processing. Dataset mentions in



the scientific text are not an exception. Although
there is no standard method to mention a dataset in
a research paper, we assume that there is some kind
of unwritten rules that govern the way researchers
mention a dataset. These rules have something to
do with the context in which the dataset title or
label is mentioned. For this reason, we make use of
language models to solve our problem. More par-
ticularly, the focus is on BERT and RoBERTa since
they provide a contextual embedding that proved
to be successful for many NLP tasks. In addition,
we take the chance to compare the performance of
these two models on imbalanced data.

The classifiers used in the experiments are con-
structed by adding one linear layer on top of the
base version of BERT and RoBERTa. So in the rest
of this paper, we will be using BERT and RoBERTa
as shortcuts to indicate the classifiers based on
them. While this is a very straightforward way to
turn these into classifiers, due to the inherent limi-
tation of the language model, they can only handle
a limited input of up to 512 tokens at a time. One
way to address this issue, which was introduced in
(Sun et al., 2019), is to select a representative set
of tokens from the document that results in the best
quality for the classifier. One of our intentions is
to use and extend this work for imbalanced data.
Another approach is to get a proper document rep-
resentation by dividing the text into equally-sized
chunks then using word-level encoder and pooling
followed by chunk-level encoder and pooling as
illustrated in (Su et al., 2021).

2.2 Handling Class Imbalance

Class imbalance is a feature that characterizes many
labeled datasets. This imbalance has a direct ef-
fect on the classifier so many techniques have been
proposed to deal with it. These techniques fall un-
der two categories: re-sampling and cost-sensitive
learning (Iikura et al., 2020).

Re-sampling methods try to address the problem
by duplicating samples of minority classes, remov-
ing samples of majority classes or generating new
samples of minority classes. These methods have
been used successfully for text classification e.g.,
(Estabrooks et al., 2004)(Tepper et al., 2020). But
the removal and duplication of samples change the
data distribution and can cause the models to over-
fit the minority classes. For this reason, approaches
like in (Chawla et al., 2002)(Guo and Viktor, 2004)
have been introduced to produce synthetic data. In

this work, we will use sample removal and dupli-
cation and leave sample generation for future work
because text generation is out of the scope of this
paper.

Cost-sensitive learning methods approach the
problem by injecting data bias in the cost function
also known as the loss function. The loss function
condenses the whole learning system into a single
number called the loss whose value must be mini-
mized in order to improve the performance of the
model. Cost-sensitive learning tailors the loss in
favor of a particular class(es) by multiplying it by
a weight value. One way to choose that weight is
to use the inverse class frequency like in Balanced
Cross Entropy (BCE) (Phan and Yamamoto, 2020).
Another way is to use the difficulty of the sample as
a weight like in Focal Loss (FL) (Lin et al., 2017).

To the best of our knowledge, a comparison of
the effect of imbalance handling techniques on
BERT- and RoBERTa-based classifiers was not per-
formed. In this work, we investigate empirically
the effect of using re-sampling and cost-sensitive
learning on such classifiers.

3 Methodology

This section describes the data and loss functions
that are used in this study. It starts by explaining
how the data is prepared. Then an overview of the
loss functions is presented.

3.1 Data

The experiments in this paper use the Coleridge
dataset. This dataset consists of a collection of re-
search papers (∼19.6 K) out of which 14.3K papers
are unique and 5.3K papers are duplicated due to
the fact that they have multiple dataset mentions.
Each of these papers is stored in a JSON-file that
wraps each section’s title and content in a JSON
object. In addition to the JSON files, there is a CSV-
file that contains basic metadata (file name, paper
title, dataset title, dataset label, cleaned dataset
label) about each paper. To prepare the data for
our experiments, it was processed as follows: scan
through the sections of each paper to extract the
title and text. Then a binary label is generated for
every section. This label contains (1) if a dataset
associated with the paper is mentioned in the sec-
tion either using its title or its label, otherwise it
contains (0). The final dataset that we got con-
tains approximately 233K samples. Each sample
consists of the following pieces of information:



(file name, paper name, section title, section text,
dataset mention, label). The sections are consid-
ered documents whose contents and titles are used
in the experiments. Using sections as our basic
text units is a compromise between using all of
the paper, which would be trivial, and sentence
level, which often does not have enough informa-
tion to make the decision and introduce even more
bias. Sections can be easily identified, even when
they are not part of the metadata of the publication
(Mathiak et al., 2009).

