
Proceedings of the 19th International Conference on Natural Language Processing (ICON), pages 212 - 223
December 15-18, 2022 ©2022 Association for Computational Linguistics

Efficient Joint Learning for Clinical Named Entity Recognition and
Relation Extraction Using Fourier Networks: A Use Case in Adverse Drug

Events

Anthony Yazdani, Dimitrios Proios, Hossein Rouhizadeh, Douglas Teodoro
University of Geneva, Faculty of medicine,

Department of radiology and medical informatics, Data science for digital health
firstname.lastname@unige.ch

Abstract
Current approaches for clinical information
extraction are inefficient in terms of compu-
tational costs and memory consumption, hin-
dering their application to process large-scale
electronic health records (EHRs). We propose
an efficient end-to-end model, the Joint-NER-
RE-Fourier (JNRF), to jointly learn the tasks
of named entity recognition and relation ex-
traction for documents of variable length. The
architecture uses positional encoding and uni-
tary batch sizes to process variable length doc-
uments and uses a weight-shared Fourier net-
work layer for low-complexity token mixing.
Finally, we reach the theoretical computational
complexity lower bound for relation extraction
using a selective pooling strategy and distance-
aware attention weights with trainable poly-
nomial distance functions. We evaluated the
JNRF architecture using the 2018 N2C2 ADE
benchmark to jointly extract medication-related
entities and relations in variable-length EHR
summaries. JNRF outperforms rolling window
BERT with selective pooling by 0.42%, while
being twice as fast to train. Compared to state-
of-the-art BiLSTM-CRF architectures on the
N2C2 ADE benchmark, results show that the
proposed approach trains 22 times faster and re-
duces GPU memory consumption by 1.75 folds,
with a reasonable performance tradeoff of 90%,
without the use of external tools, hand-crafted
rules or post-processing. Given the significant
carbon footprint of deep learning models and
the current energy crises, these methods could
support efficient and cleaner information ex-
traction in EHRs and other types of large-scale
document databases.

1 Introduction

Adverse drug events (ADEs) are defined as any
injury resulting from medication use and comprise
the largest category of adverse events (Leape et al.,
1991; Bates et al., 1995). Serious ADEs have been
estimated to cost from $30 to $137 billion in am-
bulatory settings in the US (Johnson and Booman,

1996), and their costs have been doubling since
then (Ernst and Grizzle, 2001). Due to safety con-
cerns, between 21% to 27% of marketed drugs in
the US have received black-box warnings or have
been withdrawn by the Food and Drug Administra-
tion (FDA) within the first 16 years of marketing
(Frank et al., 2014).

Clinical notes stored in electronic health record
(EHRs) systems are a valuable source of informa-
tion for pharmacovigilance (Boland and Tatonetti,
2015). However, only 1% of ADEs recorded in
EHRs are reported to ADE registries, such as the
FDA Adverse Event Reporting System (FAERS),
while coded diagnoses have low sensitivity for
ADEs (Nadkarni, 2010; Classen et al., 2011). Rec-
ognizing medication-related entities in clinical
notes, extracting relations among them, and struc-
turing this information can help identify ADEs in
early stages of the drug marketing process, thus
improving patient safety (Luo et al., 2017).

The state-of-the-art for biomedical named entity
recognition (NER) and relation extraction (RE) is
dominated by bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) or BERT (Devlin et al., 2018)
architectures, combined with a CRF (Lafferty et al.,
2001) layer and often hand-crafted rules (Xu et al.,
2017; Christopoulou et al., 2020; Wei et al., 2020;
Henry et al., 2020; Fang et al., 2021). Despite the
high performance of end-to-end (E2E) NER+RE
models, they have some important limitations im-
posed by the model complexity, e.g., quadratic in
terms of entity types in the CRF layer or in terms
of tokens in the dot-product attention mechanisms
(Sutton et al., 2012; Shen et al., 2021), which hin-
ders their effective application in the biomedical
domain due to its large number of entities and large
size of free text databases.

