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Abstract

Transformer-based pre-trained language mod-
els (PLMs) have been used in all NLP tasks
and resulted in a great success. This has led to
the question of whether we can transfer this
knowledge to syntactic or semantic parsing
in a completely unsupervised setting. In this
study, we leverage PLMs as a source of exter-
nal knowledge to perform a fully unsupervised
parser model for semantic, constituency and
dependency parsing. We analyse the results
for English, German, French, and Turkish to
understand the impact of the PLMs on different
languages for syntactic and semantic parsing.
We visualize the attention layers and heads in
PLMs for parsing to understand the informa-
tion that can be learned throughout the layers
and the attention heads in the PLMs both for
different levels of parsing tasks. The results
obtained from dependency, constituency, and
semantic parsing are similar to each other, and
the middle layers and the ones closer to the
final layers have more syntactic and semantic
information.

1 Introduction

Transformer-based pre-trained language models
(PLMs) such as BERT (Devlin et al., 2019), GPT-
2 (Radford et al., 2019), XLNet (Yang et al., 2019),
RoBERTa (Liu et al., 2019b), DistilBERT (Sanh
et al., 2019) have shown state-of-art performance
in many down-stream NLP tasks. The performance
of such large PLMs has also begged the question
of what type of information that these models can
naturally acquire through self-supervised learning.
This has been investigated especially through prob-
ing tasks to analyse the linguistic information that
is learned during pre-training of such large mod-
els (Liu et al., 2019a; Clark et al., 2019; Kovaleva
et al., 2019; Pimentel et al., 2020; Rogers et al.,
2020). One type of linguistic information that
has been affluently analysed is syntactic informa-
tion, and most of the recent probing studies have

been based on this question: “Can transformer-
based large language models learn syntactic struc-
tures during pre-training?". Recent studies address
this question and propose unsupervised models
that use syntactic knowledge obtained from PLMs
for NLP tasks such as constituency (Kim et al.,
2020a,b; Zeng and Xiong, 2022) and dependency
parsing (de Lhoneux et al., 2022).

There are two aims in this study: 1. We aim to
analyse the linguistic information that is learned
by PLMs in different syntactic levels (dependency,
constituency and semantic parsing) which deviates
from the previous work, and provide a comparison
with different languages. 2. We aim to demonstrate
whether it is possible to use the linguistic informa-
tion learned from PLMs in a fully unsupervised
model for dependency, constituency and semantic
parsing.

Existing approaches that use pre-trained lan-
guage models are evaluated mainly on constituency
parsing (Kim et al., 2020a,b) and dependency pars-
ing (Hewitt and Manning, 2019; Clark et al., 2019).
However, there is not any study that evaluates vari-
ous parsing levels including semantic parsing using
the same parsing model and compares the parsing
results to understand the behaviour of PLMs for
different levels of parsing from syntax to semantics.

In this paper, we evaluate a fully unsupervised
model for three parsing tasks. We adopt the
chart-based zero-shot parsing model (Kim et al.,
2020b) that is based on the syntactic distance con-
cept (Shen et al., 2017, 2018). To our knowledge,
this will be the first study that combines syntactic
distance with PLMs to apply to semantic parsing
with zero-shot learning. In this study, we partic-
ularly use UCCA graph-based semantic represen-
tation for semantic parsing, which has been tack-
led as a constituency parsing problem in previous
studies (Jiang et al., 2019; Bölücü and Can, 2021).
In addition to the well-studied languages such as
English, German, and French, we also evaluate
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the models for Turkish with a comparably smaller
dataset. We obtain the best results with multilin-
gual PLMs. The results show that the zero-shot
parsing model performs better with shorter sen-
tences. It also shows that PLMs performs the best
with middle layers and the ones closer to the final
layers interestingly for all of the three parsing tasks,
which are in line with the previous studies.

2 Related Work

A recent research direction has been towards
analysing PLMs without fine-tuning on a partic-
ular down-stream task to explore the type of infor-
mation that is learned during pre-training, which
is called probing. For that purpose, PLMs have
been investigated in various tasks such as language
modeling (Shen et al., 2017), dependency pars-
ing (Hewitt and Manning, 2019; Clark et al., 2019),
constituency parsing (Shen et al., 2017; Peters et al.,
2018; Li et al., 2020; Kim et al., 2020b), discourse
parsing (Wu et al., 2020), commonsense reason-
ing (Tikhonov and Ryabinin, 2021), and grammar
induction (Shen et al., 2018; Kim et al., 2020a).
Some of the studies have also questioned if the syn-
tax is encoded in PLMs (Shi et al., 2016; Blevins
et al., 2018; Jawahar et al., 2019) and some of them
analysed how large language models encode other
types of linguistic information such as coference,
entity information, parsing, and semantic roles, and
NER (Tenney et al., 2019; Liu et al., 2019a).