Before we run experiments on this dataset, we
divided it randomly into two parts: train and test
set. The test set accounts for 20% of the dataset
(∼ 47K samples) and is used to test the classifier
after training is complete. This testing set is the
same for all experiments. The remaining 80% (∼
187K samples) is kept for training and validation
sets. During training, 80% of this data is selected
randomly to be used for training and the remaining
are used for validation. Since the splitting is done
randomly, different sections from the same paper
could appear in train, val and test sets. In all oper-
ations involving randomization, a seed is used to
ensure reproducibility.

Inspecting the data, we have found that among
the existing 233297 samples only 27856 samples
contain dataset mentions i.e., they belong to the P
class. We also have found that the majority of the
sections (∼200K) contain long text. In summary,
only 12% of the samples in the data belong to the P
class. Besides that 85% of the samples contain long
text that will represent a challenge to the models
used in this work.

3.2 Loss Functions

Focal Loss (FL) was introduced in (Lin et al., 2017)
to handle the bias of the object detection problem
in computer vision. In this study, we apply it to
a binary text classification along with three other
functions, which are also variations of cross en-
tropy (Murphy, 2012). They can be generalized in
one formula, Eq.1, from which different loss func-
tions can be derived by assigning different values
to the parameters.

BFL(pt) = −αt(1− pt)γ log(pt) (1)

Equation 1 can be split into three components.
The main component is the binary cross entropy
−log(pt) where pt holds either the model’s esti-
mated probability (p ∈ [0, 1]) for class P or its

complement (1 − p) for class N. Another part is
the balancing factor αt which, when it is activated,
takes a different positive non-zero value for each
class to reflect its weight. But αt could be deacti-
vated by giving it the same value for all classes. In
the context of this paper, we will write αt = (x, y)
to indicate that x is the weight for class N and y
is the weight for class P. Since we have only two
classes, we will set αt = (1, 1) when the class’s
weight is not considered. Otherwise, αt will be
assigned values that can be chosen by the user or
set by some criteria like the inverse class frequency
(Phan and Yamamoto, 2020). The third part is the
modulating factor (1− pt)γ where γ >= 0 is the
focusing parameter. This modulating factor adjusts
the contribution of the sample in the loss based
on its difficulty. For difficult samples about which
the classifier is not certain, pt will have low values
which will increase the modulating factor resulting
in more contribution of these samples in the loss.
While for easy samples, pt will have high values
and the modulating factor approaches zero thus re-
ducing the contribution of these samples in the loss.
Now let us derive the loss functions.

Cross entropy is used as the loss function in
the BERT- and Roberta-based classifiers. It takes
neither the class’s weight nor the samples’ difficulty
into account. It can be derived from Eq.1 by setting
αt = (1, 1) and γ= 0. Balanced cross entropy
considers the class imbalance but not the difficulty
of the samples. To derive it from Eq.1, we set γ = 0
and αt could take different values. We will use the
classes’ percentages in the data αt = (0.12, 0.88)
beside other values in the experiments (cf. section
4.4). Focal loss pays attention to the difficulty of
the sample (γ > 0) but not on the weight of the
classes (αt = (1, 1)). Finally Balanced Focal Loss
(BFL) brings everything together so αi > 0 for
i = 0, 1 and γ > 0.

4 Results

In this section, we start by describing the experi-
mental settings. After that, the results of different
experiments are presented.