A particularity of NER and RE for pharmacovig-
ilance is that efficient recall of entities and rela-
tions is of utmost importance, as we would like to
avoid missing a serious ADE. Nevertheless, cur-
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rent approaches tend to automatically discard long
distance (or inter-passage) relations (Yao et al.,
2019; Christopoulou et al., 2020). Moreover, EHR
documents varies significantly in length, contain-
ing from a few hundred tokens for simpler patient
records up to several thousand tokens for more
complex patients (e.g., chronic diseases) (Henry
et al., 2020). Due to their computational complex-
ity, these methods cannot process EHRs in their
integrity without resorting to impractical and/or in-
efficient techniques such as windowing strategies
(Ding et al., 2020; Pappagari et al., 2019; Yang
et al., 2016).

Ongoing research is predominantly performance-
driven, leading to a resurgence of resource-
intensive models, neglecting the carbon footprint
of deep learning models in favor of often marginal
improvement in effectiveness (Wei et al., 2020;
Knafou et al., 2020; Copara et al., 2020; Co-
para Zea et al., 2020; Fang et al., 2021; Naderi
et al., 2021). As a consequence of the technical con-
straints induced by highly complex models, these
methods are currently being associated to a signif-
icant excess on carbon emissions (Gibney, 2022).
The most direct impact of training and deploying a
machine learning model is the emission of green-
house gases due to the increased hardware energy
consumption (Ligozat and Luccioni, 2021). There-
fore, a direct way to reduce the ecological impact
of training and deploying machine learning models
is to reduce the training and inference time, i.e.,
providing the community with low memory and
computational cost models.

To tackle these limitations and issues, we pro-
pose the Joint-NER-RE-Fourier (JNRF) model
with a reduced algorithmic complexity for informa-
tion extraction. We combine positional encoding
with unitary batch size training so that the model
processes automatically variable size EHRs with
consistent performance. We use a Fourier network
to contextualize tokens with fair time and space
complexity, allowing to process long documents
with low-resource hardware and avoid rolling win-
dow strategies. Finally, we reach the theoretical
computational complexity lower bound for rela-
tion extraction using a selective pooling strategy
and distance-aware attention weights with trainable
polynomial distance functions. The main contribu-
tions of this paper are as follows:

• We propose a general, lightweight, and ef-
ficient model to jointly detect clinical en-

tities and multiple relations, while requir-
ing low computational power and memory,
without the use of external tools or hand-
crafted rules. The code is available at
https://github.com/ds4dh/JNRF.

• We show that this model can be applied to
variable length documents, without any archi-
tectural changes. More importantly, it has
robust performance independent of the docu-
ment size.

• To the best of our knowledge, this is the first
effort to model ADE and medication extrac-
tion at the document level. Unlike existing
models in the literature, we demonstrate that
our approach is able to identify inter-passage
relations without the need of window/input
size tuning, post-processing or any further en-
gineering.

2 Related work

The main methods to produce E2E information
extraction systems are the so called pipeline
(Sorokin and Gurevych, 2017; Chapman et al.,
2018; Christopoulou et al., 2020) and joint mod-
eling (Xu et al., 2017; Wei et al., 2020; Bekoulis
et al., 2018; Nguyen and Verspoor, 2019; Luan
et al., 2019; Wadden et al., 2019). The pipeline
method consists of training two independent mod-
ules, one for NER and one for RE. These models
naturally suffer from cascading errors, as the er-
ror signal from one module is not back-propagated
to the other. Joint modeling aims to overcome
this shortcoming by learning a unique model on a
combination of NER and RE losses. Joint model-
ing tends to outperform pipeline methods, consis-
tently achieving state-of-the-art performance (Wei
et al., 2020; Fang et al., 2021; Bekoulis et al., 2018;
Nguyen and Verspoor, 2019; Luan et al., 2019;
Wadden et al., 2019). In addition, joint modeling
techniques have some major advances as they al-
low to train two models at the same time, saving
time and computation, and minimizing engineering
efforts. In both cases, the E2E approach has been
dominated by LSTM-CRF architectures (Xu et al.,
2017; Christopoulou et al., 2020; Wei et al., 2020;
Henry et al., 2020). However, they suffer from two
main limitations: i) the computational complexity
of the CRF layer (Jeong et al., 2009); and ii) the
auto-regressive nature of the LSTM model, which
prevents full parallel training (Xu et al., 2021).
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Figure 1: Computational graph for the proposed JNRF network.

