
Proceedings of the 19th International Conference on Natural Language Processing (ICON), pages 116 - 122
December 15-18, 2022 ©2022 Association for Computational Linguistics

Reducing Inference Time of Biomedical NER Tasks using Multi-Task
Learning

Mukund Chaudhry1 Arman Kazmi1 Akhilesh Verma1 Vishal Samal 1

Shashank Jatav1 Kristopher Paul1 Ashutosh Modi2

Elucidata Inc., New Delhi1 IIT Kanpur2

ashutoshm@cse.iitk.ac.in2

{mukund.chaudhry, arman.kazmi, akhilesh.verma, vishal.samal,
shashank.jatav, kristopher.paul } @elucidata.io1

Abstract

Recently, fine-tuned transformer-based models
(e.g., PubMedBERT, BioBERT) have shown
the state-of-the-art performance of several
BioNLP tasks, such as Named Entity Recogni-
tion (NER). However, transformer-based mod-
els are complex, have millions of parameters,
and are relatively slow during inference. In this
paper, we address the time complexity limita-
tions of the BioNLP transformer models. In
particular, we propose a Multi-Task Learning
based framework for jointly learning three dif-
ferent biomedical NER tasks. Our experiments
show a reduction in inference time by a fac-
tor of three without any reduction in prediction
accuracy.

1 Introduction

Transformer-based large language models (LLMs)
have made it much easier to perform various NLP
tasks with high accuracy. However, due to their
large size, they take a lot of time and money
to perform inference on large datasets. To give
some perspective, one forward pass through Pub-
MedBERT (Gu et al., 2020) takes 8-50ms on an
AWS g4dn.xlarge instance 1 (which comes with an
NVIDIA T4 GPU). Running one PubMedBERT
model on 1 million biomedical paragraphs would
take roughly 9 hours. Given the deluge of biolog-
ical information daily, using fine-tuned PubMed-
BERT models for each biomedical NER task sepa-
rately would be too time-consuming and expensive.

When it comes to deep learning models, there
are generally two variables that are optimized be-
fore deployment. These are size (the space occu-
pied by the model’s weight on disk and RAM) and
inference time (the time taken for one prediction).

Model size tends to matter more when deployed
on edge devices and mobile phones since these de-
vices have storage and RAM constraints. Several
techniques, such as knowledge distillation, have

1https://aws.amazon.com/ec2/instance-types/g4/

been proposed to address this issue, and some of
the prominent models which have achieved a sig-
nificant decrease in model size without much de-
crease in accuracy are DistilBERT (Sanh et al.,
2019), SqueezeBERT (Iandola et al., 2020), and
MobileBERT (Sun et al., 2020). However, size is
usually not an issue for models running on servers.
For example, a PubMedBERT model has a size of
only 400 MB. Instead, the main concern is infer-
ence time, which is what we focus on in this paper.
Generally, a reduction in the model size naturally
leads to a reduction in the inference time. However,
in this work, we focus on reducing the inference
time without reducing the model size.

Multi-Task Learning (MTL) primarily aims to
improve the accuracy of multiple prediction tasks
that are related to each other by leveraging com-
monly useful information. Many of the previous
works have shown the effectiveness of multi-task
learning-based models for BioNer tasks. The first
work to apply MTL for biomedical named entities
was attempted by Crichton et al. (2017). They used
pre-trained word embeddings with CNN-based neu-
ral networks to extract named entities from biomed-
ical texts. Wang et al. (2018) used a combination
of BiLSTM and CRF-based model, adapted from
Liu et al. (2018), to extract the entities and further
used character and word-based embeddings that
were shared by different datasets. A slightly dif-
ferent approach was proposed by Zuo and Zhang
(2020), where they trained a dataset-aware MTL
model and showed that their model was able to
discriminatively exploit information from all of the
related training datasets.

The recent developments of large language mod-
els, such as BERT (Devlin et al., 2018), have
demonstrated the effectiveness of better contex-
tualized representation of various NLP tasks. Lee
et al. (2019) developed BioBERT using the BERT
language model and pre-trained it on biomedical
abstracts and papers. They achieved state-of-the-art
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results on several biomedical named entity recog-
nition datasets. Khan et al. (2020) and Mehmood
et al. (2019) incorporated MTL in BERT-based
models and showed promising results to extract
biomedical named entities.