Our goal is to find the best model for selecting
texts with dataset mentions. The major challenges
in this are the length of the texts and the inherent
imbalance in the data (cf. section 3.1). We start by
experimenting with the section contents to find the
text features that give the best results. Then we use
these features to select the best sampling rates and



loss function settings. After that, we combine all of
these results together. Additionally, we experiment
with the section titles using different configurations.
Finally, we try to improve the results by changing
the validation metric.

4.1 Experimental settings
All experiments were implemented in Pytorch and
ran on a 4-GPU machine with a GeForce RTX 2080
Ti with 11 GB RAM each. The classifiers were
trained for 4 epochs using the AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate
of 2x10-5 to overcome the catastrophic forgetting
problem following the recommendation of (Sun
et al., 2019). Each epoch consists of one full scan
of the training set to compute the loss followed by
one pass through the validation set then the accu-
racy is used as the validation metric to measure
the classifier progress. Different loss functions de-
scribed in section 3.2 will be used. To make full use
of GPU memory, the batch size was chosen to be
32 for experiments conducted on section contents
and 256 for the ones on section titles (cf. section
4.6). We have made use of the same seed for all
operations that involve randomization to make the
experiments repeatable. In some experiments, we
do diverge from these settings by changing the val-
idation metric which will be clearly stated in the
corresponding section.

To make sure that our results are reliable, we
adopt the following strategy. We start by running
a set of initial experiments to help us find settings
that produce the best results. If these settings were
in line with results obtained from previous research
we use them; otherwise, we run experiments using
5-fold cross-validation to verify our results and use
settings that produce the best average result on the
test set. In all experiments, we use the test data to
report the values of precision, recall and F1-score
for both the P and N classes. We also report the
accuracy (ACC) and Matthew Correlation Coeffi-
cient (MCC) metrics. Since the model is intended
to filter samples of the P class, we are mainly in-
terested in improving the P-recall. So we will be
comparing models based on their P-recall but in
case of a tie, other metrics will be used.

4.2 Feature Selection
In this subsection, we investigate which of the text’s
features serve our goal the best. Particularly, we
are interested in token selection, as we try to keep
within the 510 token limit imposed by BERT.

The sections content are used as input for the
classifier. In this context, every section is consid-
ered a document by itself (cf. section 3.1). BERT
accepts a maximum input of 512 tokens (cf. sec-
tion 2.1), yet most sections are longer than this (cf.
section 3.1). We also know that the choice of in-
put tokens for BERT has an impact on the quality
of the classifier (Sun et al., 2019). As such, we
want to find out which part of the text achieves the
best classification results. Working on balanced
data, it was found in (Sun et al., 2019) that pick-
ing three-quarters of BERT’s input tokens from the
beginning of the document and one-quarter from
the end of the document results in the best clas-
sification outcome. Since our data is imbalanced,
we want to examine whether that imbalance has
an impact on the choice of the tokens. To do so,
we run several experiments using different parts of
the sections. The results reported in Table 1 show
that the tokens (F 382+L 128) produced the best
result (P-recall = 0.79 and MCC = 0.835) for this
dataset. This complies with the result obtained in
(Sun et al., 2019) which implies that the imbalance
nature of the data has no impact on the choice of
the input tokens for the task at hand. Based on that,
we consider BERT with these input settings as our
base model. The experiments to follow will use
and build upon these settings.

4.3 Handling Imbalance by Under- and
Oversampling

As mentioned in the data description, most of the
text does not contain dataset mentions and only
12% of the sections belong to the P class. One way
to overcome this imbalance is to use re-sampling.
Here we will over-sample the P samples, downsam-
ple the N ones and combine the two together to find
the sampling ratio that gives the best result. Build-
ing on the results from the previous experiments,
we have used F 382+ L 128 tokens of sections texts
as input to BERT. We have run several experiments
with different re-sampling settings to find that the
best re-sampling factor for the dataset at hand is
(4:0.55) which is to quadruple the P samples and
take more than half of the N samples. The cor-
responding approximated ratio for this sampling
factor obtained by dividing the number of positive
samples by the number of negative samples is (1)
indicating that the numbers of P and N samples are
roughly the same. Putting it differently, the model
works best when the dataset is balanced. To get a