2.1 Joint learning in the general domain

Bekoulis et al. (2018) proposed a joint neural model
using CRFs and a multi-headed selection module
allowing for multiple relation detection. The model
requires the computation of scores on every pair
of input tokens, which consumes O(n2) time and
space. To improve generalisation, their approach
does not rely on external NLP tools, such as part-of-
speech (POS) tagger or dependency parser. More
recently, Nguyen and Verspoor (2019) proposed
a joint BiLSTM-CRF architecture combined with
a biaffine attention mechanism (Dozat and Man-
ning, 2016), improving upon Bekoulis et al. (2018)
in terms of time complexity. Luan et al. (2019)
utilizes dynamic span graphs to learn useful infor-
mation from a broader context. The graph is built
by picking the most confident entity spans and link-
ing them with confidence-weighted relation types
and correlations. The model does not require pre-
processing syntactic tools and significantly outper-
forms the previous approaches across several entity-
related tasks. Lastly, DYGIE++ (Wadden et al.,
2019) enumerates candidate text spans and encodes
them using BERT and task-specific message up-
dates passed over a text span graph to achieve state-
of-the-art performance across entity, relation, and
event extraction tasks.

2.2 Joint learning for medication-related
entity and relation extraction

Most of the medication-related NER and RE stud-
ies are performed using the N2C2 ADE benchmark
(Henry et al., 2020). Wei et al. (2020) proposed a
system consisting of a LSTM-CRF layer for NER
joint learned with a CNN-RNN layer for RE. They

utilized CLAMP (Soysal et al., 2018) for the text
pre-processing pipeline, including sentence bound-
ary detection and POS labeling, and to extract a
set of hand-crafted features to feed the NER mod-
ule. Similarly to approaches for general corpora,
Fang et al. (2021) replaced the LSTM layer by a
BERT model for feature extraction, achieving 1.5
percentage point improvement in the strict F1-score
metric. In their approach, a CRF layer is still used
on top of a BERT model for the NER part, while a
multi-head selection module (Bekoulis et al., 2018)
combines the output of the BERT and CRF layers
to predict relation among the detected entities.

2.3 Fourier networks

To overcome algorithmic complexity limitations
in the Transformers architecture (Vaswani et al.,
2017), Fourier networks (FNet) have been pro-
posed (Lee-Thorp et al., 2021). The main inno-
vation of FNets is that the classic Transformers
attention mechanism can be mimicked using sim-
ple, non-trainable token mixing strategies. One
can obtain O(n × log(n)) complexity using the
Cooley–Tukey Fast Fourier Transform algorithm
(Cooley and Tukey, 1965) instead of the attention
mechanism, which consumes O(n2) with respect
to the input sequence length (n). FNets achieve 92
and 97% of BERT-Base and BERT-Large (Devlin
et al., 2018) accuracy on the GLUE benchmark
(Wang et al., 2018), but train 70-80% faster on
GPUs/TPUs. In addition to matching the accu-
racy of competing linear-complexity transformers
(Wang et al., 2020; Jaegle et al., 2021; Wu et al.,
2021; Lee-Thorp et al., 2021), the FNet is faster
and memory efficient due to the unparameterized
contextualization layer, i.e., it has no parameters to
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train for token mixing, thus requires virtually no
memory usage.

3 Approach

In this section, we provide a step-by-step formal
description of the proposed architecture using the
forward pass representations and operations, as
illustrated in Figure 1. First, we describe i) the
vectorial token representation strategy, then ii) the
language/contextualization layer, next iii) how the
NER and RE task is jointly modelled, and finally
iv) the cost functions used. Lastly, we conduct a
computational complexity analysis of the proposed
model.

3.1 Model formalisation

Token representation layer: We use static em-
beddings (BioClinicalBERT-base (Alsentzer et al.,
2019) in our experiments) and freeze these pa-
rameters during training for better generalization.
We also decided to use positional encoding as in
Vaswani et al. (2017) so as not to fix a predefined
input length.

