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Abstract

Code-mixed text infused with low resource
language has always been a challenge for
natural language understanding models. A
significant problem while understanding such
texts is the correlation between the syntac-
tic and semantic arrangement of words. The
phonemes of each character in a word dictates
the spelling representation of a term in low
resource language. However, there is no uni-
versal protocol or alphabet mapping for code-
mixing. In this paper, we highlight the impact
of spelling variations in code-mixed data for
training natural language understanding mod-
els. We emphasize the impact of using pho-
netics to neutralize this variation in spelling
across different usage of a word with the same
semantics. The proposed approach is a compu-
tationally inexpensive technique and improves
the performances of state-of-the-art models for
three dialog system tasks viz. intent classi-
fication, slot-filling, and response generation.
We propose a data pipeline for normalizing
spelling variations irrespective of language.

1 Introduction

There are around 6,500 languages spoken in the
world today(Wikipedia contributors, 2021). En-
glish, Mandarin, Chinese tops the list with over 2
billion speakers around the globe hence are highly
resourceful languages. On the other hand, there are
resource-scarce languages such as Polish, Odia,
Hindi and, many more with few million speak-
ers only. Due to lack of resources understanding
such languages poses a great challenge for the re-
search community. Natural Language Understand-
ing (NLU) means extracting the semantic schema
of the utterance to re-act according to the intent of
the utterance. NLU is crucial for any human-to-
machine interaction-based system such as chatbots,
virtual assistants, and many more. Now the mode
of communication is restricted by the speaker’s

Figure 1: Native Speakers Count

language and innate understanding of language sys-
tems.

The Goal-Oriented Dialogue System (Young,
2000) was first introduced based on dialog state
tracking (Williams et al., 2013) and gave a new di-
rection to the NLU tasks. A number of datasets are
available in diverse domains for like-wise down-
stream goal-oriented conversational data such as
ATIS (Hemphill et al., 1990), SNIPS (Coucke
et al., 2018), DSTC (Williams et al., 2013), WOZ
(Budzianowski et al., 2018), etc. However, all of
them are monolingual, i.e., available in the English
language only. Code-mixing is the form of linguis-
tics where the conveyer uses two (or more than
two) languages together so that some words of the
low resource language replace the words from high
resource language or vice versa. The usual trend
is to mix English with any other regional language
such as Hindi (Hindi + English → Hinglish), Ben-
gali (Bengali + English → Benglish), Tamil (Tamil
+ English → Tamilish), and many more. With the
increase in multi-lingual speakers, code-mixing is
very common in online platforms, social media,
and day-to-day life (Gumperz, 1982; Gysels, 1992;
Durán, 1994; Moyer, 2002). Most common ac-
tivities such as shopping, restaurant reservations,
booking tickets, and so on all involve extensive use
of Code-mixing. For example, a Hindi speaking
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Language Utterances

English
Speaker 1: Hi, Can you help me in booking a table at this restaurant?
Speaker 2: Sure, would you like something in cheap, moderate or expensive price range?

Hinglish
Speaker 1: Hi, kya tum is restaurant mein ek table book karne mein meri help karoge?
Speaker 2: Sure, kya aap cheap, moderate ya expensive price range mein kuch like
karenge?

Table 1: Sample Code-Mixed Utterances.

user looking to book a restaurant would typically
ask, ”Kya tum is restaurant mein ek table book
karne mein meri help karoge?” (”Can you help me
in booking a table at this restaurant?”) (Banerjee
et al., 2018).

A significant proportion of the population world-
wide is using code-mixed language over online
platforms (Singh et al., 2018). The prime compli-
cation with linguistic diversity is such that there is
no convention or protocol to refer to when it comes
to code-mixing. Hence, it depends on the writer’s
perception and knowledge of the phonics of the
source language. (Kukich, 1992) grouped writing
errors into two classes. First one is typographical
that occurs when a character is substituted by the
wrong character whose key is nearby in the key-
board or interchanging of the character order, for
instance, merw paas(mere paas), kimd(kind), kys
krna ha(kya krna hai), and more variations due to
different reasons. Other class is of cognitive errors
that occur when the writer is unaware of the native
spelling and semantics of that word. In this case,
the wrongly spelled word is phonetically close to
the correct word (Toutanova and Moore, 2002). We
assume that the chances of typographical errors are
less since the writer intends to avoid making such
errors. This paper mainly focuses on cognitive er-
rors and covers a major portion of typographical
errors as well.