Tokens Precision Recall F1-Score ACC MCC
N P N P N P

F 510 0.97 0.92 0.99 0.78 0.98 0.84 0.97 0.827
L 510 0.97 0.92 0.99 0.74 0.98 0.82 0.96 0.808
F 255 + L 255 0.97 0.92 0.99 0.79 0.98 0.85 0.97 0.834
F 128 + L 382 0.97 0.92 0.99 0.79 0.98 0.85 0.97 0.834
F 382 + L 128 0.98 0.93 0.99 0.79 0.98 0.85 0.97 0.835

Table 1: Feature Selection for Classifying Section Excerpts with BERT. In the “Tokens” column, F stands for First
and L for Last. F 510 means the first 510 tokens. L 510 means the last 510 tokens.

reliable result, we ran an experiment using 5-fold
cross-validation using a BERT-based classifier and
reported the average testing result in Table 2. Al-
though the accuracy is 95%, the P-recall is only
83%. This is the highest P-recall value that could
be obtained using re-sampling as a technique to
surpass the imbalance problem.

4.4 Imbalance Handling with Loss Functions

Loss-sensitive learning is another known technique
to handle Imbalance. Experiments ran so far used
cross entropy to compute the loss. Here we ran
several experiments with different loss functions
via changing the values of αt, γ in Eq. 1 as ex-
plained in section 3.2. The goal is to find the best
loss function settings for our task. To achieve this
goal, we experiment not only with BERT but also
with RoBERTa. Because, unlike text features and
sampling factor which are data-related issues, the
loss function is part of the model so we want to
compare its effect on the two models.

From the initial experiments in which differ-
ent values for αt and γ were utilized, we found
that when using the focal loss i.e., (αt = (1,1) and
γ = 2), RoBERTa outperformed BERT with re-
spect to P-recall. Moreover, with balanced cross
entropy (αt = (.12, .88) and γ = 0) both models
produce similar accuracy and P-recall. The best
results for both models were obtained when BFL
(αt = (.12,.88), γ=4) is used, with BFL the P-recall
value was 77% and 78% for BERT and RoBERTa
respectively. Using higher values for γ i.e., γ > 4,
the P-recall started to decline for both models. We
also tried to improve RoBERTa results using differ-
ent values for αt but we were not able to get better
results. To make sure that the best results that we
obtained using BFL (αt = (.12,.88), γ=4) are stable
and not due to some randomness, We ran an experi-
ment using 5-fold cross-validation and reported the
average of the results obtained on the testing data

in Table 3. These results show that RoBERTa is
outperforming BERT with 1% increase in P-recall.
The next step is to combine the best settings found
so far in one experiment.

4.5 Combining Best Settings

In previous experiments, we have seen the effect
of using re-sampling and BFL individually. In this
subsection, we will combine all the results that we
obtained so far. That is to use 382 tokens from
the beginning of the section and 128 tokens from
the end as the model’s input. Furthermore use the
sampling factor (4:0.55) that balanced the dataset
i.e., ratio=1. In addition, use balanced focal loss
with αt = (.12, .88) and γ = 4. We have run an
experiment using 5-fold cross-validation for both
BERT and RoBERTa with these settings reported
the average of all metrics in Table 4. The results for
RoBERTa and BERT are competitive in general but
RoBERTa achieved 3% increase in P-recall over
BERT with these settings.