Language model: We use FNets to perform token
contextualization with fair time and space complex-
ity. We integrate a FNet layer in our architecture as
follows:

E(1) = MLP(E),

E(2a) = ENLM (E(1)),

E(2b) = RELM (E(1)),

where E ∈ Rn×d is the embedding matrix, in
which each row represents a token, following their
order in the input sequence (i.e., the document), n
the input sequence length, d the token embedding
dimension, MLP is a token-wise multilayer percep-
tron, ENLM and RELM are NER and RE FNets
respectively. In fact, we fully share the weights be-
tween ENLM and RELM to further reduce the num-
ber of trainable parameters. We use superscripts
((1), (2a), ...) to denote the transformed versions of
the original embedding matrix.

NER and RE layers: We thus have E(2) =
E(2a) = E(2b), and subsequently compute:

l = ENMLP (E
(2)),

E(3) = REMLP (E
(2)),

where ENMLP and REMLP are two independent
token-wise MLPs. ENMLP maps the contextual-
ized embeddings E(2) to logits l ∈ Rn×c for clas-
sification, where c is the number of entity classes,
and REMLP maps E(2) to a third version of the
embedding matrix E(3). We then compute a priori
token classes

ai = argmax(li),

for i : 1 ... n, and apply a selective pooling strat-
egy, i.e., we pool candidate entities for relation
extraction from E(3) using ai. Some relations may
never exist for a particular relation extraction task.
We use L to denote the set of entities that can only
be linked to those of a set H . To avoid generating
impossible candidate pairs, we perform two selec-
tive pooling for these two different sets: the key
K ∈ R|L|×d, and the query Q ∈ R|H|×d. We then
produce t heads

K(j) = K(j)
MLP (K),

Q(j) = Q(j)
MLP (Q),

for j : 1 ... t, where K(j)
MLP and Q(j)

MLP are token-
wise MLPs, and t represent the number of relation
types. We then compute the scores between the
query and the key entities

A(j) = Q(j)KT (j).

As the RE module is distance agnostic, we incor-
porate a trainable polynomial distance function to
modify the logits as a function of distance between
tokens:

Ψ(j) = A(j) + αj1 ×D2 + αj2 ×D + αj3 × I,

where Dϕψ represents the number of tokens sepa-
rating the ϕth and ψth pooled entities in the origi-
nal input embedding matrix. The α’s are learned
through the minimization of the loss function and
thus requires no predefined hand-crafted rules re-
garding short/long-distance relations.

Loss function: We use a cross-entropy loss for
both NER and RE:

LNER = − 1

n

n∑

i=1

c∑

k=1

s(li,k)× ei,k,

LRE = − 1

|H||L|

|H|∑

h=1

|L|∑

p=1

t∑

j=1

s(Ψ
(j)
h,p)× rh,p,j ,
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where s(xq,z) = log(exp (xq,z) /
∑

b exp (xq,b)),
and e and r are the target entities and relations,
respectively. Finally, we use the sum of LNER and
LRE as the final loss function to minimize

L = LNER + LRE .

3.2 Computational complexity

The complexity of the RE model depends on the
number of neighbors considered for candidate pair
of entities, independently of the method. If one
wants to detect relations between two entities re-
gardless of the distance, then the lower bound is
O(t×|H|×|L|); or min(O(t×|L|) , O(t×|H|))
if one fixes the number of candidate neighbors. We
decided not to set a maximum number of neigh-
bors for candidate pair generation. Thus, the RE
model uses O(t × |H| × |L|) through selective
pooling. For a fixed RE method, the complexity
of the whole model is driven by the NER com-
ponent. We achieved fair complexity by using an
FNet (O(n×log(n))). Additionally, we used a soft-
max layer in place of CRF, which uses O(n × c)
instead of CRF’s O(n × c2). This method also
takes advantage of parallelization, making it a time
complexity optimised method.