In line with our work, Shen et al. (2017) use syn-
tactic distance for character-level and word-level
language modeling, and unsupervised constituency
parsing. Li et al. (2020) use PLMs for unsupervised
constituency parsing focusing on attention heads by
ranking and ensembling them. Kim et al. (2020b)
propose a model with chart-based decoder for the
same problem, which also solves the greedy search
problem of Shen et al. (2018). All of these studies
are based on the idea that the syntactic structure
of sentences are naturally learned along with lan-
guage modeling. Some of those works (Kim et al.,
2020a; Wu et al., 2020) also combine syntactic dis-
tance with PLMs to induce syntactic structure in
an unsupervised setting. A recent work by Shen
et al. (2021a) also introduces joint learning of con-
stituency parsing with dependency parsing in an
unsupervised framework.

Our work is similar to these and we also fol-
low the chart-based zero-shot parsing introduced
by Kim et al. (2020b). However, this is the first

time that several parsing tasks are tackled using the
same unsupervised model and this is the first time
UCCA-based semantic parsing is performed in an
unsupervised setting.

3 Chart-based Zero-shot Parsing

We utilise the syntactic distance concept (Shen
et al., 2017, 2018) which was particularly explored
for constituency parsing (Kim et al., 2020a,b; Li
et al., 2020) by directly using the PLMs without
fine-tuning. Here, we adopt chart-based zero-shot
parsing based on syntactic distance for three dif-
ferent parsing problems that are semantic, con-
stituency and dependency parsing to explore us-
ability of PLMs in zero-shot setting.

The method calculates scores for spans where an
input sentence s = {w1, · · · , wn} is made up of a
set of labeled spans as follows:

T = {(it, jt, lt) : t = 1, · · · , |T |}

where it and jt refer to the beginning and ending
positions of the tth span respectively with the label
set lt ∈ L. A score s(t) is assigned to each tree,
which is decomposed as follows:

s(t) =
∑

(i,j)∈t
sspan(i, j) (1)

Here, sspan(i, j) denotes per-span scores that
are calculated recursively by splitting spans into
smaller spans as defined below:

ssplit(i, k, j) = sspan(i, k) + sspan(k + 1, j)

sspan(i, j) = scomp(i, j)+

mini≤k<jssplit(i, k, j)

where scomp(·, ·, ·) measures the validity of the
compositionality of the span(i, j) itself, while
ssplit(i, k, j) indicates how plausible it is to
split span (i, j) at position k. To calculate
scomp(·, ·, ·), Kim et al. (2020b) introduced two
alternative labeled functions. The first one is the
characteristic score function sc(·, ·), and the sec-
ond is the pair score function sp(·, ·). Pair score
function computes the average pairwise distance in
a given span:

sp(i, j) =
1(

j − i+ 1
2

)
∑

(wx,wy)∈pair(i,j)

f(g(wx), g(wy))

sc(i, j) =
1

j − i+ 1

∑

i≤x≤j

f(g(wx), c)

c =
1

j − i+ 1

∑

i≤y≤j

g(wy)
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where pair(i, j) returns a set of all combinations
of bigrams (e.g. wx, wy) inside the span (i, j).
Function f(·, ·) is the distance measure and g(·)
is the representation function. Jensen-Shannon
(JSD) and Hellinger (HEL) distance functions are
used to measure the distance between two spans.
g = {gd(u,v)|u = 1, · · · , l, v = 1, · · · , a} returns
the vth attention head on the uth layer of the pre-
trained language model.

CYK (Cocke-Younger-Kasami) (Chappelier and
Rajman, 1998) is used for decoding to generate the
trees. The parser outputs tree t̂ that has the lowest
score:

t̂ = arg min
T

s(t) (2)

For each distance function with score functions
, we obtain the weights of the ith layer and jth

attention head of that layer. Then we calculate the
span scores using the distance functions. We select
the tree with the lowest score for each distance
function, which leads to 4 trees in ith layer and
jth attention head. Therefore, we finally obtain
4× l× a trees, where l is the number of layers and
a is the number of attention heads. The final F1
scores are calculated for each tree and the highest
F1 score is reported in the results.