4.6 Classifying Using Section Titles

Working on the training data, we have noticed that
there is a tendency among researchers to mention
datasets under sections with specific titles such
as Introduction, Methodology, Discussion, Data,
Datasets, Results, and Experiments among others.
Based on that, we had the hypothesis that we can
depend on the section titles to decide whether a
section contains dataset mentions or not. To test
this hypothesis, we experimented using four config-
urations (data as is, data with sampling, BFL, BFL
with sampling) on both models. The best P-recall
(68%) was obtained by RoBERTa when using BFL
with sampling. But lower values of other measures
such as P-precision = 0.22 and MCC=0.244 indi-
cate that using the titles with these configurations to
do the classification task at hand is not promising.



Precision Recall F1-Score ACC MCC
N P N P N P

0.98 0.80 0.97 0.83 0.97 0.81 0.95 0.789

Table 2: Average Testing Results using BERT when Data is Balanced using Re-sampling

Model Precision Recall F1-Score ACC MCC
N P N P N P

BERT 0.97 0.93 0.99 0.76 0.98 0.84 0.97 0.821
RoBERTa 0.97 0.93 0.99 0.77 0.98 0.85 0.97 0.830

Table 3: Average Testing Results Using Balanced Focal Loss with αt = (.12, .88) and γ = 4

4.7 Experimenting With Validation Metrics

So far the best-known imbalance handling tech-
niques were used individually and combined but
we were not able to achieve a P-recall above 83%.
Here we will add a new idea: that is to select the
validation metric used on the validation set to be
in line with our goal. Since our goal is to have
a classifier that is able to find the overwhelming
majority of the P samples, recall represents an ex-
act match for this goal so we will use it as the
validation metric. We ran an experiment using
5-fold cross-validation for each model on both sec-
tion contents and titles. The average results of the
experiments are documented in Table 5. Again,
RoBERTa outperformed BERT on sections content
with a P-recall of 85%. In other words, using recall
as a validation metric resulted in 2% improvement
on RoBERTa’s P-recall reported in Table 4. Sim-
ilarly, for the experiment that used the titles, the
best P-recall obtained by RoBERTa was 70% which
means a 2% improvement compared to the result
from section 4.6.

To further improve the results, we have weighted
the recall three times more than precision by using
F-Beta score as the validation metric. With this,
we ran the experiments and reported the results in
Table 6. This modification improved the P-recall
for RoBERTa on sections content by 1% with 5%
decrease on P-precision compared to Table 5. So
RoBERTa-based classifier on the sections content
with Fbeta is the final result of this paper.

5 Discussion

The re-sampling experiments in section 4.3 show
that there are limits for oversampling the P-samples
and under-sampling the N-samples after which
the performance of the classifier starts to decline.
These limits correspond to having the same num-

ber of P- and N-samples i.e., achieving perfect bal-
ance, which is the expected outcome. The average
classifier performance obtained when re-sampling
balances the dataset is 83% P-recall and 80% P-
precision see Table 2. This is better than the orig-
inal results (79% P-recall) see table 1, but also
encourages us to find even better ways to address
the issue.

The experiments with loss functions in section
4.4 show that loss functions have more effect on
RoBERTa than on BERT. As a side effect, we
find that RoBERTa is better than BERT when deal-
ing with imbalanced data. Nevertheless, using re-
sampling with BERT produced better P-recall com-
pared to using BFL with both BERT and RoBERTa.
So we can conclude that re-sampling is actually
more effective than using BFL in this particular use
case. However, as seen in the experiments in sec-
tion 4.5 combining BFL and re-sampling together
improves the overall performance. RoBERTa out-
performed BERT with 3% increase on P-recall
see Table 4. That means when dealing with bal-
anced data, the impact of the used loss function on
RoBERTa is more than on BERT.