In the case of code-mixed data, there are no rules
that can lead towards achieving the correct spelling
because there is no correct spelling. We can as-
sume the most commonly used representation as
correct and normalized text to get some contextual
meaning. The introduction of external knowledge
can also help to improve the results of spelling cor-
rection. We propose a computationally inexpensive
novel technique to normalize spelling variations ir-
respective of the language of the bilingual speaker.

2 Related Work

Divergence from the traditional spelling and hav-
ing variation for the same word often carry some
meaning (Sebba, 2007). In computational linguis-
tics, while dealing with digital forms of regional
text forms, it becomes helpful to map all spelling
variations (semantically identical) to the same point
in embedding space. (Nguyen and Grieve, 2020)
highlighted a detailed analysis on the same. They
analyzed that the skip-gram model, which does not
consider spelling variations, encode spelling varia-
tion patterns to some extent. Also, the use of cosine
similarities helped find a link between intentional
variations and distance from the conventionally fol-
lowed standards.

Historical writings face the identical problem of
high degree variance in spellings (Reynaert et al.,
2012)—every day with new findings in historical
text and extending the corpora in digital form (lit-
erature). Various researches already explored the
normalization approaches based on string distance
measures to a reasonable extent for proposing vari-
ous tools for normalization. (Reynaert et al., 2012)
shows that, individually, the rule-based method
(Norma Tool) performed best in the presence of
a large amount of training data (Bollmann et al.,
2012). A combination of normalization methods
produces the best results and helps in further clean-
ing and processing of data. Hence, integrating
simple word-to-word mappers always increase the
overall performance. Methods like Edit Distance
or Levenshtein distance (Levenshtein, 1965; Yujian
and Bo, 2007) needs a massive corpus of univer-
sally correct data. (Bollmann and Søgaard, 2016)
further gave improvisation for this problem with
the use of bi-LSTM network (Schuster and Pali-
wal, 1997) applied on a character level. Multi-task
learning with additional normalization (integration
of mappers) improves the model’s performance.
Their model outperformed the CRF-based models
and Norma tool given in (Bollmann et al., 2012).
Extending the work keeping in mind the idea of
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integrating, (Domingo and Casacuberta, 2018) pro-
posed three approaches based on statistical, neu-
ral, and character-level machine translation to train
the model concerning modern spelling variation
standards. Their model covered a holistic view
of the word-to-word mappers. Additionally, they
proposed a simplistic approach of a statistical dic-
tionary, similar to a word-to-word mapper in which
they used the changing frequency of spelling on
the training corpora. They also stated that the sta-
tistical machine translation approach gave better
results than neural machine translation on small
corpora. (Lertpiya et al., 2020) explored another
low resource language which was (Thai). In their
work, they proposed a two-staged pipeline with
neural contextual attention. Using neural error cor-
rector and Seq2Seq error corrector alleviates the
problem of overcorrection.

The phonetically motivated approach has also
been explored a little by (Downs et al., 2020) where
they prioritized the phonetic key of the misspelled
word over supplementary ones. A survey con-
ducted for (Weld et al., 2021) reports an excellent
survey on joint intent classification and slot filling
techniques. They NLU models of over a decade
and gave a detailed comparison with the pros and
cons of various techniques. Concluding the state-
of-the-art research, they provide multiple compar-
isons that best summarise the past work done along
different dimensions, including the features, base
approaches, and dataset domain used. Hybrid pho-
netic neural models (Viana-Cámara et al., 2021)
and BERT (Devlin et al., 2018) models have also
been explored to capture character-phonetic but
they don’t capture the code-mixed data. (Hládek
et al., 2020) conducted a survey of spelling cor-
rection techniques. They studied the interactive
process of error production and correction. All the
major research assumes that the correct spelling
of the miss-spelled word is native to the written
language. In the case of code-mixed data, no such
thesaurus exists. Additionally, there is the absence
of any particular set of rules that one can use for
code-mixing, and it is complex to come up with
such a method or protocol to translate one language
into a romanized language.