4 Benchmark dataset

We used the 2018 N2C2 ADE dataset 1 to evalu-
ate our model. The data consists of 505 annotated
discharge summaries from MIMIC-III (Johnson
et al., 2016). The passages contains annotations for
strength, form, dosage, frequency, route, duration,
reason, and ADE entities, each associated with a
drug entity. We used the official splits to train and
evaluate our model, with 303 records for training
and 202 for testing. Data summary statistics are
presented in the Appendix A.1. Duration and ADE
entities and their respective relations are not as
well represented in the dataset (see Table 6). The
document lengths vary widely depending on the pa-
tient’s clinical history (see Table 7). There is a gap
of more than 10k tokens between the smallest and
largest documents (224 and 13990, respectively),
which is too large to use padding efficiently. More-
over, the average document size is almost 8x larger
than the typical input size of standard BERT-like
implementations (4045 vs 512, respectively).

1Dataset available at https://portal.dbmi.hms.harvard.edu/.

5 Experiments

We trained our models in three different data rep-
resentation scenarios, where we use whole doc-
uments, sentences only, and a mixed configu-
ration where we use both documents and sen-
tences as training instances. Performance was
then evaluated at both document and sentence
levels for these different training scenarios. Our
models were compared to baseline models based
on MLP with selective pooling and a sliding
window BioClinicalBERT-base model (WBERT)
(Alsentzer et al., 2019) with selective pooling, both
trained and evaluated using the whole documents.

We implemented our models using PyTorch and
a single Tesla V100 GPU. We used Adam (Kingma
and Ba, 2014), mini-batches of size 1 and 64 for
documents and sentences, respectively. Models
were trained using gradient accumulation to avoid
using padding tokens. The final model was selected
based on the best dev F1-score obtained during
training. In the following, we present the results
of our experiments using micro-lenient precision,
recall, and F1-score using the challenge’s official
evaluation tool.

5.1 Data pre-processing

We split the provided training data into train
and dev sets composed of 242 and 61 docu-
ments, respectively. We tokenize documents us-
ing BioClinicalBERT-base wordpiece tokenizer
from HuggingFace (Wu et al., 2016; Wolf et al.,
2019). For sentence-level modeling, we first tok-
enize sentences using Spacy (Honnibal and Mon-
tani, 2017) and then use aforementioned wordpiece
algorithm. We encode the gold entity boundaries
in the BIO scheme. The embedding matrix is ini-
tialized from BioClinicalBERT-base static embed-
dings. No other form a data pre-processing or ex-
ternal feature injection has been implemented.

5.2 End-to-end effectiveness

Table 1 shows the performance of the JNRF model
in multiple settings. The best performance was
obtained in the document-document setting, reach-
ing an end-to-end F1-score of 80.49%, a precision
of 91.65% and a recall of 71.76%. The JNRF
outperformed WBERT with selective pooling by
0.42% in F1-score (0.09% in precision and 0.06%
in recall), while reducing algorithmic complexity
by one order of magnitude (O(n × (log(n) + c))
vs. O(n × (n + c))). We hypothesize that using
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WBERT does not improve the performance due
to the lack of long-range token mixing and/or an
inappropriate windowing strategy. We believe that
further investigation of an optimal windowing strat-
egy could improve its performance. Moreover, we
observed a significant drop in performance (37%
in F1-score) when the Fnet is replaced by an MLP,
demonstrating the capacity of the FNet to better
attend to the correct token representations.

The JNRF model shows good performance when
it is trained and evaluated with the same docu-
ment representation (i.e., document-document or
sentence-sentence) with similar precision in both
cases and reduction in recall for the sentence-
sentence setup, due to the model’s limitation to
detect inter-sentence relations. It is unclear though
whether further data engineering could still result
in equivalent performance. For the mixed training
setup, the model shows stronger power to infer at
the sentence level. We believe this is due to the
much higher number of examples at the sentence
level, which bias the model towards such represen-
tation.

Train Language Test Precision Recall F1
model (%) (%) (%)

doc. MLP doc. 54.19 35.49 42.89
doc. WBERT doc. 90.66 71.70 80.07

doc. FNet
doc. 91.65 71.76 80.49
sent. 75.28 0.29 0.57

sent. FNet
doc. 29.55 21.42 24.84
sent. 89.50 65.80 75.84

mixed FNet
doc. 66.99 32.83 44.07
sent. 81.63 62.35 70.70

Table 1: Lenient micro-averaged E2E scores for differ-
ent language models and document representations.