Starting from section 4.6, the experiments in-
volved section titles to do the classification task.
In these experiments, RoBERTa produced better
P-recall than BERT. But the best P-recall value
obtained was 70% is 16% lower than P-recall ob-
tained on section contents. This is not surprising
due to the lower amount of linguistic knowledge
contained in the section titles compared to the sec-
tion contents. This is in contrast to the findings in
(Galke et al., 2017), where they have very promis-
ing results with only the titles, but also a very dif-
ferent classification task not related to dataset men-
tions. In section 4.7, the experimental results show
that changing the validation metric has a good im-
pact on the results of both models. When weighing



Model Precision Recall F1-Score ACC MCC
N P N P N P

BERT 0.97 0.81 0.97 0.8 0.97 0.80 0.95 0.779
RoBERTa 0.98 0.75 0.96 0.83 0.97 0.78 0.95 0.757

Table 4: Average Testing results using a combination of re-sampling and Balanced Focal Loss.

Setting Model Precision Recall F1-Score ACC MCC
N P N P N P

BFL BERT 0.97 0.90 0.99 0.77 0.98 0.83 0.96 0.815
RoBERTa 0.97 0.91 0.99 0.78 0.98 0.84 0.97 0.820

BFL+S+C BERT 0.97 0.75 0.96 0.82 0.97 0.78 0.94 0.749
RoBERTa 0.98 0.68 0.94 0.85 0.96 0.75 0.93 0.721

BFL+S+T BERT 0.94 0.22 0.70 0.68 0.80 0.34 0.70 0.252
RoBERTa 0.94 0.21 0.66 0.70 0.78 0.32 0.66 0.232

Table 5: Average Testing Results Using Re-sampling and Balanced Focal Loss with Recall as Validation Metric.
BFL stands for Balanced Focal Loss, C for Content, T for Titles, and S for Sampling.

Setting Model Precision Recall F1-Score ACC MCC
N P N P N P

BFL+ S + C BERT 0.98 0.73 0.96 0.81 0.97 0.77 0.94 0.741
RoBERTa 0.98 0.63 0.93 0.86 0.95 0.72 0.92 0.692

BFL+ S + T BERT 0.94 0.23 0.70 0.67 0.81 0.34 0.70 0.255
RoBERTa 0.94 0.23 0.72 0.63 0.81 0.33 0.71 0.238

Table 6: Average Testing Results Using a Combination of Best Settings with F-beta as Validation Metric

the recall three times more than the precision using
the F-beta score, we were able to obtain a classi-
fier with 86% P-recall and 63% P-precision using
RoBERTa. In other words, using such a filter will
reduce the annotation time by more than 50% at
the price of losing 14% of the positive samples.

We went further to investigate why the model
was not able to pick the 14% P-samples by looking
at some false negative cases which have dataset
mentions but the model classified them as not hav-
ing. We have found that the model has difficulty
when the dataset is mentioned indirectly like in
”...Empirically, Schwellnus and Arnold ( 2008 )
uses data from OECD’s firms to show that increases
in corporate taxes negatively impact firms...”. Here
the source of the data is used but the actual name of
the dataset is not used. In another case, the distance
between the name of the dataset and the word that
refers to it was quite long like in ”...Studies that
have collected longitudinal data tend to be based
on relatively small samples, whereas the E CL S - B
provided a large, nationally representative sample
a...”. Finally, we noticed that the dataset acronyms
represent a challenge for the tokenizer.

6 Conclusion and Future Work

The re-sampling experiments in section 4.3 show
that the models work best when the data is bal-
anced. The experiments with loss functions in
section 4.4 show that, with language models, us-
ing re-sampling to handle imbalance is more ef-
fective than using loss functions. In general,
RoBERTa kept outperforming BERT when using
imbalance handling techniques. The set-up with
which RoBERTa classifier reached the highest P-
recall (86%) was to use a balanced dataset of sec-
tion contents with a proper loss function and a
validation metric that is compatible with the task’s
goal. Particularly, we used F-beta as the validation
metric with recall weighted three times more than
precision. We are planning to test this filtering al-
gorithm with real-life annotators next. The idea is
to provide them with candidates for extracts from
full-text publications that allow them to efficiently
find dataset mentions and annotate them. In the
long run, we are interested in not only the dataset
mentions themselves but also to enrich the men-
tions with additional metadata, such as direct links
to the datasets.
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