Recently, (Sengupta et al., 2021) came up with a
method for sub-word level representation learning
that is supplemented by the word level lexical varia-
tions in code-mixed languages. They evaluated the
proposed architecture on a mix of European and

Indic languages (Spanish, Hindi, Bengali, Tamil,
Telugu, and Malayalam). They proposed a Hierar-
chically attentive Transformer (HIT) framework, a
novel architecture to encode text semantic and syn-
tactic features in an embedding space with efficacy.
It learns word representations at the sub-word level
using a Fused Attention MEchanism (FAME). It
incorporates two major attention components. An
outer product attention (OPA) (Le et al., 2020) to
extract higher-order character-level similarities and
multi-headed self attention (MSA) (Vaswani et al.,
2017), a standard transformer module that com-
putes a scaled query-key vector pair dot product.
FAME extends the MSA module by including OSA
and calculates their weighted sum. The proposed
model tries to embed semantically and phoneti-
cally similar words of a code-mixed language by
capturing relevant information at a more granular
level but lacks overall coverage of spelling varia-
tions. HIT is computationally expensive with over
trainable parameters 2.7M for sequence classifica-
tion and over 1.4M for POS tagging. It misses the
essence of layman language in text utterances.

3 Dataset Used

We will use a code-mixed version of the DSTC2
dataset (Williams et al., 2013; Henderson et al.,
2014a,b; Williams et al., 2014, 2016). They in-
corporated code-mixing in four regional languages
Hindi, Bengali, Gujarati, and Tamil, romanized as
English (Banerjee et al., 2018) by crowd-sourcing
the data for language translation from native speak-
ers of respective languages. The data contains 50k
utterances on the restaurant reservation domain,
including getting reservations done or asking for
information such as restaurant address, phone, etc.
Final data contains bot-to-human dialog conversa-
tions. The authors converted the raw data from
audio format to text. For this task, the authors used
Automatic Speech Recognition (ASR) modules.

Sentence cheap restaurant south west mein
Slots B-Price O B-Area I-Area O
Intent inform

Table 2: BIO-Tagging

Representation: There are 3 slots, 5 possible ar-
eas, 91 cuisines, and 3 price ranges. Workers acting
as customers were requested to deviate the conver-
sation in the middle of the dialog to various slots
and their possible values to make data robust, less
intuitive, and unconditional and avoid unnecessary
patterns in data.
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The workers transcribed the conversations and
labeled the utterances with different dialog states.
For example, each utterance was labeled with its
semantic intent representation (request[area], in-
form[area = north]) and the dialog turns were la-
beled with annotations such as constraints on the
slots (cuisine = Italian), requested slots (requested
= phone, address) and the method of search (by
constraints, by alternatives). Such annotations are
useful for domain-specific slot-filling based dialog
systems (Banerjee et al., 2018). This whole pro-
cess consists of three phases. Extracting unique
utterances from DSTC2, i.e., dialogues with only
change in the slot values rest same are filtered out.
Creating code mixed translations using Amazon
Mechanical Turk (AMT) tool for crowd-sourcing
and by in-house workers. The evaluation involved
taking random dialogues from the dataset for collo-
quialism (unforced translation), Intelligibility (eas-
ily understandable), and Coherence(irrespective of
neighboring utterances knowledge).

The quantitative measure of code-mixing : As
per the evaluation process. The authors analyzed
the obtained code-mixed data for code-mixing mea-
sures. (Gambäck and Das, 2016) gave a metric to
measure code-mixing in a sentence given as:

: ifN(x) > 0

Cu(x) = 100.

N(x)−max
Li∈L
{tLi}+ P (x)

2N(x)
(1)

Here, the measure of code-mixing for sentence
x, Cu(x) is given by N(x), number do foreign
language tokens in sentence. Maximum number of
tokens t in language Li from the set of languages
L. In addition, number of language switch points
given by P (x). In the above equation, the language
of the majority of words in the sentence serve as
Embedding however, irrespective of the majority,
we need to consider English as Embedding and
Hindi as Matrix language. To over come this the
authors proposed to replace the general max

Li∈L
{tLi}

with native(x) given as:

native(x) =

{
{tLn} : tLn > 0

N(x) : tLn = 0
(2)

Here, tLi is the number of tokens in native
language(Hindi). Also, the term δ(xi) with val-
ues 0(if switch in Matrix language) or 1(purely

Property Count
Total Utterances 49167
Unique utterances 6733
Utterances per dialogue 15
Words per utterance 8
Words per dialogue 120
KB triples per dialogue 38
Train dialogue 1168
Validation dialogue 500
Test dialogue 1117
Vocab Size 1229

Table 3: Raw Dataset Analysis.

Property Count in Hinglish
Unique Utterances 6549
Code-Mixed Utterances 5750
Hindi Only Utterances 348
English Only Utterances 451
Utterances per dialogue 12
Words per utterance 8
Hindi Vocab Size 739
English Vocab Size 551
Code-Mixed Vocab Size 386

Table 4: Code-Mixed Dataset Analysis.