4 Three Levels of Parsing with a Single
Model

We use the chart-based zero-shot parsing model for
three types of parsing ranging in different semantic
and syntactic levels with different granularities and
structures of a given text:

Dependency Parsing Dependency parsing is
concerned with the syntactic relations between
words in a sentence. Those syntactic relations are
discovered in terms of dependencies of words on
each other. In order to apply the zero-shot parsing
model for dependency parsing, we compute the
scores for each tree and then we apply Eisner (Eis-
ner, 1996) decoding algorithm (rather than CYK)
to produce dependency trees using the tree scores.

Constituency Parsing Constituency parsing is
concerned with extracting the syntactic structure
of a given text through phrasal constituents. There-
fore, it is more concerned with the syntactic struc-
ture of an entire sentence rather than the relations
between words as opposed to dependency parsing.
We apply zero-shot parsing without adding any ad-
ditional step for constituency parsing.

Semantic Parsing Semantic parsing is con-
cerned with extracting the semantic structure of
a given text using a formal representation. We par-
ticularly use UCCA (Abend and Rappoport, 2013)
graph-based semantic representation to extract se-
mantic relations within the text. In order to per-
form UCCA-based parsing, we first convert UCCA
graphs into constituent trees by removing disconti-
nuities and remote edges (Jiang et al., 2019; Bölücü
and Can, 2021). Then we perform zero-shot learn-
ing to tackle semantic parsing as a constituency
parsing problem. After finding the tree with the
lowest score, we convert constituency trees back
into the UCCA-based graphs, and restore discon-
tinuity units. We disregard the remote edges and
implicit edges.

5 Experiments and Results

We conducted experiments to evaluate the unsu-
pervised parser on dependency, constituency, and
semantic parsing for English, German, French, and
Turkish since UCCA-annotated datasets are only
available for these languages.

5.1 Datasets

• Dependency Parsing: We used Universal De-
pendency v2.3 (Schuster et al., 2017) datasets
in English, German, French and Turkish.

• Constituency Parsing: We used Penn Tree-
bank (PTB) (Marcinkiewicz, 1994) for En-
glish, the SPMRL dataset (Seddah et al., 2013)
for German and French, and the Turkish Anno-
tated Treebank (Yıldız et al., 2016) for Turk-
ish.

• Semantic Parsing: We used UCCA datasets
provided by SemEval 2019 (Hershcovich
et al., 2019) in English, German, and French,
and the Turkish UCCA-annotated dataset re-
leased by Bölücü and Can (2022).

Since it is a zero-shot parsing model and does
not involve a training stage, we only used the test
sets1 for all languages for the evaluation.

5.2 Experimental Setting

We use both monolingual and multilingual PLMs in
the experiments. For English, we use the following
monolingual PLMs: BERT (Devlin et al., 2019),

1The details of the datasets are given in Table 7 in Ap-
pendix A.
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GPT-2 (Radford et al., 2019), RoBERTa (Liu et al.,
2019b), and XLNet (Yang et al., 2019). We fol-
low previous work (Kim et al., 2020a,b; Li et al.,
2020) by using two variants of each PLM, where
the X-base variant consists of 12 layers, 12 atten-
tion heads and 768 hidden dimensions, while the
X-large variant has 24 layers, 16 attention heads
and 1024 hidden dimensions. GPT2 model corre-
sponds to X-base while GPT2-medium corresponds
to X-large model.

We use bert-base-german-cased,
bert-base-french-europeana-cased,
and bert-base-turkish-cased for Ger-
man, French and Turkish monolingual PLMs
respectively.

For multilingual experiments, we use multi-
lingual version of the BERT-base model (M-
BERT) (Devlin et al., 2019), the XLM-base model
(XLM-R2) (Conneau and Lample, 2019), which
is a multilingual RoBERTa model, and the large
version of XLM (XLM-R-large) (Conneau et al.,
2020).

5.3 Results

We present the results obtained from each parsing
separately below4.

Dependency Parsing Dependency parsing re-
sults for all languages are given in Table 1. The
best results are obtained from multilingual PLMs
in all languages. Since the other unsupervised de-
pendency parsing models are either finetuned (Ma
and Xia, 2014; Shen et al., 2021b) or utilise other
external resources such as Google Universal Tree-
banks (Ma and Xia, 2014) or WSJ (Shen et al.,
2021b), we have not made a comparison with other
models since the model presented here is fully un-
supervised, does not use any annotated data, and
does not incorporate any syntactic information dur-
ing PLM pre-training.