Although the previous works have shown the
importance of multi-task learning when incorpo-
rated with either neural network-based models or
transformer-based models, none of them have tar-
geted optimizing these large models. While de-
ploying these models for prediction, inference time
matters; hence, it is equally important to develop
models that reduce the inference time without any
significant drop in performance. To this end, we
develop a multi-task learning model for three differ-
ent entities (cell-line, tissue, and strain) and show
that we can reduce the inference time by a factor of
3 without any drop in performance when compared
with a single-task model for each entity.

Our main contributions are as follows:

• We fine-tune a multi-task PubMedBERT
model, demonstrating a significant reduction
in inference time.

• We compare the performance of our multi-
task model with that of a single-task model
and show that there is no significant drop in F1
scores. Further, we built a multi-class token
classification model on our corpus and found
that it performs the worst which shows the
effectiveness of using a multi-task learning
model.

• We release 2 a new gold-standard corpus man-
ually tagged with cell-line, tissue and strain
type entity, on which we report our results
of the experiments performed. This dataset
is the first of its kind that contains manual
annotation of tissue and strain entities.

The rest of the paper is organized as follows. We
provide the details of the dataset in section 2. The
experiments, results and their analysis are shown in
section 3 and 4 respectively. Finally, in section 5,
we summarize all the results and provide pointers
for future research.

2 Dataset

For the BioNER task, there are several publicly
available annotated datasets but the most widely

2The dataset and the source code of our experiments can
be found here.

Figure 1: Architecture of the MTL model

Entity
type #Docs #Words #Mentions #Unique

Mentions

#Docs w/ at
least one
mention

strain 3560 234121 3476 574 2049
tissue 2607 430455 1804 338 961
cell-line 3059 532805 1541 483 677

Table 1: Summary statistics of the corpus (includes both
the training and the test set.)

used datasets for benchmarking are JNLPBA (Col-
lier and Kim, 2004; Huang et al., 2020), NCBI-
Disease (Dogan et al., 2014), BC5CDR, (Li et al.,
2016) BC2GM (Smith et al., 2008), and LIN-
NEAUS (Gerner et al., 2010). These datasets cover
mostly cell line, cell type, chemical, disease, gene,
protein, and species type entities, and most of them
rely on PubMed articles as a source. One of the
significant concerns regarding most of the BioNER
datasets is the data quality, which is not only lim-
ited to the biomedical domain. Li et al. (2022)
mentioned annotation quality as one of the major
challenges in the field of NER. An updated ver-
sion of the 2004 JNLPBA challenge was released
in 2019 to address the flaws in the original corpus
(Collier and Kim, 2004; Huang et al., 2020). An-
other issue is the source and the entity type, which
is generally targeted in these datasets. These bench-
mark datasets lack entities such as tissue and strain
that can help create meaningful cohorts across ex-
periments. This information can be used to control
the genetic variability in datasets.

To address the issues mentioned above, we cre-
ated a gold-standard corpus manually annotated
with cell-line, strain, and tissue on abstracts ex-
tracted from the Gene Expression Omnibus (GEO)
(Edgar et al., 2002) database. It is a public repos-
itory established by National Center for Biotech-
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Entity STL MTL Frozen1 Frozen2 Multi-class
Cell line 0.85 0.86 0.70 0.86 0.62
Tissue 0.71 0.71 0.52 0.01 0.46
Strain 0.88 0.87 0.63 0.61 -

Table 2: F1 scores of different models on each entity
type.

nology Information (NCBI) for high-throughput
gene expression data generated mainly through mi-
croarray technology. Several other data applica-
tions, such as those that look at genome methyla-
tion, chromatin structure, and genome-protein in-
teractions, are now supported by GEO, which has
developed along with the quickly changing techno-
logical landscape (Clough and Barrett, 2016).

The corpus was manually annotated by the do-
main experts, and the annotation guidelines fol-
lowed can be found in Appendix A. The corpus
consists of 9226 English paragraphs, and the num-
ber of mentions of strain (3476) is more than cell
line (1541) and tissue (1804). Despite the less num-
ber of total mentions of cell line, the number of
unique mentions of cell line (483) is far greater
than the number of unique mentions of tissue (338).
In the data, wherever the strain entity is tagged, the
cell line and tissue are not found, and vice-versa.
This is due to the nature of the abstracts (extracted
from GEO) where we find either the texts contained
mention of cell line, tissue, strain or both cell line
and tissue in the same text. This makes the corpus
unique and more reasonable to perform a multi-task
learning model instead of building a multi-class to-
ken classification model. Table 1 provides more
details of the corpus.

3 Experiments

In this section, we describe our experiments in
detail about the model architecture, the training
procedures, and the evaluation metrics followed.