English) to measure the extent of inter-utterance
code-mixing and frequency. The authors also
considered the fraction of code-mixed utterances
S:CMUtterances
U :TotalUtterances . And the final equation is given
as Cu(x) for one utterance and Cc(x) for complete
corpus:

Cu(x) =

(
1− native(x) + P (x)

N(x)
+ δ(x)

)

Cc(x) =
100

U

[
1

2

U∑

i=1

Cu(x) +
5

6
S

] (3)

4 Proposed Methodology

We propose a novel method of robust systems for
low resource similar token spelling variations. The
main reason for little spelling variations in the pro-
nunciation and ambiguous phonetics of the word.
Due lack of any formal conversion criterion, the
writer introduces variations. The aim is to map
the semantically similar romanized words such as
Kabhi, kabi, kbhi, etc together so that they can be
neutralized to a single term and have identical em-
bedding. Then give a most common and close to
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Figure 2: Spelling Variation Count Analysis

Figure 3: Utterance Count VS Hindi word count

correct representation of that word. We approach
this statement in 5 phases as follows:

1. Capture Code Mixing: The point of focus
is the tokens that belong to Matrix Language.
For this, we markdown the predefined tokens
(here, intent labels, slot labels and special to-
kens) according to the training data. For this
purpose, we use English Dictionary for iden-
tifying the embedded language words. We
leave the English words unchanged and sent
the non-English words to the second phase.

2. CM Elocution: In this phase, we try to find a
set of possible transliterations of each token in
their native script here, Devanagari. We have
an option to take the transliterated terms as to
be syntactically and semantically incorrect in
the Matrix Language since the whole idea is
to capture the different pronunciation styles

in the native language of the word. We use
indic-transliterator (Bhat et al., 2015) for this
job and stored top five closest transliterations
for each romanised token. These translitera-
tions sound similar to each other, with a minor
change in terms of vowels and consonants.

3. Candidate Selection (Devanagari
Phoneme): The set of recently formed
Devanagari tokens are the closest possible
phonetically similar terms that all sound
the same but differ in the writing style and
hence are close to each other. To reduce
variation, we need to normalize all the
possible variations with the most commonly
used term. Now that we have to query for
Hindi (Devanagari) text, there is plenty of
corpora that we can take as a benchmark. It
may or may not be semantically correct, but
it will be the most used term by the majority
of the population. We used the IIT Bombay
parallel corpus (Kunchukuttan et al., 2017) to
perform candidate selection. We use TF-IDF
on the Devanagari translation of the dataset.
The term with the max score is selected to
be the best possible normalization for all
the remaining terms. This newly elected
normalized term which syntactically correct
as per the Matrix Language. This way, we are
able to pull the spelling variations together
in multi-dimensional embedding space of the
Matrix Language.

4. Romanisation: This step is similar to the 2nd

phase. For the CM dataset, the Devanagari
terms are converted to their romanized
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Figure 4: Proposed Data Pipeline.

Figure 5: Devanagari Transliteration Generation

elocution by transliteration. Now, this is the
crucial step; we do not have any order or
protocol for elocution until now. However,
we intentionally introduce minor spelling
variations as part of code-mixing noise. Now
when we have the map of code-mixed words,
we can normalize it again based on candidate
selection, and this way, we normalize the
whole set of writer introduced code-mixing to
abide by the code-mixing methodology.

Count Language Train Test Dev

Sentences 1,492,827 2,507 520

Tokens English 20,667,259 57,803 10,656
Hindi 22,171,543 63,853 10,174

Table 5: IIT Bombay Corpus Statistics

5. Candidate Selection (Romanised
Phoneme): This step is similar to the
earlier candidate selection, the only difference
being the language to the terms. Here, we
select one most used romanized matrix
language term. TF-IDF scores catered to
this selection from a rich bi-lingual corpus
collected from various social media platforms
to capture the latest trends of code-mixing
generalized to various writers. We used
Facebook, Twitter, WhatsApp chat dataset
given by (Das, 2016) further explored in
(Ramesh and Kumar, 2016). This dataset
is enriched with a quality code-mixing
that best caters to our need to figure out
the most widely used representations of a
matrix language term. With this, we get a

single normalized term for all the syntactic
variations of semantically similar hi-English
terms. This output contains non-English
terms without spelling variations for roman
English (Hindi) words.