Constituency Parsing For constituency parsing,
we either perform top-down or chart-based pars-
ing to generate trees. We further experiment with
using different layers in the PLMs. All unlabeled
F1 scores for the constituency parsing are given
in Table 2 and Table 3. We use abbreviations TD,
CP, and CC for Top-Down, Chart-Pair (pair score

2The details of the training datasets used in the experiments
are given in Table 8 in Appendix B.

3We used the pre-trained models of BERT defined in Sec-
tion A for each language.

4We give the results of supervised models in Appendix C.

function sp(·, ·)) and Chart-Characteristic (charac-
teristic score function sc(·, ·)) respectively. Ex-
cept English, we obtain the best results with the
top-down decoder and with XLM-R for German,
French, and Turkish 5.

Semantic Parsing The unlabeled F1 scores for
UCCA-based semantic parsing are given in Ta-
ble 4 and 5. The best results are obtained from
RoBERTa-base amongst the monolingual models
and from XLM-R amongst the multilingual models
in English. Interestingly, both RoBERTa and XLM-
R gives similar results. For German, French, and
Turkish, all the best results are obtained from mul-
tilingual models. Since this is the very first study
that performs UCCA-based semantic parsing in a
completely unsupervised framework, there is not
any other study that is available to compare with
ours. Therefore, we report our results only as the
baseline results for the future studies.

Dependency parsing scores are comparably
much lower than both constituency and semantic
parsing in all languages. Unsupervised dependency
parsing has been mostly performed using proba-
bilistic generative models in the literature (Klein
and Manning, 2004) and it is comparatively harder
than constituency parsing since it requires learning
finer relations between words rather than phrases in
a sentence. However, interestingly, UCCA-based
semantic parsing scores are also promising and
as good as constituency parsing performance. It
should be noted that UCCA-based semantic parsing
has not been tackled with an unsupervised learning
model before.

As for the PLM models, the GPT and GPT2-
medium perform comparatively poorly on all pars-
ing problems. Unlike other PLMs, the GPT models
are auto-regressive language models that do not
allow to incorporate the context on both sides of
a word, which might be the reason of the poor
performance of the GPT models.

5.4 Analysis of the Results

We analyse the attention layers and heads that con-
tribute the most to each parsing task, along with
the affect of the sentence length in the experiments.

5.4.1 Attention Layers
We analyse the attention layers to see which layers
provide the most information for the parsing tasks.

5The model is adopted from that of Kim et al. (2020b) and
we prefer not to repeat the comparative scores here again.
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Model Monolingual Models
English German French Turkish

BERT-base-cased3 26.48 26.59 24.78 35.56
BERT-large-cased 27.89 - - -
XLNet-base-cased 25.66 - - -
XLNet-large-cased 27.53 - - -
RoBERTa-base 27.68 - - -
RoBERTa-large 25.11 - - -
GPT2 19.66 - - -
GPT2-medium 21.44 - - -
PLM Multilingual Models
M-BERT 30.80 30.69 34.37 41.62
XLM-R 30.80 31.84 34.27 41.25
XLM-R-large 32.66 28.58 26.19 39.13

Table 1: UAS scores for dependency parsing.

English German
Model TD CP CC TD CP CC

Monolingual Models
BERT-base-cased 34.51 40.24 42.05 26.96 24.82 26.59
BERT-large-cased 38.93 43.68 44.58 - - -
XLNet-base-cased 40.12 42.14 43.47 - - -
XLNet-large-cased 38.32 42.60 43.73 - - -
RoBERTa-base 40.61 45.37 46.01 - - -
RoBERTa-large 34.30 42.19 43.26 - - -
GPT2 34.21 34.01 35.78 - - -
GPT2-medium 37.65 38.59 39.81 - - -

Multilingual Models
M-BERT 40.28 43.44 44.13 30.69 30.59 30.28
XLM-R 41.25 44.25 44.76 33.13 32.19 31.84
XLM-R-large 39.13 42.87 44.67 28.18 27.13 28.58

Table 2: Unlabeled F1 scores for constituency parsing in English and German.