3.1 MTL Model

Figure 1 shows the MTL architecture deployed in
our work. The shared model follows the standard
BERT architecture (Devlin et al., 2018) where the
task heads consist of two linear layers. The first
layer has a shape of 768 x 768, whose outputs are
passed through the ReLU activation function and
then fed into the second linear layer with a shape
of 768 x 3. This layer acts as the token classifier,
where each token is assigned one of three classes
following the BIO tagging scheme.

3.1.1 Training and Evaluation Metrics
The training and testing split was 70:30. The
shared model was initialized with PubMedBERT
(Gu et al., 2020) weights, and the task heads were
randomly initialized. We then fine-tuned the model
for eight epochs at a learning rate of 2e-5 and a
batch size of 20. Each batch consisted of exam-
ples from the three individual entities mentioned
in different paragraphs. Each of the examples in
the batch contributed to the loss of the task head
for that particular example and to the shared BERT
model.

To evaluate the model’s performance, we con-
sider each predicted entity as correct only if both
the entity boundary and entity types are the same
as the ground-truth annotation (i.e., exact match).
We then calculate F1 scores for each entity type
and report the results.

3.1.2 Controlling other factors
Different factors can affect BERT’s inference time,
such as batch size, sequence length, choice of deep-
learning framework, and hardware. We used a
batch size of 1 in all of our experiments, and to con-
trol the sequence length, we fixed the corpus that
was used to test different model variants, ensuring it
resembled production workloads. Regarding hard-
ware, we used an AWS g4dn.xlarge 3 instance as
our GPU machine and a laptop with Intel i5-7300U
as our CPU machine. For all the experiments, we
used Pytorch, 4.

3.2 Single Task Learning (STL) & Multi-class
Token Classification Model

To compare the results of our multi-task learning
model, we fine-tuned three different individual Pub-
MedBERT models for cell line, tissue, and strain
type entities. We refer to these models as single-
task learning models as they are fine-tuned for each
individual entity.

In general, for NER tasks, a multi-class token
classification model is preferable. While in the case
of biomedical text, all entities might not be men-
tioned in the same text; for example, in our case,
the corpus did not have strain entity wherever there
was mention of tissue and cell line entities. How-
ever, since tissue and cell line annotations were
done together, it was possible to compare the re-
sults with that of the multi-task model. So, we

3https://aws.amazon.com/ec2/instance-types/g4/
4https://pytorch.org/
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Model Inference time
(CPU)

Inference time
(GPU)

Single-task
(tissue + cell line + strain)

430± 16 ms 31± 1 ms

Multi-task 150± 6 ms 11± 1 ms

Table 3: The inference time per input (avg) of the MTL
model compared to the single-task models run sequen-
tially.

fine-tuned a multi-class token classification model
combining the tissue and cell line paragraphs for
eight epochs with a learning rate of 2e-5 and batch
size of 16.

4 Results and Analysis

The results of our experiments are displayed in Ta-
ble 2. The single-task learning model (STL) or the
PubMedBERT model fine-tuned for three individ-
ual entities achieves an F1 score of 0.85, 0.71, and
0.88 for cell line, tissue, and strain, respectively.
The third column shows the results of our MTL
model fine-tuned jointly on the three tasks, and the
F1 scores are 0.86, 0.71, and 0.87 for cell line, tis-
sue, and strain, respectively which shows that there
is no significant change in F1 score when compared
to the single task model results. The MTL model
for the cell line entity gives a better F1 score of
0.86 than the single-task learning model for the
cell line. This shows that the MTL model is able to
learn the mentions of cell line better than the other
entities.

The results of the multi-class token classification
model built over the paragraphs containing only
cell line and tissue are 0.62 and 0.46, respectively.
Since our data is unique in terms of the entities
annotated and their mentions in the paragraphs,
deploying a multi-class token classification model
to learn the properties of the entities in the text
is not a good choice in our case as it gives poor
results.

It might be possible that the underlying Pub-
MedBERT model learns the same features while
fine-tuning for different NER tasks; hence, the
MTL model is performing well. To rule out this
possibility, we fine-tune the models after freezing
the encoder layers of the PubMedBERT model.
The fourth and fifth columns of Table 2 show the
F1 scores when only the last layer with the task-
specific head is trained during the fine-tuning pro-
cess, and the underlying PubMedBERT layers are
frozen. The Frozen1 model is initiated with the pre-
trained PubMedBERT weights, and the Frozen2

model is initiated with the model’s weights fine-
tuned only on the cell line NER task. The F1 scores
for the Frozen1 and Frozen2 models are quite poor,
which clearly implies that jointly fine-tuning the
MTL model on multiple NER tasks learns new
features and performs better. The Frozen2 model
achieves a good F1 score for the cell line because
the underlying frozen model was fine-tuned for the
same field.