With this, we give novel methods and pre-
determined mapping for most commonly used
spelling variations with their preferred normaliza-
tion. This mapping can be helpful in learning mod-
els for spelling correction for natural language un-
derstanding tasks.

5 Experiments

We perform numerous trials and runs to prove the
importance of spelling normalization. We took a
downstream task of intent classification and slot
prediction. We use the BIO-Tagging format to
transform the data for performing joint learning.
We then compare the performance of state-of-the-
art algorithms on our normalized data and old data
with variations.

1. CS-ELMO (Aguilar and Solorio, 2019) used
a state-of-the-art monolingual model for find-
ing the sentence embedding for dialogue sys-
tems and used transfer learning to develop a
model for code-switched bilingual text. Their
model transfer English knowledge from a pre-
trained ELMo model to code-switched lan-
guage (Hi-English) using the task of language
identification (Matrix language and Embed-
ding Language). They used character convo-
lutions for capturing character positions of un-
known words. Their model outperformed the
multilingual BERT (Devlin et al., 2018), and
another code-switching ignorant monolingual
model like ELMO (Peters et al., 2018).

2. Stack Propagation (Qin et al., 2019) consid-
ered the strong correlation of intent classifica-
tion and slot filling (Zhang and Wang, 2016;
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Hakkani-Tür et al., 2016; Liu and Lane, 2016).
Qin’s model used the intent information di-
rectly into the slot filling stage. Once the ut-
terance’s intent is classified, we concatenate
the label to the slot representation for predict-
ing the slots for each of the tokens simulta-
neously. They performed token level intent
classification for further alleviating error prop-
agation and finally passed the representation
to the BERT layer for further performance
gain. The semantic knowledge in the form of
intents of each utterance act as a differential
link between the two tasks. They also demon-
strated the use of gated architecture proposed
in (Goo et al., 2018).

Figure 6: Multi-Task Vs Stack Propagation

3. DCA-Net Recently, (Qin et al., 2021) demon-
strated an excellent work of propagating se-
mantic knowledge from one task to another
in the form of joint learning. In (Qin et al.,
2019) there was a unidirectional flow of the
information to overcome this Qui et al. fur-
ther extended their work and proposed a co-
interactive transformer module by establish-
ing a bidirectional cross-impact between the
two tasks in a unified architecture. Both in-
tent classification and slot filling can take ad-
vantage of mutual information. Their model
achieved state-of-the-art performance. The
major drawback of their model is that it fails
to incorporate code-switching and fails on our
Hi-English data. We can further tune this
method for extending the scope for multilin-
gual data.

4. HIT A robust representation learning method
was recently proposed by (Sengupta et al.,
2021). They computed the weighted sum
of two attention modules, multi-headed self-
attention, and an outer product attention mod-
ule, to obtain the final attention weights. An
outer product attention (OPA) (Le et al., 2020)
to extract higher-order character-level similar-

ities and multi-headed self attention (MSA)
(Vaswani et al., 2017), a standard transformer
module that computes a scaled query-key vec-
tor pair dot product. HIT was able to encode
syntactic and semantic features in embedding
space by learning sub-word level represen-
tations with their fused mechanism called
FAME. FAME extends the MSA module by
including OSA and calculates their weighted
sum. This model did not perform well due
to incompetencies of efficiently reducing the
distance between semantically same but syn-
tactically varied code-switched terms.

6 Implementation

We report BLEU-4 (Papineni et al., 2002) and
ROUGE-1, ROUGE-2 and ROUGE-L scores (Lin,
2004) for natural language generation machine
translation task to compare the results with the
dataset baselines given by (Banerjee et al., 2018;
Banerjee and Khapra, 2019). Further, we compute
Precision, Recall, and F1 scores for intent classi-
fication and Slot Filling evaluation. We calculate
weighted and macro average scores and then chose
macro overweighted because this is a class imbal-
ance problem. The weighted average will give sig-
nificant weightage to the most frequent class whose
performance may lead to 100%. To encounter this
issue, we report macro averaged scores, i.e., an av-
erage of independent scores for each class, treating
all classes equally.

Further, We play with different combinations
of the state-of-the-art algorithms and compared
the performance on both syntactically normalized
(Spell) and un-normalized Inc spell versions of the
dataset. We represent the data as each line contain-
ing a token and utterances separated by an empty
line. Each token corresponds to a BIO tagging la-
bel, where B refers to the label’s beginning, I refers
to the intermediate words of the label, and O refers
to other classes (no label of interest).