5.3 End-to-end efficiency

To compare the efficiency of our approach against
architectures used in state-of-the-art approaches,
we measured the time and memory used during
training over 10 epochs (for the same training
set) for a rolling window BERT (WBERT), a
rolling window BERT-CRF (WBERT-CRF), and
a BiLSTM-CRF. All window-based models used
non-overlapping windows of size 512. We delib-
erately chose to use the minimum number of win-
dows for these models to make them as fast as
possible. Figure 2 shows the time and VRAM
used by our model and state-of-the-art models. Re-

sults show that our model substantially improves
upon the state-of-the-art in terms of time complex-
ity. Forward and backward passes over the train-
ing dataset take an average of 30 seconds with
our proposed architecture, while the average time
for the above mentioned models is 54, 168 and
685 seconds, respectively. This increases the learn-
ing speed by a factor of 2, 6 and 22, respectively
(Figure 2a). In addition, we measured an average
VRAM usage of 8 GB for the JNRF architecture
while the average memory usage for the above men-
tioned models is 4, 5 and 14 GBs, respectively.
This represents a 43% GPU memory saving com-
pared to BiLSTM-CRF (Figure 2b). WBERT and
WBERT-CRF uses around 2x less memory due to
the windowing strategy. This increase in efficiency
is due to the fact that, differently from the quadratic
complexity in terms of the number of entities c,
which is generally large in the biomedical field, our
model complexity has a linear dependency in terms
of the number of entities, and a log-linear depen-
dency in terms of the number of tokens (overall
O(n× (log(n) + c))).

5.4 Time inefficiency of windowing strategies
To demonstrate that windowing strategies are time
inefficient, we measured the average forward-
backward time of a rolling window JNRF (WJNRF)
and its average VRAM usage (Figure 2). JNRF is
20% faster than WJNRF but WJNRF uses 26%
less memory (Figure 2). While windowing strate-
gies save VRAM, they are an inefficient solution
in terms of computation time. The average doc-
ument size is 4045 (see Table 7) corresponding
to an average of 8 forward passes per document
using standard BERT-like implementations (512
tokens maximum input size) or 28 for the longest
document. So that all tokens attend to each other,
we would need overlapping windows. The worst
case scenario is to drag the window token-by-token,
leading to 3534 (n−WindowSize+ 1) windows
on average per document.

5.5 Performance across entities, relations and
document sizes

Table 2 shows the performance of our model per
entity and relation types. Our model suffers from
poor performance in extracting Reason and ADE
entities, with an F1-score of 50.26% and 16.40%,
respectively. This lower performance is also seen
in other competing solutions (Henry et al., 2020).
In turn, both the detection of their respective rela-
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Figure 2: (a) Cumulative training time of JNRF vs. WJNRF vs. WBERT vs. WBERT-CRF vs. BiLSTM-CRF. (b)
GPU memory usage of JNRF vs. WJNRF vs. WBERT vs. WBERT-CRF vs. BiLSTM-CRF. For fair comparison, all
systems use the selective pooling RE module.

tions are also negatively impacted, with a final E2E
F1-score of only 29.92% and 7.21%, respectively.
We believe this lower performance is a result of
the confusion between these entities (as they are
semantically similar) and of the small number of
instances in the training set. Nevertheless, further
investigation is needed to better understand the is-
sue.

Entity Precision Recall F1
(%) (%) (%)

Drug 93.32 86.99 90.05
Strength 96.80 95.08 95.93
Form 96.57 92.38 94.43
Dosage 94.26 87.62 90.82
Frequency 97.63 92.37 94.93
Route 92.63 93.03 92.83
Duration 84.98 61.38 71.27
Reason 65.96 40.59 50.26
ADE 36.67 10.56 16.40
Overall 92.95 84.76 88.67

Entity + Precision Recall F1
Relation (%) (%) (%)

Strength-Drug 95.60 88.60 91.97
Form-Drug 95.63 87.01 91.12
Dosage-Drug 94.13 79.07 85.94
Frequency-Drug 94.83 83.19 88.63
Route-Drug 90.50 83.25 86.72
Duration-Drug 76.09 41.08 53.35
Reason-Drug 54.72 20.59 29.92
ADE-Drug 30.30 4.09 7.21
Overall 90.97 72.08 80.43

Table 2: NER and E2E (NER+RE) performance of our
JNRF model.