4.1 3x reduction in inference time
Our primary finding is that an MTL model de-
scribed above jointly trained on three different NER
tasks gives the same model performance when com-
pared to that of a PubMedBERT model fine-tuned
separately for three tasks. Table 3 shows the aver-
age inference time taken by the MTL model and the
single-task model when run sequentially. The MTL
model takes around 11 ms on GPU and 150 ms on
CPU, which is roughly three times less than the
time taken by the single-task model. This shows
the primary benefit of joint MTL training, which
leads to a considerable reduction in inference time
and cost and is crucial for practical applications.
Instead of doing a forward pass through 3 sepa-
rate BERT models to tag a paragraph of text, we
only have to do it for one BERT model. The task
heads themselves have a negligible contribution to
inference time.

4.2 Low prediction accuracy for tissue
As seen in Table 2, the F1 scores for tissue field is
much lower than that of cell line and strain. Even
the single-task learning model fine-tuned for tissue
entity gives an F1 score of 0.71 only. There might
be two possible reasons for the poor performance.
Firstly, cell line and strain names have a very dif-
ferent sub-word structure as compared to the tissue
names and thus are significantly easier to detect.
Secondly, detecting tissue names requires a deeper
understanding of the surrounding context in which
it occurs. For example, ‘blood’ can be a tissue, but
it can also occur in a different context where it is
not a tissue.

In order to see if we can improve the predic-
tion accuracy for the tissue field, we fine-tuned an
MTL model with two tasks. One was the actual
NER task, and another was an auxiliary classifica-
tion task that predicted whether an input paragraph
had any tissue tag present or not. We tried several
combinations of the learning rate, batch size, and
weightage of the two tasks in the final loss func-
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tion, but the best F1 score achieved was still 0.71,
as reported in Table 2.

5 Conclusion and Future Work

In this study, we demonstrated how multi-task
learning may be used to speed up model inference
for complementary tasks that must be performed
simultaneously on the same input. In particular,
we compared our multi-task model to a single-task
model and demonstrated that while the multi-task
learning model’s performance remained constant,
the inference time was reduced by three. Moreover,
for our experiments, we created a gold-standard
corpus, manually tagged with cell-line, tissue and
strain. This corpus is the first of its kind where
three different entities are manually curated by do-
main experts.

When compared to the other entity types, the
models’ performance in identifying tissue names
was incredibly poor, demonstrating how challeng-
ing it is to extract accurate tissue names from the
text in the right context. For tissue NER, we must
either discover a more suitable auxiliary task or de-
velop some rule-based methods that will enhance
the entity’s overall performance. To increase the
accuracy of tissue, we intend to carry out these ac-
tions in the future. Investigating the MTL model
for inference time on benchmark datasets would be
another interesting project.
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Appendix

A Manual Curation Guidelines

For annotating the corpus, two curators were recruited, and both had a biological background. The
paragraphs were extracted based on the dataset ids from the GEO database and were exported to the
Labelstudio 5 tool for annotations. Each dataset was assigned to the two curators for double-blinded
curation where the curators curate the datasets assigned to them independently. The similarities were
assessed for every dataset curated by two curators independently and in the case of dissimilarity, the
dataset was passed to an expert curator for final annotations. Apart from this, about 10% of datasets were
randomly picked for quality checks even if there was no dissimilarity.

The curation for tissue and cell line was done together and the ontology followed for tissue and cell
line were the BRENDA Tissue Ontology (BTO) 6 and Cellosaurus (CVCL)7 respectively. In the case of
annotating strain entity, the strain of mouse and rats used during the experimental process was annotated.
To find out the attribute of each mouse and rat provided in the experimental design of the dataset ids, the
curators referred to Mouse Genome Informatics (MGI) 8 for the strain information.

B Dataset creation for Multi-class sequence model

Dataset for multi-class token classification model includes paragraphs with tag for cell-line (928), tissue
(1347), cell-line & tissue (102), none (2557) which was split in 70:30 ratio for training and testing in
stratified way.

5https://labelstud.io/
6https://www.ebi.ac.uk/ols/ontologies/bto
7https://www.cellosaurus.org/
8http://www.informatics.jax.org/home/strain
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