7 Results and Comparison

The table 7 shows the effect of normalizing spelling
variations in code-mixed data and clearly shows
that our novel architecture helps further to improve
the quality of natural language generation tasks.
The baseline algorithms Seq2Seq and Hred (Baner-
jee et al., 2018) along with graph convolutions
network with sequential attention (Banerjee and
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Intent Macro Average Slot Macro Average Improvement
Model Data Intent Acc Pre Rec F1 Slot Acc Pre Rec F1

CS-ELMo Original 86.7 69.89 60.3 64.75 99.55 72.89 70.06 71.44 0.5464CS-ELMo Normalized 86.03 69.12 58.66 63.46 99.47 72.04 68.78 70.37
Stack Prop Original 93.56 86.51 78.89 81.98 98.85 76 76 77 0.3942Stack Prop Normalized 91.17 85.04 77.38 81.03 98.65 76 77 77
cselmo+ stackProp Original 94.17 87.22 79.71 83.29 99.23 78.77 78.38 79.81 0.4364cselmo+ stackProp Normalized 93.23 86.02 78.92 82.45 98.97 78.02 78.19 78.67
DCA-Net Original 85.73 75.3 62.7 66.86 98.92 69.21 63.64 64.08 0.2792DCA-Net Normalized 84.6 74.43 63.53 66.25 98.76 68.47 62.81 63.68
cselmo+DCA-Net Original 85.77 62.01 61.82 60.57 98.52 66.85 67.69 64.28 0.4771cselmo+DCA-Net Normalized 84.32 61.17 61.02 59.94 98.12 65.96 66.81 63.49
HIT Original 86.33 76.75 63.59 67.68 98.28 61.35 84.39 52.78 0.37217HIT Normalized 85.36 75.83 64.52 66.55 97.44 60.72 83.98 51.54

Table 6: Comparing different combinations of state-of-the-art models on Hi-English Data.

Model Data Bleu Rougue-1 Rougue-2 Rougue-L

Seq2Seq Normalized 55.1 62.9 52.5 61
Seq2Seq Original 55.9 63.55 53.1 62.09
Hred Normalized 55.3 63.4 52.7 61.15
Hred Original 55.61 63.92 53.25 61.91
GCN-SeA Normalized 57.1 66.4 56.8 64.4
GCN-SeA Original 57.4 66.78 56.4 65.98

Table 7: Effect of Spelling Normalization

Khapra, 2019) both results in higher performance
increased by 0.5 - 1.5 units, when normalised data
is used. Normalization forces the vector represen-
tations for semantically identical but syntactically
close terms to overlap each other in multidimen-
sional embedding space and forces the model to
treat all possible variations as the same only.

From table 6 we can infer, for all the state-of-
the-art approaches, the proposed modification has
lead to a significant performance gain by a factor of
0.5%-1.5%. The maximum improvement of 1.23
in slot F1 and 1.35 in intent F1 score can be seen
in CS-ELMO, considering it explicitly focuses on
the various types of character level embedding to
capture context. The combinations of CS-ELMO
with DCA-Net (0.8 for slot F1 and 0.67 in intent F1
) and CS-ELMO with Stack Propagation (1.14 in
slot F1 and 0.84 in intent F1) algorithms also shows
significant performance improvement. Hence, the
importance of tackling spelling variation in code
mixed data is evident from the above results. Inte-
grating different modules results in overcoming the
drawbacks of each module in one way or another.
This helps in improving the over performance.

8 Conclusion

With this emerging trend of code-mixing over so-
cial media platforms and daily communication in
almost every region, the necessity to develop effi-
cient natural language understanding models has

increased. We communicate in a specific language
(say, English) because the language has set stan-
dards, semantics, syntactic, and phonetics. Without
any standard for low-resource languages, it is tough
to communicate. Different people have different
ways of pronouncing and depicting the alphabet,
phonetics, and accent of a language close to their
mother tongue. This action may lead to spelling
variations while writing text as a medium for com-
munication. We introduce a novel, computationally
inexpensive, fully robust, and efficient method to
normalize these spelling variations that work as an
auto-correct to counter this problem. This mecha-
nism helps in performance gain not only machine
translation but also generic natural language tasks
and any downstream task involving code-mixing
problems. We give a universal mapping for Hi-
English code-mixing that can be used directly by
making a query in O(1) time to normalize non-
English words. It is evident from our work that
integrating several modules together helps in per-
formance improvement. We can further improve
this solution by learning a model to further normal-
ize out of the vocabulary terms.
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