Table 3 shows the performance as a function of
the number of input tokens (document length). We
followed the Freedman-Diaconis method (Freed-
man and Diaconis, 1981) to group documents into
clusters of different lengths. These results high-
lights the ability of our architecture to perform
consistently across clinical notes of varying sizes.
Without any data pre-processing (e.g., sliding win-
dow or sentence tokenization), the model can ele-
gantly generalise to document of different sizes.

Doc. Doc. Precision Recall F1
length count (%) (%) (%)

[0, 754] 5 91.67 59.46 72.13
[754, 1508] 8 97.25 67.22 79.49

[1508, 2262] 18 89.92 66.55 76.49
[2262, 3016] 28 91.65 74.69 82.30
[3016, 3770] 43 91.72 73.46 81.58
[3770, 4524] 30 90.35 71.64 79.91
[4524, 5278] 32 90.82 72.60 80.69
[5278, 6032] 18 89.58 72.16 79.93
[6032, 6786] 10 93.88 70.99 80.85
[6786, 7540] 4 89.17 70.01 78.44
[7540, 8294] 3 88.89 67.06 76.45
[8294, 9048] 1 92.08 75.61 83.04

[9802, 10556] 1 88.73 66.55 76.06
[12064, 12818] 1 92.54 80.84 86.30

Table 3: Performance of our JNRF model across differ-
ent document sizes.

5.6 Performance on long range relations

Figure 3 shows the distribution of relation types
according to their sentence distance. We define the
sentence distance between two related entities E1
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and E2 as the number of sentences separating E1
from E2. A negative distance implies that the drug
entity is mentioned before the related entity. Re-
sults show that although most related entities are in
the same sentence, there are a non-negligible num-
ber of relations with a sentence distance different
from zero. As we can see from Table 4, the JNRF
model is able to automatically detect distant rela-
tions. It has superior performance detecting intra-
sentence relations, i.e., better F1-score for sentence
distance 0, with a yet robust performance for inter-
sentence relations with negative sentence distances
(between 65% and 68% F1-score). The perfor-
mance decreases substantially for inter-sentence
relations with positive sentence distances. This is
due to the fact that Reason and ADE entities and
relations are actually harder to detect (see Table
2), and they represent the vast majority of rela-
tions with a positive sentence distance, as shown in
Figure 3. It is important to note that using a fixed-
input size models would only detect intra-sentence
relations or inter-sentence through significant engi-
neering, which may not necessarily generalise to
other corpora and domains.

Figure 3: Probability density estimation of relation types
as a function of the number of sentences separating two
related entities (Sentence distance).

Sentence distance
-2 -1 0 1 2

Precision (%) 75.14 83.06 92.69 22.99 0.36
Recall (%) 56.90 57.88 76.08 5.82 0.49
F1-score (%) 64.76 68.22 83.57 9.29 0.41

Table 4: Performance of our JNRF model as a function
of sentence distance.

6 Comparison with SOTA in the N2C2
ADE challenge

In this section, for a reference we show our re-
sults against state-of-the-art E2E NER+RE mod-
els described in the N2C2 ADE challenge (Henry
et al., 2020). Nevertheless, due to their different
modelling strategy (e.g., multiple models, external
tools, post-processing techniques and hand-crafted
rules specifically designed for this dataset), they
are not directly comparable.

UTH (Wei et al., 2020) used a joint learning
model consisting of a LSTM-CRF layer for NER
and a CNN-RNN layer for RE. CLAMP (Soysal
et al., 2018) was employed for text pre-processing,
including sentence boundary detection and POS
labeling, and to create a set of hand-crafted fea-
tures that fed the CRF layer. Entities without a
relation were associated to the closest drug in the
post-processing step.