French Turkish
Model TD CP CC TD CP CC

Monolingual Models
BERT-base-cased 24.78 22.83 23.86 35.36 31.47 33.50

Multilingual Models
M-BERT 32.88 30.37 30.45 41.29 40.61 39.93
XLM-R 34.19 31.29 30.93 45.18 43.49 42.30
XLM-R-large 26.68 25.70 26.46 36.21 36.72 36.72

Table 3: Unlabeled F1 scores for constituency parsing in French and Turkish.

Dependency Parsing UAS scores obtained from
multilingual models for each layer are illustrated in
Figure 1. The results show that we get the highest
UAS scores from the middle or the ones closer to
the final layers of PLMs for all languages.

Constituency Parsing F1 scores obtained from
multilingual PLMs for all layers are given in Fig-
ure 2. Although there are slight differences be-
tween languages, the general picture does not dif-
fer from the dependency parsing results and again
the highest scores are obtained from mostly middle
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English-Wiki English-20K
Model TD CP CC TD CP CC

Monolingual Models
BERT-base-cased 38.34 42.30 42.60 39.10 42.80 43.93
BERT-large-cased 38.33 42.93 43.52 39.41 43.82 44.75
XLNet-base-cased 37.00 39.62 40.18 37.57 39.56 42.70
XLNet-large-cased 38.41 41.25 42.27 39.98 41.20 41.52
RoBERTa-base 41.82 44.96 45.21 32.43 45.62 46.18
RoBERTa-large 37.65 41.37 41.62 36.44 41.78 41.92
GPT2 31.97 38.23 38.56 32.41 37.97 38.40
GPT2-medium 34.86 38.49 38.58 32.21 37.68 39.31

Multilingual Models
M-BERT 39.62 43.52 44.06 38.11 43.99 45.15
XLM-R 40.98 45.45 45.89 42.06 45.51 46.30
XLM-R-large 36.40 40.05 40.87 33.69 40.00 41.45

Table 4: Unlabeled F1 scores for semantic parsing in English (English-Wiki, English-20K).

German-20K French-20K Turkish
Model TD CP CC TD CP CC TD CP CC

Monolingual Models
BERT-base-cased3 40.30 41.93 42.96 40.32 40.55 42.71 41.49 39.50 42.15

Multilingual Models
M-BERT 39.08 44.17 44.07 41.01 43.26 46.08 42.15 44.80 44.14
XLM-R 40.90 43.15 42.98 44.13 46.08 47.38 46.79 48.77 46.79
XLM-R-large 35.59 39.63 42.37 37.56 39.17 38.94 45.46 44.14 46.13

Table 5: Unlabeled F1 scores for semantic parsing in German, French and Turkish.

(a) Bert-multilingual (b) XLM-R (c) XLM-R-large

Figure 1: UAS scores of multilingual PLMs for dependency parsing.

layers.

Semantic Parsing F1 scores obtained from
monolingual models for all layers along with differ-
ent distance functions are given in Figure 3. Only
the best scores obtained from the attentions in each
layer are illustrated. The graphs show that there is
not much difference between the distance functions
in terms of their performance in parsing. However,
we obtain the highest scores again from the middle
or towards the last layers except for GPT-2, which

achieves the best in the lower layers.

The results obtained from multilingual PLMs for
all languages are given in Figure 4. The F1 scores
of languages are very low in the first hidden layers
except for Turkish. The lower hidden layers might
be more informative in short sentences because the
Turkish UCCA dataset involves shorter sentences
compared to other languages. This might be the
reason of such a difference between the languages.
The results also support that the final layers bear
more syntactic information compared to the lower
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(a) Bert-multilingual (b) XLM-R (c) XLM-R-large

Figure 2: F1 scores of multilingual PLMs for constituency parsing.

(a) Bert-base (b) Bert-large (c) XLNet-base (d) XLNet-large

(e) RoBERTa-base (f) RoBERTa-large (g) GPT2 (h) GPT2-medium

Figure 3: F1 scores from monolingual PLMs using the English Wiki dataset for semantic parsing.

(a) Bert-multilingual (b) XLM-R (c) XLM-R-large

Figure 4: F1 scores from multilingual PLMs using the UCCA datasets.

(a) English (b) German (c) French (d) Turkish

Figure 5: Unsupervised dependency parsing performance in all languages according to different attention heads and
hidden layers with HEL distance function (Light cells refer to higher UAS scores).

layers, especially in longer sentences, which is con-
sistent with the findings of other studies (Clark

et al., 2019; Kim et al., 2020b,a).
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(a) English (b) German (c) French (d) Turkish

Figure 6: Unsupervised constituency parsing performance in all languages for different attention heads and hidden
layers with HEL distance function (Light cells correspond to higher F1 scores).