NaCT (Christopoulou et al., 2020) used a major-
ity voting ensemble of feature-based CRF, includ-
ing ADE dictionary, and stacked BiLSTM-CRF for
NER. For RE, they used an ensemble of LSTM for
intra-sentence relations and a transformer network
for inter-sentence relations.

BCH (Miller et al., 2019) used SVM to de-
tect entities, and pair these detected entities for
a second SVM relation classifier. They used
cTAKES (Savova et al., 2010) to pre-process data
and ClearTK (Bethard et al., 2014) API to extract
features.

RA (Henry et al., 2020) used dictionary-based
features, CRFs and logistic regression for NER.
For RE, they used a tree-based boosting classifier
(Chen and Guestrin, 2016).

Table 5 shows the performance of our best model
as well as the results of the previously described
systems. As we can see, the performance of our
E2E model (80.49% F1-score) achieves 90% of the
F1-score of the best performing system (99% preci-
sion and 84% recall), while significantly reducing
algorithmic complexity. Moreover, it compares
favorably to strong baseline methods (Chen and
Guestrin, 2016) (80.49% vs. 80.37%), again with
an order of magnitude in complexity reduction.
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Name NER Precision Recall F1
complexity (%) (%) (%)

UTH nc2 92.92 85.49 89.05
NaCT nc2 92.64 83.18 87.66
BCH n3 89.63 76.40 82.49
JNRF n(log(n) + c) 91.65a 71.76b 80.49c

RA nc2 86.89 74.75 80.37

Table 5: E2E scores of the top performing systems
submitted in the N2C2 ADE track, along with our JNRF
model. Standard deviations: a=0.47, b=0.53, c=0.33.

7 Conclusion

In this paper, we proposed an end-to-end, general-
izable, lightweight, and efficient model to jointly
detect entities and multiple relations at the intra-
and inter-passage levels. We combined a Fourier
network with a pooled attention layer to signifi-
cantly reduce time and space complexity, thus pro-
viding the community with a low carbon footprint
solution for end-to-end relation extraction. We
demonstrated that our model outperformed the slid-
ing window BERT with selective pooling by 0.42%
in F1-score, while being 2 times faster to train.
Furthermore, we showed that our model trains 22
times faster and consumes 1.75 times less GPU
memory than state-of-the-art BiLSTM-CRF archi-
tectures, with a reasonable performance tradeoff of
90% on the N2C2 ADE benchmark, without using
external tools or hand-crafted rules. Furthermore,
we showed that this approach achieves consistent
performance regardless of the length of the input
sequence, eliminating the need for sliding window
techniques and easing the overall data processing
pipeline and engineering effort.
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A Appendix

A.1 N2C2 dataset summary statistics

Entity type Full (%) Training Test
Drug 26.8k (32) 16.2k 10.6k
Strength 10.9k (13) 6.7k 4.2k
Form 11.0k (13) 6.7k 4.4k
Dosage 6.9k (8) 4.2k 2.7k
Frequency 10.3k (12) 6.3k 4.0k
Route 9.0k (11) 5.5k 3.5k
Duration 1.0k (1) 0.6k 0.4k
Reason 6.4k (8) 3.9k 2.5k
ADE 16k (2) 1.0k 0.6k
Total 83.8k (100) 51.0k 32.9k
Relation type Full (%) Training Test

Strength-Drug 10.9k (18) 6.7k 4.2k
Form-Drug 11.0k (19) 6.7k 4.4k
Dosage-Drug 6.9k (11) 4.2k 2.7k
Frequency-Drug 10.3k (17) 6.3k 4.0k
Route-Drug 9.1k (15) 5.5k 3.5k
Duration-Drug 1.1k (2) 0.6k 0.4k
Reason-Drug 8.6 (15) 5.2k 3.4k
ADE-Drug 1.8 (3) 1.1k 0.7k
Total 59.8 (100) 36.4k 23.5k

Table 6: Entity and relation distributions.

Train set Validation set Test set
Count 242 61 202
Mean 4045 3829 3933
Std 1972 1870 1790
Min 224 237 252
Max 13990 7845 12518

Table 7: Statistics of document length in terms of tokens.
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