(a) English-Wiki (b) English-20K (c) German-20K (d) French-20K (e) Turkish

Figure 7: Unsupervised UCCA semantic parsing performance in all languages with different attention heads and
hidden layers with HEL distance function (Light cells refer to higher F1 scores).

5.4.2 Attention Heads
We also analyse the attention heads in the layers
to observe which attention heads contribute the
most to each parsing task. F1 scores obtained from
the attention heads in different layers are given in
Figure 5, Figure 6, and Figure 7 for dependency,
constituency, and semantic parsing (with XLM-
R) respectively. The graphs support the findings
regarding the hidden layers and further show that
top heads contain more information in all tasks
and languages apart from Turkish constituency and
semantic parsing where the lower heads contain
more information. This might be again due to the
length of the sentences in the Turkish datasets.

5.4.3 Sentence Length
To understand the effect of the sentence length, we
extract the average length of the sentences in all
datasets. The average sentence length of Turkish
datasets for all tasks is less than that of the other
languages, whereas the average sentence length of
German and French is higher in all parsing datasets.

To investigate the relationship between the sen-
tence length and the accuracy of the parsing, we
run the constituency parsing with XLM-R multilin-
gual PLM and top-down parser on 1000 samples
with a length less than the average length of the
dataset and 1000 samples with a length greater
than the average length of the datasets in English,
French and German. We only use 50 samples (25
less and 25 are greater than the average length
in Turkish since there are only 63 samples in the

dataset. Table 6 gives the average length of the sen-
tences in each dataset along with the obtained F1
scores. The results show that the model performs
better on shorter sentences. This also confirms that
the model can hardly find distant relationships in
longer sentences.

6 Conclusion

We analyse the syntactic information learned by
transformer-based PLMs for various parsing prob-
lems (namely dependency, constituency, and se-
mantic parsing) using a fully unsupervised zero-
shot parser. To the best of our knowledge, this is the
first study that compares an unsupervised model for
three different parsing problems in a fully unsuper-
vised setting and analyses the linguistic information
learned from PLMs during pre-training for three
different parsing tasks from syntax to semantics.
The results show that PLMs provide information
from mostly middle and towards the final layers
for all parsing tasks, which is also in line with
the previous work on constituency and dependency
parsing. However, interestingly, the study shows
that when it comes to structure learning, syntax and
semantics are both encoded in middle and towards
the final layers.
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A Details of the test sets

Here specify the size of the test sets used in all
parsing tasks.

English German French Turkish
DP 2077 1000 416 979
CP 2416 5000 2541 63

SP
Wiki: 515
20-K: 492

652 239 50

Table 7: Size of the test sets used in the experiments
(DP: Dependency parsing, CP: Constituency parsing,
and SP: Semantic parsing)
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B Details of the training sets for XLM-R

Here we present the size of the monolingual
datasets used for training the XLM-R.

Language Tokens (M) Size (GiB)
English 55608 300.8
German 10297 66.6
French 9780 56.8
Turkish 2736 20.9

Table 8: Size of each monolingual dataset used for
training the XLM-R.

C Supervised model results for three
levels of parsing

Here we give the results obtained from supervised
models for dependency and semantic parsing prob-
lems with the best results of the unsupervised
model in the paper6.

Model English German French Turkish
Our Model 32.66 31.84 34.37 41.62
UDPipe ♣ 89.63 85.53 90.65 74.19
UDify ♣ 90.96 87.81 93.60 74.56

Table 9: Comparative UAF scores of our unsupervised
model with supervised models for dependency parsing
(♣: Kondratyuk (2019))

6We couldn’t give the constituency parsing results since the
studies on constituency parsing present only labeled scores.

7We used the zero-shot experimental results in the paper
of (Bölücü and Can, 2022) for Turkish dataset.
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Model English-Wiki English-20K German-20K French-20K Turkish
Our Model 45.89 46.30 44.17 47.38 48.77

Tupa ♣ 85.00 82.20 90.30 74.00 -
HLT@SUDA ♡ 87.20 85.20 92.80 86.00 -
Self-Attentive ♠ 89.60 87.69 94.10 86.00 76.808

Table 10: Comparative unlabeled F-1 scores of our unsupervised model with supervised models for semantic parsing
(♣: Hershcovich et al. (2017), ♡: Jiang et al. (2019), ♠: Bölücü and Can (2021))
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